1
|
Pal T, McQuillan HJ, Wragg L, Brown RSE. Hormonal Actions in the Medial Preoptic Area Governing Parental Behavior: Novel Insights From New Tools. Endocrinology 2024; 166:bqae152. [PMID: 39497459 PMCID: PMC11590663 DOI: 10.1210/endocr/bqae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Indexed: 11/27/2024]
Abstract
The importance of hormones in mediating a behavioral transition in mammals from a virgin or nonparenting state to parental state was established around 50 years ago. Extensive research has since revealed a highly conserved neural circuit that underlies parental behavior both between sexes and between mammalian species. Within this circuit, hormonal action in the medial preoptic area of the hypothalamus (MPOA) has been shown to be key in timing the onset of parental behavior with the birth of offspring. However, the mechanism underlying how hormones act in the MPOA to facilitate this change in behavior has been unclear. Technical advances in neuroscience, including single cell sequencing, novel transgenic approaches, calcium imaging, and optogenetics, have recently been harnessed to reveal new insights into maternal behavior. This review aims to highlight how the use of these tools has shaped our understanding about which aspects of maternal behavior are regulated by specific hormone activity within the MPOA, how hormone-sensitive MPOA neurons integrate within the wider neural circuit that governs maternal behavior, and how maternal hormones drive changes in MPOA neuronal function during different reproductive states. Finally, we review our current understanding of hormonal modulation of MPOA-mediated paternal behavior in males.
Collapse
Affiliation(s)
- Tapasya Pal
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Henry J McQuillan
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Logan Wragg
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rosemary S E Brown
- Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
2
|
Liu CL, Mou HL, Na RS, Wang X, Hu PF, Ceccobelli S, Huang YF, E GX. Multiomic meta-analysis suggests a correlation between steroid hormone-related genes and litter size in goats. Anim Genet 2024; 55:779-787. [PMID: 39019844 DOI: 10.1111/age.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Litter size is a key indicator of production performance in livestock. However, its genetic basis in goats remains poorly understood. In this work, a genome-wide selection sweep analysis (GWSA) on 100 published goat genomes with different litter rates was performed for the first time to identify candidate genes related to kidding rate. This analysis was combined with the public RNA-sequencing data of ovary tissues (follicular phase) from high- and low-yielding goats. A total of 2278 genes were identified by GWSA. Most of these genes were enriched in signaling pathways related to ovarian follicle development and hormone secretion. Moreover, 208 differentially expressed genes between groups were obtained from the ovaries of goats with different litter sizes. These genes were substantially enriched in the cholesterol and steroid synthesis signaling pathways. Meanwhile, the weighted gene co-expression network was used to perform modular analysis of differentially expressed genes. The results showed that seven modules were reconstructed, of which one module showed a very strong correlation with litter size (r = -0.51 and p-value <0.001). There were 51 genes in this module, and 39 hub genes were screened by Pearson's correlation coefficient between core genes > 0.4, correlation coefficient between module members > 0.80 and intra-module connectivity ≥5. Finally, based on the results of GWSA and hub gene Venn analysis, seven key genes (ACSS2, HECW2, KDR, LHCGR, NAMPT, PTGFR and TFPI) were found to be associated with steroid synthesis and follicle growth development. This work contributes to understanding of the genetic basis of goat litter size and provides theoretical support for goat molecular breeding.
Collapse
Affiliation(s)
- Cheng-Li Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hui-Long Mou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- Animal Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiao Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Peng-Fei Hu
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Yong-Fu Huang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guang-Xin E
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Erickson EN. A prolonged latent phase: An early career in oxytocin during birth. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 15:100190. [PMID: 37405229 PMCID: PMC10316000 DOI: 10.1016/j.cpnec.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
•The author, a nurse-midwife scientist, shares her path to the study of the causes and consequences of clinical oxytocin use.•This paper highlights mentors and key research that informed new thinking about the role of oxytocin during parturition.•Future directions for improving maternal care during childbirth are presented, including genetic and epigenetic perspectives.
Collapse
Affiliation(s)
- Elise N. Erickson
- The University of Arizona, College of Nursing, College of Pharmacy, College of Medicine: OB/GYN, USA
| |
Collapse
|
4
|
Oxytocin receptor DNA methylation is associated with exogenous oxytocin needs during parturition and postpartum hemorrhage. COMMUNICATIONS MEDICINE 2023; 3:11. [PMID: 36707542 PMCID: PMC9882749 DOI: 10.1038/s43856-023-00244-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The oxytocin receptor gene (OXTR) is regulated, in part, by DNA methylation. This mechanism has implications for uterine contractility during labor and for prevention or treatment of postpartum hemorrhage, an important contributor to global maternal morbidity and mortality. METHODS We measured and compared the level of OXTR DNA methylation between matched blood and uterine myometrium to evaluate blood as an indicator of uterine methylation status using targeted pyrosequencing and sites from the Illumina EPIC Array. Next, we tested for OXTR DNA methylation differences in blood between individuals who experienced a postpartum hemorrhage arising from uterine atony and matched controls following vaginal birth. Bivariate statistical tests, generalized linear modeling and Poisson regression were used in the analyses. RESULTS Here we show a significant positive correlation between blood and uterine DNA methylation levels at several OXTR loci. Females with higher OXTR DNA methylation in blood had required significantly more exogenous oxytocin during parturition. With higher DNA methylation, those who had oxytocin administered during labor had significantly greater relative risk for postpartum hemorrhage (IRR 2.95, 95% CI 1.53-5.71). CONCLUSIONS We provide evidence that epigenetic variability in OXTR is associated with the amount of oxytocin administered during parturition and moderates subsequent postpartum hemorrhage. Methylation can be measured using a peripheral tissue, suggesting potential use in identifying individuals susceptible to postpartum hemorrhage. Future studies are needed to quantify myometrial gene expression in connection with OXTR methylation.
Collapse
|
5
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
6
|
Abstract
Oxytocin (OT) is a nonapeptide mainly produced in the supraoptic and paraventricular nuclei. OT in the brain and blood has extensive functions in both mental and physical activities. These functions are mediated by OT receptors (OTRs) that are distributed in a broad spectrum of tissues with dramatic sexual dimorphism. In both sexes, OT generally facilitates social cognition and behaviors, facilitates parental behavior and sexual activity and inhibits feeding and pain perception. However, there are significant differences in OT levels and distribution of OTRs in men from women. Thus, many OT functions in men are different from women, particularly in the reproduction. In men, the reproductive functions are relatively simple. In women, the reproductive functions involve menstrual cycle, pregnancy, parturition, lactation, and menopause. These functions make OT regulation of women's health and disease a unique topic of physiological and pathological studies. In menstruation, pre-ovulatory increase in OT secretion in the hypothalamus and the ovary can promote the secretion of gonadotropin-releasing hormone and facilitate ovulation. During pregnancy, increased OT synthesis and preterm release endow OT system the ability to promote maternal behavior and lactation. In parturition, cervix expansion-elicited pulse OT secretion and uterine OT release accelerate the expelling of fetus and reduce postpartum hemorrhage. During lactation, intermittent pulsatile OT secretion is necessary for the milk-ejection reflex and maternal behavior. Disorders in OT secretion can account for maternal depression and hypogalactia. In menopause, the reduction of OT secretion accounts for many menopausal symptoms and diseases. These issues are reviewed in this work.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haipeng Yang
- Neonatal Division of the Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqun Han
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingxing Ma,
| |
Collapse
|
7
|
Oxytocin Facilitates Allomaternal Behavior under Stress in Laboratory Mice. eNeuro 2022; 9:ENEURO.0405-21.2022. [PMID: 35017259 PMCID: PMC8868028 DOI: 10.1523/eneuro.0405-21.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (Oxt) controls reproductive physiology and various kinds of social behaviors, but the exact contribution of Oxt to different components of parental care still needs to be determined. Here, we illustrate the neuroanatomical relations of the parental nurturing-induced neuronal activation with magnocellular Oxt neurons and fibers in the medial preoptic area (MPOA), the brain region critical for parental and alloparental behaviors. We used genetically-targeted mouse lines for Oxt, Oxt receptor (Oxtr), vasopressin receptor 1a (Avpr1a), vasopressin receptor 1b (Avpr1b), and thyrotropin-releasing hormone (Trh) to systematically examine the role of Oxt-related signaling in pup-directed behaviors. The Oxtr-Avpr1a-Avpr1b triple knock-out (TKO), and Oxt-Trh-Avpr1a-Avpr1b quadruple KO (QKO) mice were grossly healthy and fertile, except for their complete deficiency in milk ejection and modest deficiency in parturition secondary to maternal loss of the Oxt or Oxtr gene. In our minimal stress conditions, pup-directed behaviors in TKO and QKO mothers and fathers, virgin females and males were essentially indistinguishable from those of their littermates with other genotypes. However, Oxtr KO virgin females did show decreased pup retrieval in the pup-exposure assay performed right after restraint stress. This stress vulnerability in the Oxtr KO was abolished by the additional Avpr1b KO. The general stress sensitivity, as measured by plasma cortisol elevation after restraint stress or by the behavioral performance in the open field (OF) and elevated plus maze (EPM), were not altered in the Oxtr KO but were reduced in the Avpr1b KO females, indicating that the balance of neurohypophysial hormones affects the outcome of pup-directed behaviors.
Collapse
|
8
|
Leng G, Leng RI. Oxytocin: A citation network analysis of 10 000 papers. J Neuroendocrinol 2021; 33:e13014. [PMID: 34328668 DOI: 10.1111/jne.13014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 07/10/2021] [Indexed: 11/29/2022]
Abstract
Our understanding of the oxytocin system has been built over the last 70 years by the work of hundreds of scientists, reported in thousands of papers. Here, we construct a map to that literature, using citation network analysis in conjunction with bibliometrics. The map identifies ten major 'clusters' of papers on oxytocin that differ in their particular research focus and that densely cite papers from the same cluster. We identify highly cited papers within each cluster and in each decade, not because citations are a good indicator of quality, but as a guide to recognising what questions were of wide interest at particular times. The clusters differ in their temporal profiles and bibliometric features; here, we attempt to understand the origins of these differences.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rhodri I Leng
- Department of Science, Technology and Innovation Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Coats LE, Bakrania BA, Bamrick-Fernandez DR, Ariatti AM, Rawls AZ, Ojeda NB, Alexander BT. Soluble guanylate cyclase stimulation in late gestation does not mitigate asymmetric intrauterine growth restriction or cardiovascular risk induced by placental ischemia in the rat. Am J Physiol Heart Circ Physiol 2021; 320:H1923-H1934. [PMID: 33739156 DOI: 10.1152/ajpheart.00033.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of soluble guanylate cyclase (sGC) improves fetal growth at gestational day 20 in the reduced uterine perfusion pressure (RUPP) rat model of placental ischemia suggesting a role for sGC in the etiology of intrauterine growth restriction (IUGR). This study tested the hypothesis that stimulation of sGC until birth attenuates asymmetric IUGR mitigating increased cardiovascular risk in offspring. Sham or RUPP surgery was performed at gestational day 14 (G14); vehicle or the sGC stimulator Riociguat (10 mg/kg/day sc) was administered G14 until birth. Birth weight was reduced in offspring from RUPP [intrauterine growth restricted (IUGR)], sGC RUPP (sGC IUGR), and sGC Sham (sGC Control) compared with Sham (Control). Crown circumference was maintained, but abdominal circumference was reduced in IUGR and sGC IUGR compared with Control indicative of asymmetrical growth. Gestational length was prolonged in sGC RUPP, and survival at birth was reduced in sGC IUGR. Probability of survival to postnatal day 2 was also significantly reduced in IUGR and sGC IUGR versus Control and in sGC IUGR versus IUGR. At 4 mo of age, blood pressure was increased in male IUGR and sGC IUGR but not male sGC Control born with symmetrical IUGR. Global longitudinal strain was increased and stroke volume was decreased in male IUGR and sGC IUGR compared with Control. Thus late gestational stimulation of sGC does not mitigate asymmetric IUGR or increased cardiovascular risk in male sGC IUGR. Furthermore, late gestational stimulation of sGC is associated with symmetrical growth restriction in sGC Control implicating contraindications in normal pregnancy.NEW & NOTEWORTHY The importance of the soluble guanylate cyclase-cGMP pathway in a rat model of placental ischemia differs during critical windows of development, implicating other factors may be critical mediators of impaired fetal growth in the final stages of gestation. Moreover, increased blood pressure at 4 mo of age in male intrauterine growth restriction offspring is associated with impaired cardiac function including an increase in global longitudinal strain in conjunction with a decrease in stroke volume, ejection fraction, and cardiac output.
Collapse
Affiliation(s)
- Laura E Coats
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bhavisha A Bakrania
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,The University of Queensland Centre for Clinical Research and Perinatal Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Allison M Ariatti
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam Z Rawls
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Norma B Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Barbara T Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
10
|
Green ES, Arck PC. Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. Semin Immunopathol 2020; 42:413-429. [PMID: 32894326 PMCID: PMC7508962 DOI: 10.1007/s00281-020-00807-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Preterm birth (PTB) complicates 5–18% of pregnancies globally and is a leading cause of maternal and fetal morbidity and mortality. Most PTB is spontaneous and idiopathic, with largely undefined causes. To increase understanding of PTB, much research in recent years has focused on using animal models to recapitulate the pathophysiology of PTB. Dysfunctions of maternal immune adaptations have been implicated in a range of pregnancy pathologies, including PTB. A wealth of evidence arising from mouse models as well as human studies is now available to support that PTB results from a breakdown in fetal-maternal tolerance, along with excessive, premature inflammation. In this review, we examine the current knowledge of the bidirectional communication between fetal and maternal systems and its role in the immunopathogenesis of PTB. These recent insights significantly advance our understanding of the pathogenesis of PTB, which is essential to ultimately designing more effective strategies for early prediction and subsequent prevention of PTB.
Collapse
Affiliation(s)
- Ella Shana Green
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany.
| |
Collapse
|