1
|
Yen IW, Chen SC, Lin CH, Fan KC, Yang CY, Hsu CY, Kuo CH, Lin MS, Lyu YP, Juan HC, Heng-Huei L, Li HY. Precision medicine in diabetes prediction: Exploring a subgroup-specific biomarker strategy for risk stratification. J Diabetes Investig 2025; 16:43-50. [PMID: 39535373 DOI: 10.1111/jdi.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The early detection of high-risk individuals is crucial to delay and reduce the incidence of type 2 diabetes. In this study, we aimed to explore the performance of a novel subgroup-specific biomarker strategy in the prediction of incident diabetes. MATERIALS AND METHODS In the Taiwan Lifestyle Cohort Study, adult subjects without diabetes were included and followed for the incidence of diabetes in 2006-2019. The biomarkers measured included blood secretogranin III (SCG3), vascular adhesion protein-1 (VAP-1), fibrinogen-like protein 1 (FGL1), angiopoietin-like protein 6 (ANGPTL6), and angiopoietin-like protein 4 (ANGPTL4). RESULTS Among the 1,287 subjects, 12.2% developed diabetes during a 6 year follow-up. Blood VAP-1 was significantly associated with incident diabetes in the overall population (HR = 0.724, P < 0.05), participants under 65 years old (HR = 0.685, P < 0.05), those with a BMI of ≥24 kg/m2 (HR = 0.673, P < 0.05), and females (HR = 0.635, P < 0.05). Blood ANGPTL6 was significantly correlated with incident diabetes in participants aged 65 and older (HR = 0.314, P < 0.05), and blood SCG3 was associated with incident diabetes in those with a BMI of <24 kg/m2 (HR = 1.296, P < 0.05). Two subgroup-specific biomarker strategies were developed. The gender and BMI-specific biomarker strategy, using traditional risk factors and blood SCG3 or VAP-1 in different subgroups, could improve prediction performance, especially the specificity and positive prediction value, compared with the whole-population strategy using only traditional risk factors or traditional risk factors plus blood VAP-1. CONCLUSION Gender- and BMI-specific biomarker strategy can improve the prediction of incident diabetes. A subgroup-specific biomarker strategy is a novel approach in the prediction of incident diabetes.
Collapse
Affiliation(s)
- I-Weng Yen
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan
- College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chi Chen
- Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu County, Taiwan
- College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Yi Yang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Medical Imaging, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Yao Hsu
- Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Chun-Heng Kuo
- College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Mao-Shin Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Pin Lyu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lin Heng-Huei
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Kikuchi S, Odashima K, Yasui T, Torii S, Hosaka M, Gomi H. Dominant Expression of Chromogranin B in Pituitary Corticotrophs and Its Putative Role in Interaction With Secretogranin III. J Histochem Cytochem 2025; 73:29-53. [PMID: 39791490 PMCID: PMC11719422 DOI: 10.1369/00221554241311965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
SummaryPrevious studies have suggested that chromogranin A (CgA) is a partner molecule of secretogranin III (SgIII). In mouse pituitary corticotroph-derived AtT-20 cells, SgIII plays a role in sorting CgA/hormone aggregates into secretory granules (SGs). Although CgA expression is equivocal, CgB is clearly detectable in the rat pituitary corticotrophs. Therefore, we hypothesized that CgB shares a function with CgA in pituitary corticotrophs. In the binding assays, CgB, similar to CgA, showed binding activity to SgIII under weakly acidic conditions and in the presence of Ca2+. Considering the differences in animal species, the different abilities of antibodies, and the conditions of tissue fixation and thin sectioning in immunofluorescence histochemistry, we found that CgA was expressed in a small population (approximately 10%), and its expression intensity was weaker than that of CgB (>98%) in rodent pituitary corticotrophs. In addition, similar to CgA, CgB and SgIII were colocalized in adrenocorticotropic hormone (ACTH) granules. The labeling of CgA and CgB was not completely consistent, and CgB colocalized with SgIII in many granules. These results suggest that there are multiple sorting systems for ACTH granules in pituitary corticotrophs and that the SgIII/CgB complex behaves more dominantly than the SgIII/CgA complex, which has somewhat different properties.
Collapse
Affiliation(s)
- Shota Kikuchi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Koki Odashima
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Seiji Torii
- Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
3
|
Pereye OB, Nakagawa Y, Sato T, Fukunaka A, Aoyama S, Nishida Y, Mizutani W, Kobayashi N, Morishita Y, Oyama T, Kawabata-Iwakawa R, Watada H, Mizukami H, Fukuda A, Fujitani Y. Identification of Ppy-lineage cells as a novel origin of pancreatic ductal adenocarcinoma. J Pathol 2024; 263:429-441. [PMID: 38837231 DOI: 10.1002/path.6295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024]
Abstract
The Ppy gene encodes pancreatic polypeptide (PP) secreted by PP- or γ-cells, which are a subtype of endocrine cells localised mainly in the islet periphery. For a detailed characterisation of PP cells, we aimed to establish PP cell lines. To this end, we generated a mouse model harbouring the SV40 large T antigen (TAg) in the Rosa26 locus, which is expressed upon Ppy-promoter-mediated Cre-loxP recombination. Whereas Insulin1-CreERT-mediated TAg expression in beta cells resulted in insulinoma, surprisingly, Ppy-Cre-mediated TAg expression resulted in the malignant transformation of Ppy-lineage cells. These mice showed distorted islet structural integrity at 5 days of age compared with normal islets. CK19+ duct-like lesions contiguous with the islets were observed at 2 weeks of age, and mice developed aggressive pancreatic ductal adenocarcinoma (PDAC) at 4 weeks of age, suggesting that PDAC can originate from the islet/endocrine pancreas. This was unexpected as PDAC is believed to originate from the exocrine pancreas. RNA-sequencing analysis of Ppy-lineage islet cells from 7-day-old TAg+ mice showed a downregulation and an upregulation of endocrine and exocrine genes, respectively, in addition to the upregulation of genes and pathways associated with PDAC. These results suggest that the expression of an oncogene in Ppy-lineage cells induces a switch from endocrine cell fate to PDAC. Our findings demonstrate that Ppy-lineage cells may be an origin of PDAC and may provide novel insights into the pathogenesis of pancreatic cancer, as well as possible therapeutic strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Cell Lineage
- Mice
- Mice, Transgenic
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Islets of Langerhans/pathology
- Islets of Langerhans/metabolism
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
Collapse
Affiliation(s)
- Ofejiro Blessing Pereye
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Takashi Sato
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Shuhei Aoyama
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wakana Mizutani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Nanami Kobayashi
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Yohei Morishita
- Laboratory for Analytical Instruments, Education and Research Support Centre, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Centre, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| |
Collapse
|
4
|
Saito D, Nakagawa Y, Sato T, Fukunaka A, Pereye OB, Maruyama N, Watada H, Fujitani Y. Establishment of an enzyme-linked immunosorbent assay for mouse pancreatic polypeptide clarifies the regulatory mechanism of its secretion from pancreatic γ cells. PLoS One 2022; 17:e0269958. [PMID: 35976945 PMCID: PMC9385059 DOI: 10.1371/journal.pone.0269958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic polypeptide (PP), secreted from γ cells of the islets of Langerhans, is a 36 amino-acid peptide encoded by the Ppy gene. Although previous studies have reported that PP causes a decrease in appetite, the molecular mechanism that regulates PP secretion has not been fully elucidated. Lack of understanding of the regulatory mechanism of PP secretion may be partially owing to the lack of assay systems that can specifically detect PP. We recently developed the mouse monoclonal antibody 23-2D3 that specifically recognizes PP. In the present study, we developed a sandwich enzyme-linked immunosorbent assay for the measurement of mouse PP, and directly monitored intracellular Ca2+ concentrations in Ppy-expressing cells from a newly developed reporter mouse. Using these systems, we identified agonists, such as carbachol and glucose-dependent insulinotropic polypeptide (GIP), which stimulate PP secretion. We further demonstrated that, unlike the case of GIP-induced insulin secretion from β cells, there is a unique mechanism by which PP secretion is triggered by an increase in intracellular Ca2+ concentrations via voltage-dependent calcium channels even in low-glucose conditions.
Collapse
Affiliation(s)
- Daisuke Saito
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takashi Sato
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Ofejiro Blessing Pereye
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | | | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- * E-mail:
| |
Collapse
|
5
|
Ji L, Waduge P, Wan W, Tian H, Li J, Zhang J, Chen R, Li W. Comparative ligandomics implicates secretogranin III as a disease‐restricted angiogenic factor in laser‐induced choroidal neovascularization. FEBS J 2022; 289:3521-3534. [DOI: 10.1111/febs.16356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Liyang Ji
- Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston TX USA
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
- Department of Ophthalmology The Fourth Affiliated Hospital of China Medical University Shenyang Liaoning China
| | - Prabuddha Waduge
- Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston TX USA
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
| | - Wencui Wan
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
- Department of Ophthalmology First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Hong Tian
- Everglades Biopharma, LLC Houston TX USA
| | - Jin Li
- Department of Molecular & Human Genetics Baylor College of Medicine Houston TX USA
| | - Jinsong Zhang
- Department of Ophthalmology The Fourth Affiliated Hospital of China Medical University Shenyang Liaoning China
| | - Rui Chen
- Department of Molecular & Human Genetics Baylor College of Medicine Houston TX USA
| | - Wei Li
- Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston TX USA
- Bascom Palmer Eye Institute University of Miami School of Medicine Miami FL USA
| |
Collapse
|
6
|
Gomi H, Nagumo T, Asano K, Konosu M, Yasui T, Torii S, Hosaka M. Differential Expression of Secretogranins II and III in Canine Adrenal Chromaffin Cells and Pheochromocytomas. J Histochem Cytochem 2022; 70:335-356. [PMID: 35400231 PMCID: PMC9058372 DOI: 10.1369/00221554221091000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretogranin II (SgII) and III (SgIII) function within peptide hormone-producing cells and are involved in secretory granule formation. However, their function in active amine-producing cells is not fully understood. In this study, we analyzed the expression profiles of SgII and SgIII in canine adrenal medulla and pheochromocytomas by immunohistochemical staining. In normal adrenal tissues, the intensity of coexpression of these two secretogranins (Sgs) differed from each chromaffin cell, although a complete match was not observed. The coexpression of vesicular monoamine transporter 2 (VMAT2) with SgIII was similar to that with chromogranin A, but there was a subpopulation of VMAT2-expressing cells that were negative or hardly detectable for SgII. These results are the first to indicate that there are distinct expression patterns for SgII and SgIII in adrenal chromaffin cells. Furthermore, the expression of these two Sgs varied in intensity among pheochromocytomas and did not necessarily correlate with clinical plasma catecholamine levels in patients. However, compared with SgIII, the expression of SgII was shown to be strong at the single-cell level in some tumor tissues. These findings provide a fundamental understanding of the expression differences between SgII and SgIII in normal adrenal chromaffin cells and pheochromocytomas.
Collapse
Affiliation(s)
- Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences
| | - Takahiro Nagumo
- Department of Veterinary Surgery, College of Bioresource Sciences.,Nihon University, Fujisawa, Japan; Division of Companion Animal Surgery, Veterinary Teaching Hospital, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Kazushi Asano
- Department of Veterinary Surgery, College of Bioresource Sciences
| | - Makoto Konosu
- Department of Veterinary Anatomy, College of Bioresource Sciences
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences
| | - Seiji Torii
- Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Masahiro Hosaka
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| |
Collapse
|
7
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
8
|
Neurovascular regulation in diabetic retinopathy and emerging therapies. Cell Mol Life Sci 2021; 78:5977-5985. [PMID: 34230991 DOI: 10.1007/s00018-021-03893-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss in working adults in developed countries. The disease traditionally classified as a microvascular complication of diabetes is now widely recognized as a neurovascular disorder resulting from disruption of the retinal neurovascular unit (NVU). The NVU comprising retinal neurons, glia and vascular cells coordinately regulates blood flow, vascular density and permeability to maintain homeostasis. Disturbance of the NVU during DR can lead to vision-threatening clinical manifestations. A limited number of signaling pathways have been identified for intercellular communication within the NVU, including vascular endothelial growth factor (VEGF), the master switch for angiogenesis. VEGF inhibitors are now widely used to treat DR, but their limited efficacy implies that other signaling molecules are involved in the pathogenesis of DR. By applying a novel screening technology called comparative ligandomics, we recently discovered secretogranin III (Scg3) as a unique DR-selective angiogenic and vascular leakage factor with therapeutic potential for DR. This review proposes neuron-derived Scg3 as the first diabetes-selective neurovascular regulator and discusses important features of Scg3 inhibition for next-generation disease-targeted anti-angiogenic therapies of DR.
Collapse
|
9
|
Gomi H, Hinata A, Yasui T, Torii S, Hosaka M. Expression Pattern of the LacZ Reporter in Secretogranin III Gene-trapped Mice. J Histochem Cytochem 2021; 69:229-243. [PMID: 33622062 DOI: 10.1369/0022155421996845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretogranin III (SgIII) is a granin protein involved in secretory granule formation in peptide-hormone-producing endocrine cells. In this study, we analyzed the expression of the LacZ reporter in the SgIII knockout mice produced by gene trapping (SgIII-gtKO) for the purpose of comprehensively clarifying the expression patterns of SgIII at the cell and tissue levels. In the endocrine tissues of SgIII-gtKO mice, LacZ expression was observed in the pituitary gland, adrenal medulla, and pancreatic islets, where SgIII expression has been canonically revealed. LacZ expression was extensively observed in brain regions, especially in the cerebral cortex, hippocampus, hypothalamic nuclei, cerebellum, and spinal cord. In peripheral nervous tissues, LacZ expression was observed in the retina, optic nerve, and trigeminal ganglion. LacZ expression was particularly prominent in astrocytes, in addition to neurons and ependymal cells. In the cerebellum, at least four cell types expressed SgIII under basal conditions. The expression of SgIII in the glioma cell lines C6 and RGC-6 was enhanced by excitatory glutamate treatment. It also became clear that the expression level of SgIII varied among neuron and astrocyte subtypes. These results suggest that SgIII is involved in glial cell function, in addition to neuroendocrine functions, in the nervous system.
Collapse
Affiliation(s)
- Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Airi Hinata
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Seiji Torii
- Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| |
Collapse
|
10
|
Abstract
The Special Issue “Pathogenetic and Therapeutic Significance of Adipokines in Diabetes” focused on adipokines as shared diagnostic biomarkers and therapeutic targets for both obesity and type 2 diabetes. Experts discussed the pathological role of adipokines in their studies associated with diabetes. It provided new insights into the role of adipokines in diabetes. In this commentary and review, these studies will be summarized and the novel roles of adipokines will be discussed. This will also confirm the role of adipokines as biomarkers for diagnosis and prediction, and as therapeutic targets of diabetes and its related pathogenic phenomena.
Collapse
|
11
|
Serum Secretogranin III Concentrations Were Increased in Subjects with Metabolic Syndrome and Independently Associated with Fasting Plasma Glucose Levels. J Clin Med 2019; 8:jcm8091436. [PMID: 31514320 PMCID: PMC6780385 DOI: 10.3390/jcm8091436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Secretogranin III (SCG3) plays a crucial role in the biogenesis of secretory granules in endocrine cells, and thus affects glucose homeostasis by regulating insulin secretion by pancreatic beta cells. Insulin resistance and compensatory hyperinsulinemia are hallmarks of metabolic syndrome (MetS). However, the role of SCG3 in MetS remains unclear. Therefore, we investigated the relationship between serum SCG3 levels and metabolic parameters in subjects with and without MetS. This was a case control study, and 295 subjects were recruited. Serum SCG3 concentrations were compared between groups. Associations between SCG3 levels and clinico-metabolic parameters were also examined. We found serum SCG3 levels were higher in the MetS group than non-MetS group (122.6 ± 79.2 vs. 90.6 ± 58.5 nmol/L, p = 0.009). Specifically, elevated SCG3 levels were found in subjects with high fasting plasma glucose (FPG) levels, central obesity, or hypertriglyceridemia. Additionally, MetS was an independent factor of serum SCG3 levels in multivariate linear regression analyses. Moreover, FPG, free fatty acids, and waist circumference were positively associated with serum SCG3 concentrations after adjusting for insulin levels, high-sensitivity C-reactive protein, and cardiovascular risk factors. In conclusion, serum SCG3 concentrations were higher in subjects with MetS and were independently associated with FPG levels.
Collapse
|
12
|
Culture in 10% O 2 enhances the production of active hormones in neuro-endocrine cells by up-regulating the expression of processing enzymes. Biochem J 2019; 476:827-842. [PMID: 30787050 DOI: 10.1042/bcj20180832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
To closely mimic physiological conditions, low oxygen cultures have been employed in stem cell and cancer research. Although in vivo oxygen concentrations in tissues are often much lower than ambient 21% O2 (ranging from 3.6 to 12.8% O2), most cell cultures are maintained at 21% O2 To clarify the effects of the O2 culture concentration on the regulated secretion of peptide hormones in neuro-endocrine cells, we examined the changes in the storage and release of peptide hormones in neuro-endocrine cell lines and endocrine tissues cultured in a relatively lower O2 concentration. In both AtT-20 cells derived from the mouse anterior pituitary and freshly prepared mouse pituitaries cultured in 10% O2 for 24 h, the storage and regulated secretion of the mature peptide hormone adrenocorticotropic hormone were significantly increased compared with those in cells and pituitaries cultured in ambient 21% O2, whereas its precursor proopiomelanocortin was not increased in the cells and tissues after being cultured in 10% O2 Simultaneously, the prohormone-processing enzymes PC1/3 and carboxypeptidase E were up-regulated in cells cultured in 10% O2, thus facilitating the conversion of prohormones to their active form. Similarly, culturing the mouse β-cell line MIN6 and islet tissue in 10% O2 also significantly increased the conversion of proinsulin into mature insulin, which was secreted in a regulated manner. These results suggest that culture under 10% O2 is more optimal for endocrine tissues/cells to efficiently generate and secrete active peptide hormones than ambient 21% O2.
Collapse
|
13
|
Secretogranin III as a novel target for the therapy of choroidal neovascularization. Exp Eye Res 2019; 181:120-126. [PMID: 30633921 DOI: 10.1016/j.exer.2019.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 01/08/2023]
Abstract
Wet age-related macular degeneration (AMD) with choroidal neovascularization (CNV) is a leading cause of vision loss in the elderly. The advent of anti-vascular endothelial growth factor (VEGF) drugs represents a major breakthrough in wet AMD therapy but with limited efficacy to improve visual acuity. Secretogranin III (Scg3, SgIII) was recently discovered as a novel angiogenic factor with VEGF-independent mechanisms. Scg3-neutralizing monoclonal antibody (mAb) was reported to alleviate pathological retinal neovascularization in oxygen-induced retinopathy mice and retinal vascular leakage in diabetic mice with high efficacy and disease selectivity. Herein we investigated whether Scg3 is a novel angiogenic target for CNV therapy in mouse models. We found that anti-Scg3 ML49.3 mAb inhibited Scg3-induced proliferation and Src phosphorylation in human retinal microvascular endothelial cells. Intravitreal injection of Scg3-neutralizing polyclonal antibodies (pAb) or mAb significantly attenuated laser-induced CNV leakage, CNV 3D volume, lesion area and vessel density. Furthermore, subcutaneous administration of Scg3-neutralizing pAb or mAb significantly prevented Matrigel-induced CNV. The efficacy of anti-Scg3 pAb or mAb was comparable to VEGF inhibitor aflibercept. These findings suggest that Scg3 plays an important role in CNV pathogenesis and that anti-Scg3 mAb efficiently ameliorates laser- or Matrigel-induced CNV.
Collapse
|