1
|
Bdeir R, Al-Keilani MS, Khamaiseh K. Effects of the Neuropeptides Pituitary Adenylate Cyclase Activating Polypeptide and Vasoactive Intestinal Peptide in Male Fertility. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:652. [PMID: 38674298 PMCID: PMC11052015 DOI: 10.3390/medicina60040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: The neuroendocrine system plays a crucial role in regulating various bodily functions, including reproduction, with evidence suggesting its significant involvement in male fertility and sperm development. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are expressed in both male and female reproductive tissues, influencing penile erection and regulating steroidogenesis in males. Therefore, our study aimed to compare the protein levels of VIP and PACAP in seminal plasma between healthy controls and sub-fertile patients. Additionally, we sought to correlate the levels of these biomarkers with clinical, functional, and laboratory findings in the participants. Materials and Methods: The study included a total of 163 male participants for analysis. The participants were further stratified into subgroups of fertile and sub-fertile men of four subgroups according to the 2021 WHO guidelines. Seminal plasma concentrations of the neuropeptides VIP and PACAP were measured using human enzyme-linked immunosorbent assay technique. Results: The findings showed statistically significant differences in total sperm count, sperm concentration, total motility, and vitality (p < 0.001) between the fertile group and the sub-fertile group. Specifically, significant differences found between healthy males and oligoasthenospermic patients (p = 0.002), and between asthenospermic and oligoasthenospermic patients (p = 0.039). An ROC analysis showed associated sensitivity and specificity values of 62.2% and 55.6%, respectively, to PACAP seminal levels differentiated between sub-fertile patients from fertile males (p = 0.028). No significant difference in seminal levels of VIP was found between the sub-fertile and fertile groups. Conclusions: Previous research leads to the point of PACAP active involvement in spermatogenesis. In accordance to our study, in human semen samples, we have seen a significance change in PACAP levels amongst patients with low sperm count or with both low sperm count and low motility, hinting at its contribution and acting as a possible factor in this complex process. Thus, alterations in the levels or actions of these neuropeptides have been associated with certain reproductive disorders in males.
Collapse
Affiliation(s)
- Roba Bdeir
- Department of Allied Health Sciences, Faculty of Nursing, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan
| | - Maha S. Al-Keilani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
| | - Khaldoun Khamaiseh
- Department of Obstetrics & Gynecology, Faculty of Medicine, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan;
- Faculty of Medicine, Al-Balqa University, P.O. Box 206, Al-Salt 19117, Jordan
| |
Collapse
|
2
|
You SO, Yoon HS, Kim HS, Park JS, Lee SH. Temporal Changes in the Local Expression of Central
Hormone-Regulating Factors in Rat Testis. Dev Reprod 2024; 28:21-28. [PMID: 38654975 PMCID: PMC11034993 DOI: 10.12717/dr.2024.28.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
Present study aimed to investigate the temporal changes in expression of some reproductive hormones in testis, originally found in hypothalamus and pituitary. Rats were sacrificed on postnatal day 23 (PND23; immature), pubertal (PND53) and PND 81 (young adult). The testicular RNAs were extracted, and semi-quantitative PCRs for gonadotropin-releasing hormone (GnRH), kisspeptin 1 (KiSS1), pituitary adenylate cyclase-activating polypeptide (PACAP), LH subunits and LH receptor were performed. Transcript levels of GnRH and KiSS1 at PND23 were significantly higher than levels of PND53 and PND81 (p <0.001). PACAP mRNA level at PND23 was significantly lower than those of PND53 and PND81 (p <0.001). The mRNA levels of both testis type and pituitary type luteinizing hormone β subunit (tLHβ and pLHβ, respectively) at PND23 were significantly lower than levels of PND53 and PND81 (p <0.001). The mRNA level of glycoprotein hormone common alpha subunit (Cgα) at PND23 was significantly lower than those of PND53 and PND81 (p <0.001). Present study revealed the intratesticular expression of KiSS1 and GnRH showed a very similar trend while the expression of PACAP in the testis showed reversed pattern. The expressions of LHβ subunits (tLHβ and pLHβ) were very low during immature stage then increased significantly during puberty and early adulthood. Our attempt to study the local role(s) of intratesticular factors will be helpful to achieve precise understanding on the testis physiology and pathology.
Collapse
Affiliation(s)
- Si-On You
- Department of Biotechnology, Sangmyung
University, eoul 03016, Korea
| | - Han-Seo Yoon
- Department of Biotechnology, Sangmyung
University, eoul 03016, Korea
| | - Hye-Soo Kim
- Department of Biotechnology, Sangmyung
University, eoul 03016, Korea
| | - Jin-Soo Park
- Department of Biotechnology, Sangmyung
University, eoul 03016, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung
University, eoul 03016, Korea
| |
Collapse
|
3
|
Diawara M, Martin LJ. Regulatory mechanisms of SoxD transcription factors and their influences on male fertility. Reprod Biol 2023; 23:100823. [PMID: 37979495 DOI: 10.1016/j.repbio.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Members of the SRY-related box (SOX) subfamily D (SoxD) of transcription factors are well conserved among vertebrate species and play important roles in different stages of male reproductive development. In mammals, the SoxD subfamily contains three members: SOX5, SOX6 and SOX13. Here, we describe their implications in testicular development and spermatogenesis, contributing to fertility. We also cover the mechanisms of action of SoxD transcription factors in gene regulation throughout male development. The specificity of activation of target genes by SoxD members depends, in part, on their post-translational modifications and interactions with other partners. Sperm production in adult males requires the coordination in the regulation of gene expression by different members of the SoxD subfamily of transcription factors in the testis. Specifically, the regulation of genes promoting adequate spermatogenesis by SoxD members is discussed in comparison between species.
Collapse
Affiliation(s)
- Mariama Diawara
- Biology Department, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada.
| |
Collapse
|
4
|
Tang Z, Yuan X, Bai Y, Guo Y, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal changes in the expression of PACAP, VPAC1, VPAC2, PAC1 and testicular activity in the testis of the muskrat (<em>Ondatra zibethicus</em>). Eur J Histochem 2022; 66:3398. [PMID: 35502591 PMCID: PMC9119148 DOI: 10.4081/ejh.2022.3398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in the steroidogenesis and spermatogenesis in the testis through its receptors PAC1, VPAC1, and VPAC2. In this study, we investigated the seasonal expressions of PACAP, PAC1, VPAC1, VPAC2, luteinizing hormone receptor (LHR), follicle stimulating hormone receptor (FSHR), steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), and CYP17A1 in the testis of the male muskrat during the breeding season and the non-breeding season. Histologically, we found the presence of Leydig cells, Sertoli cells and all kinds of germ cells in the testis during the breeding season but only Leydig cells, Sertoli cells, spermatogonia and primary spermatocyte during the non-breeding season. The immunohistochemical localizations of PACAP and VPAC1 were identified in the Leydig cells, spermatogonia and spermatozoa during the breeding season while only in Leydig cells and spermatogonia during the non-breeding season, and PAC1 and VPAC2 were localized in the Leydig cells in both seasons, in which LHR, StAR, 3β-HSD and CYP17A1 were also expressed. Meanwhile, protein and mRNA expression levels of PACAP, PAC1, VPAC1, VPAC2, LHR, FSHR, StAR, 3β-HSD and CYP17A1 in the testis during the breeding season were significantly higher than those during the non-breeding season. These results suggested that PACAP may involve in the regulation of, steroidogenesis and spermatogenesis via an endocrine, autocrine or paracrine manner in the testis of the muskrat.
Collapse
Affiliation(s)
- Zeqi Tang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Xiaojie Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yuming Bai
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yiming Guo
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
5
|
Winters SJ, Moore JP. PACAP: A regulator of mammalian reproductive function. Mol Cell Endocrinol 2020; 518:110912. [PMID: 32561449 PMCID: PMC7606562 DOI: 10.1016/j.mce.2020.110912] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an ancestral molecule that was isolated from sheep hypothalamic extracts based on its action to stimulate cAMP production by pituitary cell cultures. PACAP is one of a number of ligands that coordinate with GnRH to control reproduction. While initially viewed as a hypothalamic releasing factor, PACAP and its receptors are widely distributed, and there is growing evidence that PACAP functions as a paracrine/autocrine regulator in the CNS, pituitary, gonads and placenta, among other tissues. This review will summarize current knowledge concerning the expression and function of PACAP in the hypothalamic-pituitary-gonadal axis with special emphasis on its role in pituitary function in the fetus and newborn.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Joseph P Moore
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
6
|
Prisco M, Rosati L, Morgillo E, Mollica MP, Agnese M, Andreuccetti P, Valiante S. Pituitary adenylate cyclase-activating peptide (PACAP) and its receptors in Mus musculus testis. Gen Comp Endocrinol 2020; 286:113297. [PMID: 31604076 DOI: 10.1016/j.ygcen.2019.113297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 11/26/2022]
Abstract
To enlighten the involvement of PACAP/receptors system in the control of mammal testis, we investigated the expression of PACAP and the localization of PACAP and its receptors PAC1, VPAC1, and VPAC2 in the testis of Mus musculus. By molecular and immunohistochemical investigations, we highlighted that PACAP and its receptors are widely represented in germ cells of Mus testis, particularly in spermatocytes I, spermatids, and spermatozoa, strongly suggesting their involvement in spermatogenesis process. Moreover, for the first time in the adult mouse testis we highlighted that PACAP is present within Leydig cells, as PACAP receptors, confirming its involvement in the control of steroidogenesis in mouse.
Collapse
Affiliation(s)
- Marina Prisco
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Eliana Morgillo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Marisa Agnese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
7
|
|
8
|
Halvorson LM. PACAP modulates GnRH signaling in gonadotropes. Mol Cell Endocrinol 2014; 385:45-55. [PMID: 24095645 DOI: 10.1016/j.mce.2013.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
Abstract
Hypothalamic gonadotropin-releasing hormone is known to be critical for normal gonadotropin biosynthesis and secretion by the gonadotrope cells of the anterior pituitary gland. Additional regulation is provided by gonadal steroid feedback as well as by intrapituitary factors, such as activin and follistatin. Less well-appreciated is the role of pituitary adenylate-cyclase activating polypeptide (PACAP) as both a hypothalamic-pituitary releasing factor as well as an autocrine-paracrine factor within the pituitary. PACAP regulates gonadotropin expression alone and through modulation of GnRH responsiveness achieved by increases in GnRH receptor expression and interactions at the level of intracellular signaling pathways. In addition to direct effects on the gonadotrope, PACAP stimulates follistatin secretion by the folliculostellate cells and thereby contributes to differential expression of the gonadotropin subunits. Conversely, GnRH augments the ability of PACAP to regulate gonadotrope function by increasing pituitary PACAP and PACAP receptor expression. This review will summarize the current understanding of the mechanisms by which PACAP modulates gonadotrope function, with a focus on interactions with GnRH.
Collapse
Affiliation(s)
- Lisa M Halvorson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9032, United States.
| |
Collapse
|
9
|
Grafer CM, Halvorson LM. Androgen receptor drives transcription of rat PACAP in gonadotrope cells. Mol Endocrinol 2013; 27:1343-56. [PMID: 23798575 DOI: 10.1210/me.2012-1378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gonadotropin expression is precisely regulated within the hypothalamic-pituitary-gonadal axis through the complex interaction of neuropeptides, gonadal steroids. and both gonadal- and pituitary-derived peptides. In the anterior pituitary gland, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) modulates gonadotropin biosynthesis and secretion, acting both alone and in conjunction with GnRH. Steroid hormone feedback also influences gonadotropin expression via both direct and indirect mechanisms. Evidence from nonpituitary tissues suggests that PACAP may be a target for gonadal steroid regulation. In the present study, we show that androgen markedly stimulates rat (r) PACAP promoter-reporter activity in the LβT2 mature mouse gonadotrope cell line. 5'-Serial deletion analysis of reporter constructs identifies 2 regions of androgen responsiveness located at (-915 to -818) and (-308 to -242) of the rPACAP promoter. Androgen receptor (AR) binds directly to DNA cis-elements in each of these regions in vitro. Site-directed mutagenesis of 3 conserved hormone response element half-sites straddling the (-308 to -242) region dramatically blunts androgen-dependent PACAP promoter activity and prevents AR binding at the mutated promoter element. Chromatin immunoprecipitation demonstrates that endogenous AR binds the homologous region on mouse chromatin in LβT2 cells in both the presence and absence of androgen. These data demonstrate that androgen stimulates PACAP gene expression in the pituitary gonadotrope via direct binding of AR to a specific cluster of evolutionarily conserved hormone response elements in the proximal rPACAP gene promoter. Thus, androgen regulation of pituitary PACAP expression may provide an additional layer of control over gonadotropin expression within the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Constance M Grafer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | | |
Collapse
|
10
|
Thomas RL, Crawford NM, Grafer CM, Halvorson LM. Pituitary Adenylate Cyclase–Activating Polypeptide (PACAP) in the Hypothalamic–Pituitary–Gonadal Axis. Reprod Sci 2012; 20:857-71. [DOI: 10.1177/1933719112466310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robin L. Thomas
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Natalie M. Crawford
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Constance M. Grafer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Lisa M. Halvorson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| |
Collapse
|
11
|
Tominaga A, Sugawara H, Futagawa T, Inoue K, Sasaki K, Minamino N, Hatakeyama M, Handa H, Miyata A. Characterization of the testis-specific promoter region in the human pituitary adenylate cyclase-activating polypeptide (PACAP) gene. Genes Cells 2010; 15:595-606. [PMID: 20500521 DOI: 10.1111/j.1365-2443.2010.01403.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide localized in the testis at concentration comparable to that found in the brain, suggesting involvement in spermatogenesis. In this study, we identified the human PACAP testis-specific exon (TSE) 10.9 kb upstream from the translational start site and found that the testis-specific transcript of the human PACAP gene was found to be spliced from the TSE into a region of intron 2 without a frameshift. The resulting PACAP precursor has no signal peptide, suggesting that PACAP functions physiologically in an intracrine manner in the testis. The 5'-flanking region of the TSE contains an 80-bp fragment with potent promoter activity in testicular F9 cell. Electrophoresis mobility shift assays showed that proteins from the F9 nuclear extract interacted specifically with the 80-bp fragment. DNA affinity chromatography allowed isolation of the specific proteins bound to the 80-bp fragment, two of which were identified as Poly (ADP-ribose) polymerase-1 (PARP-1) and TIA-1-related protein (TIAR) by mass spectrometry. By using their siRNAs, the depletion of their proteins in F9 cells affected the potent promoter activity of the 80-bp fragment, suggesting that they might be involved in the testis-specific gene expression of PACAP.
Collapse
Affiliation(s)
- Aiko Tominaga
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 862] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Danner S, Kirchhoff C, Ivell R. Seminiferous tubule transfection in vitro to define post-meiotic gene regulation. Reprod Biol Endocrinol 2009; 7:67. [PMID: 19563643 PMCID: PMC2711954 DOI: 10.1186/1477-7827-7-67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/29/2009] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Post-meiotically expressed genes in the testis are essential for the proper progression of spermatogenesis, and yet, aside from the construction of individual transgenic mice using specific promoters to drive reporter plasmids, there are only very limited possibilities for relevant and quantitative analysis of gene promoters. This is due to the special nature of post-meiotic haploid cells, which to date are not represented in any appropriate cell-lines. This article reports the development of novel methodology using isolated and cultured rat seminiferous tubules in a multiwell format, into which promoter-reporter constructs can be introduced by a combination of microinjection and electroporation. METHODS Culture conditions were developed which allowed the continued incubation of isolated rat seminiferous tubules for up to 48 h without obvious cell death and loss of post-meiotic cells. Transfection of intact seminiferous tubules by microinjection and electroporation was optimized to achieve high expression efficiencies of control plasmids, using either fluorescent protein or luciferase as reporters, thereby allowing both morphological as well as quantitative assessment. RESULTS Successful transfection was achieved into all cell types except for mature spermatozoa. However, there appeared to be only limited cell-type specificity for the promoters used, even though these had appeared to be specific when used in transgenic animals. CONCLUSION We have devised a methodology which allows relatively high throughput analysis of post-meiotic gene promoters into primary cells of intact seminiferous tubules. An apparent lack of cell-type specificity suggests that the gene fragments used do not contain sufficient targeting information, or that the transient episomal expression of the constructs does not encourage appropriate expression specificity. The results also highlight the doubtful interpretation of many studies using heterologous transfection systems to analyse post-meiotically expressed genes.
Collapse
Affiliation(s)
- Sandra Danner
- Department of Andrology, University Clinic Hamburg-Eppendorf, 20246 Hamburg, Germany
- Fraunhofer Institute of Marine Biotechnology, 23562 Luebeck, Germany
| | - Christiane Kirchhoff
- Department of Andrology, University Clinic Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Richard Ivell
- Research Centre for Reproductive Health, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
14
|
Sugawara H, Inoue K, Iwata SI, Shimizu T, Yamada K, Mori N, Miyata A. Neural-restrictive silencers in the regulatory mechanism of pituitary adenylate cyclase-activating polypeptide gene expression. ACTA ACUST UNITED AC 2004; 123:9-14. [PMID: 15518887 DOI: 10.1016/j.regpep.2004.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is known as a pleiotropic neuropeptide and is present abundantly in central nervous system. During a detailed analysis of the 5'-flanking region of the mouse PACAP gene, we found and characterized two negative regulatory elements, which are homologous to the neural-restrictive silencer element, and are termed neural-restrictive silencer-like elements 1 and 2 (NRSLE1 and NRSLE2). Their sequence and position were significantly conserved among mouse, human, and rat PACAP genes. In the electrophoretic mobility shift assay (EMSA) with nuclear extracts of Swiss-3T3 cells and individual oligonucleotide probes for NRSLE1 and NRSLE2, a specific complex was observed to have the same migration as compared with the NRSE probe of rat type II sodium channel gene (NaII). Furthermore, these complexes were efficiently competed by the unlabeled NaII probe. In the luciferase reporter assay, the reporter gene constructs containing NRSLEs, driven by heterologous SV40 promoter, exhibited repression of luciferase activity almost equal to basal level in Swiss-3T3 cells. In contrast, the repression was not observed in differentiated PC12 cells with NGF. These results suggested that the neural-restrictive silencer system might be involved in the regulatory mechanism of neuron-specific PACAP gene expression.
Collapse
Affiliation(s)
- Hideki Sugawara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Han S, Xie W, Kim SH, Yue L, DeJong J. A Short Core Promoter Drives Expression of the ALF Transcription Factor in Reproductive Tissues of Male and Female Mice1. Biol Reprod 2004; 71:933-41. [PMID: 15151936 DOI: 10.1095/biolreprod.104.030247] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The control of gene expression in reproductive tissues involves a number of unique germ cell-specific transcription factors. One such factor, ALF (TFIIA tau), encodes a protein similar to the large subunit of general transcription factor TFIIA. To understand how this factor is regulated, we characterized transgenic mice that contain the ALF promoter linked to either beta-galactosidase or green fluorescent protein (GFP) reporters. The results show that as little as 133 base pairs are sufficient to drive developmentally accurate and cell-specific expression. Transgene DNA was methylated and inactive in liver, but could be reactivated in vivo by system administration of 5-aza, 2'-deoxycytidine. Fluorescence-activated cell sorting allowed the identification of male germ cells that express the GFP transgene and provides a potential method to collect cells that might be under the control of a nonsomatic transcription system. Finally, we found that transcripts from the endogenous ALF gene and derived transgenes can also be detected in whole ovary and in germinal vesicle-stage oocytes of female mice. The ALF sequence falls into a class of germ cell promoters whose features include small size, high GC content, numerous CpG dinucleotides, and an apparent TATA-like element. Overall, the results define a unique core promoter that is active in both male and female reproductive tissues, and suggest mouse ALF may have a regulatory role in male and female gametogenic gene expression programs.
Collapse
Affiliation(s)
- SangYoon Han
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | |
Collapse
|
16
|
Chow BKC, Cheung KH, Tsang EMW, Leung MCT, Lee SMY, Wong PYD. Secretin Controls Anion Secretion in the Rat Epididymis in an Autocrine/Paracrine Fashion1. Biol Reprod 2004; 70:1594-9. [PMID: 14749298 DOI: 10.1095/biolreprod.103.024257] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence that secretin, the first hormone discovered in our history, has functions in the brain other than in the gastrointestinal tract. This article reports for the first time that secretin and its receptor mRNAs are produced in distinct cell types within the epididymis. To test if secretin affects electrolyte transport in the epididymis, we measured short-circuit current (Isc) in cultured epididymal epithelia and found secretin dose-dependently stimulated Isc. Ion substitution experiments and use of pharmacological agents inferred that the stimulated Isc is a result of concurrent electrogenic chloride and bicarbonate secretion. It is further shown that secretin and pituitary adenylate cyclase-activating polypeptide (PACAP) function via totally different mechanisms: 1) PACAP works only from the apical side of the epithelium to stimulate chloride and not bicarbonate secretion, while secretin acts on the apical and basolateral sides to stimulate chloride and bicarbonate secretion. 2) the stimulation by PACAP but not secretin requires local prostaglandin synthesis. By immunocytochemical staining, secretin is localized in the principal cells of the initial segment and caput epididymidis, whereas secretin receptor is present in the principal cells of the proximal as well as the distal part of the epididymis. This pattern of distribution appears to be consistent with the idea that secretin is secreted by the proximal epididymis and acts on the proximal and distal epididymis in an autocrine and paracrine fashion. Its function is to control secretion of electrolytes and water.
Collapse
Affiliation(s)
- B K C Chow
- Department of Zoology, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
17
|
Li M, Arimura A. Neuropeptides of the pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide/growth hormone-releasing hormone/secretin family in testis. Endocrine 2003. [PMID: 12721498 DOI: 10.1385/endo: 20: 3: 201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian testicular development and the maintenance of spermatogenesis are hormone-dependent processes that are controlled by the pituitary gonadotropins and testosterone. Recent studies have demonstrated the presence of many neuropeptides and their receptors in the testis, suggesting that these peptides operate as local regulators of testicular germ cell development and function. Among these testicular neuropeptides, the peptides that belong to the pituitary adenylate cyclase-activating polypeptide (PACAP) family, particularly growth hormone-releasing hormone and secretin, appear to show some unique common features in terms of intratesticular localization and the time of expression during the spermatogenic cycle. However, their precise physiologic roles and mechanisms of action remain unknown. This review analyzes the available information on the functional interactions among the testicular cells that appear to be mediated by locally produced neuropeptides, with a special emphasis on the peptides of the PACAP family.
Collapse
Affiliation(s)
- Min Li
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | | |
Collapse
|
18
|
Li M, Arimura A. Neuropeptides of the pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide/growth hormone-releasing hormone/secretin family in testis. Endocrine 2003; 20:201-14. [PMID: 12721498 DOI: 10.1385/endo:20:3:201] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Revised: 11/25/2002] [Accepted: 12/09/2002] [Indexed: 12/12/2022]
Abstract
Mammalian testicular development and the maintenance of spermatogenesis are hormone-dependent processes that are controlled by the pituitary gonadotropins and testosterone. Recent studies have demonstrated the presence of many neuropeptides and their receptors in the testis, suggesting that these peptides operate as local regulators of testicular germ cell development and function. Among these testicular neuropeptides, the peptides that belong to the pituitary adenylate cyclase-activating polypeptide (PACAP) family, particularly growth hormone-releasing hormone and secretin, appear to show some unique common features in terms of intratesticular localization and the time of expression during the spermatogenic cycle. However, their precise physiologic roles and mechanisms of action remain unknown. This review analyzes the available information on the functional interactions among the testicular cells that appear to be mediated by locally produced neuropeptides, with a special emphasis on the peptides of the PACAP family.
Collapse
Affiliation(s)
- Min Li
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | | |
Collapse
|
19
|
John MR, Arai M, Rubin DA, Jonsson KB, Jüppner H. Identification and characterization of the murine and human gene encoding the tuberoinfundibular peptide of 39 residues. Endocrinology 2002; 143:1047-57. [PMID: 11861531 DOI: 10.1210/endo.143.3.8698] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
By screening public databases, we identified human and mouse genomic DNA clones that encode the tuberoinfundibular peptide of 39 residues (TIP39). The TIP39 precursor is encoded by at least three exons; a noncoding exon U1, exon 1 encoding residues -61 (initiator methionine) to -19 of the leader sequence, and exon 2 encoding residues -18 to -1 and residues +1 to +39. Secreted human TIP39 is identical to the previously isolated bovine TIP39, whereas mouse TIP39 differs by four amino acids. Phylogenetic analyses suggested that TIP39, PTH, and PTHrP may have evolved from a common ancestor. Synthetic human and mouse TIP39 showed indistinguishable potencies [EC(50): 0.54 (human) vs. 0.74 nM (mouse)] at the human PTH2-receptor stably expressed in LLCPK(1) cells; furthermore, TIP-(9-39) was an inhibitor of cAMP accumulation stimulated by either [Tyr(34)]PTH(1-34)amide or human/bovine TIP39. In the mouse, an approximately 4.5-kb mRNA encoding TIP39 was identified by Northern blot analysis in testis and, less abundantly, in liver and kidney, whereas other tissues revealed additional smaller transcripts. In situ hybridizations revealed TIP39 expression in seminiferous tubuli and several brain regions, including nucleus ruber, nucleus centralis pontis, and nucleus subparafascicularis thalami. Because PTH2 receptor expression was previously shown to be highest in brain, pancreas, and testis, our findings are consistent with the notion that TIP39 is a neuropeptide which may also have a role in spermatogenesis.
Collapse
Affiliation(s)
- Markus R John
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
20
|
Daniel PB, Kieffer TJ, Leech CA, Habener JF. Novel alternatively spliced exon in the extracellular ligand-binding domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) selectively increases ligand affinity and alters signal transduction coupling during spermatogenesis. J Biol Chem 2001; 276:12938-44. [PMID: 11278585 DOI: 10.1074/jbc.m009941200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the paracrine signaling hormone pituitary adenylate cyclase-activating polypeptide (PACAP) is regulated in a cyclical fashion during the 12-day spermatogenic cycle of the adult rat testis. The precise functions of PACAP in the development of germ cells are uncertain, but cycle- and stage-specific expression may augment cAMP-regulated gene expression in germ cells and associated Sertoli cells. Here we report the existence of a heretofore unrecognized exon in the extracellular domain of the PACAP type 1 receptor (PAC1R) that is alternatively spliced during the spermatogenic cycle in the rat testis. This splice variant encodes a full-length receptor with the insertion of an additional 72 base pairs encoding 24 amino acids (exon 3a) between coding exons 3 and 4. The PAC1R(3a) mRNA is preferentially detected in seminiferous tubules and is expressed at the highest levels in round spermatids and Sertoli cells. Analyses of ligand binding and signaling functions in stably transfected HEK293 cells expressing the two receptor isoforms reveals a 6-fold increase in the affinity of the PAC1R(3a) to bind PACAP-38, and alterations in its coupling to both cAMP and inositol phosphate signaling pathways relative to the wild type PAC1R. These findings suggest that the extracellular region between coding exons 3 and 6 of PAC1R may play an important role in the regulation of the relative ligand affinities and the relative coupling to G(s) (cAMP) and G(q) (inositol phosphates) signal transduction pathways during spermatogenesis.
Collapse
Affiliation(s)
- P B Daniel
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
21
|
Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 2000; 21:619-70. [PMID: 11133067 DOI: 10.1210/edrv.21.6.0414] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)/ glucagon superfamily includes nine hormones in humans that are related by structure, distribution (especially the brain and gut), function (often by activation of cAMP), and receptors (a subset of seven-transmembrane receptors). The nine hormones include glucagon, glucagon-like peptide-1 (GLP-1), GLP-2, glucose-dependent insulinotropic polypeptide (GIP), GH-releasing hormone (GRF), peptide histidine-methionine (PHM), PACAP, secretin, and vasoactive intestinal polypeptide (VIP). The origin of the ancestral superfamily members is at least as old as the invertebrates; the most ancient and tightly conserved members are PACAP and glucagon. Evidence to date suggests the superfamily began with a gene or exon duplication and then continued to diverge with some gene duplications in vertebrates. The function of PACAP is considered in detail because it is newly (1989) discovered; it is tightly conserved (96% over 700 million years); and it is probably the ancestral molecule. The diverse functions of PACAP include regulation of proliferation, differentiation, and apoptosis in some cell populations. In addition, PACAP regulates metabolism and the cardiovascular, endocrine, and immune systems, although the physiological event(s) that coordinates PACAP responses remains to be identified.
Collapse
Affiliation(s)
- N M Sherwood
- Department of Biology, University of Victoria, British Columbia, Canada.
| | | | | |
Collapse
|
22
|
Li M, Mbikay M, Arimura A. Pituitary adenylate cyclase-activating polypeptide precursor is processed solely by prohormone convertase 4 in the gonads. Endocrinology 2000; 141:3723-30. [PMID: 11014228 DOI: 10.1210/endo.141.10.7717] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is abundant not only in the brain, but also in the testis. Immunohistochemical studies have shown that PACAP-LI in rat testis is expressed stage specifically in spermatids. This suggests that testicular PACAP participates in the regulatory mechanism of spermatogenesis. Additionally, the ovary contains a relatively small amount of PACAP, conceivably involved in the regulation of folliculogenesis. PACAP is synthesized as a preprohormone and is processed by prohormone convertases, such as PC1, PC2, and PC4. PC4 is expressed only in the testis and ovary, where neither PC1 nor PC2 is expressed. However, whether PC4 is the sole endoprotease for the PACAP precursor in the gonads remains unknown. Recent studies using PC4-transgenic mice revealed that male PC4-null mice exhibited severely impaired fertility, although spermatogenesis appeared to be normal. The female PC4-null mice exhibited delayed folliculogenesis in the ovaries. To examine whether PC4 is the sole processing enzyme for the PACAP precursor in the gonads, we analyzed testicular and ovarian extracts from the PC4-null and wild-type mice for PACAP (PACAP38 and PACAP27) and its messenger RNA using reverse phase HPLC combined with specific RIAs and ribonuclease protection assay, respectively. For RIAs, three different polyclonal antisera with different recognition sites were used to identify PACAP38, PACAP27, and its precursor. Neither the testis nor the ovary from the PC4-null mice expressed PACAP38 or PACAP27, but the levels of PACAP transcripts in the testis and ovary of homozygous PC4-deficient mice were considerably elevated compared with those of the wild-type and heterozygous animals. The findings indicate that PC4 is the sole processing enzyme for the precursor of PACAP in the testis and ovary of mice. The possibility that the absence of bioactive PACAP in the testis and ovary of PC4-null mice caused severely impaired fertility in the males and delayed folliculogenesis in females warrants investigation.
Collapse
Affiliation(s)
- M Li
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|