1
|
Haider A, Bengs S, Portmann A, Fröhlich S, Etter D, Maredziak M, Warnock GI, Akhmedov A, Kozerke S, Keller C, Montecucco F, Weber B, Mu L, Buechel RR, Regitz-Zagrosek V, Kaufmann PA, Camici GG, Ametamey SM, Gebhard C. Age- and sex-specific differences in myocardial sympathetic tone and left ventricular remodeling following myocardial injury. Biol Sex Differ 2025; 16:2. [PMID: 39819738 PMCID: PMC11737239 DOI: 10.1186/s13293-024-00673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/07/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Presentations and outcomes of acute myocardial infarction (MI) differ between women and men, with the worst outcomes being reported in younger women. Mental stress induced ischemia and sympathetic activation have been suggested to play a prominent role in the pathogenesis of MI in younger women, however, the impact of sex hormones on these parameters remains unknown. METHODS The effect of sex hormones and age on myocardial infarct size and myocardial sympathetic activity (MSA) was assessed in male and female, as well as young (4-6 months) and aged (20-22 months) FVB/N mice (n = 106, 60 gonadectomized and 46 sham-operated animals) who underwent in vivo [11C]meta-hydroxyephedrine ([11C]mHED) positron emission tomography (PET) and cardiac magnetic resonance (CMR) imaging 24 h after a 30 min myocardial ischemic injury. RESULTS MSA and catecholamine levels following myocardial injury were highest in young males (p = 0.008 and p = 0.043 vs. young females, respectively) and were reduced by orchiectomy. Accordingly, testosterone serum levels correlated positively with MSA (r = 0.66, p < 0.001). Males had a larger average infarct size and lower left ventricular contractility following myocardial injury than females (p < 0.05 vs. females). These sex differences were no longer evident in gonadectomized animals (p = NS vs. females). In female animals, estrogen depletion did not affect MSA (ovariectomy effect, p = 0.892). Female animals showed an age-dependent increase in MSA (p = 0.011), which was absent in males. CONCLUSION Testosterone associates with an increase in sympathetic tone, contributing to adverse cardiac remodeling following MI. Conversely, females maintain sympathetic integrity, independent of sex hormones. Our results suggest a biological advantage of female sex in post MI recovery. Further research is warranted to confirm these findings in humans.
Collapse
Affiliation(s)
- Achi Haider
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH-8952, Switzerland
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH-8952, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH-8952, Switzerland
| | - Sandro Fröhlich
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH-8952, Switzerland
| | - Dominik Etter
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH-8952, Switzerland
| | - Monika Maredziak
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH-8952, Switzerland
| | - Geoffrey I Warnock
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH-8952, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH-8952, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, CH-8092, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa, 16132, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, 16132, Italy
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Charité Universitaetsmedizin Berlin, Berlin, D-10115, Germany
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH-8952, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, CH-8091, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, CH-8952, Switzerland.
- Department of Cardiology, Bern University Hospital, Inselspital, Freiburgstrasse 20, Bern, 3010, Switzerland.
| |
Collapse
|
2
|
Olivius C, Landin-Wilhelmsen K, Ohlsson C, Poutanen M, Trimpou P, Olsson DS, Johannsson G, Tivesten Å. Sex Steroid Levels in Women With Hypopituitarism: A Case-controlled Observational Study. J Clin Endocrinol Metab 2024; 109:2967-2978. [PMID: 38570732 PMCID: PMC11479694 DOI: 10.1210/clinem/dgae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
CONTEXT Women with hypopituitarism remain at increased risk of morbidity and mortality. Insufficient replacement of sex steroids has been suggested as a contributing factor, but sex steroid levels in women with hypopituitarism have not been comprehensively mapped. OBJECTIVE To quantify sex steroids in women with hypopituitarism by a high-sensitivity assay. METHODS Using a combination of clinical and biochemical criteria, women with hypopituitarism (n = 104) who started GH replacement in 1995 to 2014 at a single center were categorized as eugonadal or having hypogonadotropic hypogonadism (HH). A population-based cohort of women (n = 288) served as controls. Eugonadal women and controls were categorized as pre-/postmenopausal and HH women as younger/older (≤ or >52 years). Dehydroepiandrosterone (DHEA), androstenedione, testosterone, dihydrotestosterone, progesterone, 17αOH-progesterone, estradiol, and estrone were analyzed by a validated liquid chromatography-tandem mass spectrometry assay. RESULTS Among both premenopausal/younger and postmenopausal/older women, women with HH had lower levels of sex steroid precursors (DHEA, androstenedione) and androgens (testosterone and dihydrotestosterone) than controls. Progesterone, 17αOH-progesterone, estrone, and estradiol showed similar patterns. Women with HH and ACTH deficiency had markedly lower concentrations of all sex hormones than those without ACTH deficiency. CONCLUSION This study demonstrates for the first time a broad and severe sex steroid deficiency in both younger and older women with HH, particularly in those with combined gonadotropin and ACTH deficiency. The health impact of low sex steroid levels in women with hypopituitarism requires further study, and women with combined gonadotropin and ACTH deficiency should be a prioritized group for intervention studies with sex hormone replacement.
Collapse
Affiliation(s)
- Catharina Olivius
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
- Department of Medicine, Hospital of Halland, S-434 80 Kungsbacka, Sweden
| | - Kerstin Landin-Wilhelmsen
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Region Västra Götaland, S-413 45 Gothenburg, Sweden
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, S-413 45 Gothenburg, Sweden
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 205 20 Turku, Finland
| | - Penelope Trimpou
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Region Västra Götaland, S-413 45 Gothenburg, Sweden
| | - Daniel S Olsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Region Västra Götaland, S-413 45 Gothenburg, Sweden
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, S-431 83 Molndal, Sweden
| | - Gudmundur Johannsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Region Västra Götaland, S-413 45 Gothenburg, Sweden
| | - Åsa Tivesten
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Region Västra Götaland, S-413 45 Gothenburg, Sweden
| |
Collapse
|
3
|
Shi Z, Xiao S, Zhang Q. Interference with Systemic Negative Feedback Regulation as a Potential Mechanism for Nonmonotonic Dose-Responses of Endocrine-Disrupting Chemicals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611257. [PMID: 39282254 PMCID: PMC11398479 DOI: 10.1101/2024.09.04.611257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Background Endocrine-disrupting chemicals (EDCs) often exhibit nonmonotonic dose-response (NMDR) relationships, posing significant challenges to health risk assessment and regulations. Several molecular mechanisms operating locally in cells have been proposed, including opposing actions via different receptors, mixed-ligand heterodimer formation, and receptor downregulation. Systemic negative feedback regulation of hormone homeostasis, which is a common feature of many endocrine systems, has also been invoked as a mechanism; however, whether and how exactly such global feedback structure may underpin NMDRs is poorly understood. Objectives We hypothesize that an EDC may compete with the endogenous hormone for receptors (i) at the central site to interfere with the feedback regulation thus altering the physiological hormone level, and (ii) at the peripheral site to disrupt the hormone action; this dual-action may oppose each other, producing nonmonotonic endocrine effects. The objective here is to explore - through computational modeling - how NMDRs may arise through this potential mechanism and the relevant biological variabilities that enable susceptibility to nonmonotonic effects. Methods We constructed a dynamical model of a generic hypothalamic-pituitary-endocrine (HPE) axis with negative feedback regulation between a pituitary hormone and a terminal effector hormone (EH). The effects of model parameters, including receptor binding affinities and efficacies, on NMDR were examined for EDC agonists and antagonists. Monte Carlo human population simulations were then conducted to systemically explore biological parameter conditions that engender NMDR. Results When an EDC interferes sufficiently with the central feedback action of EH, the net endocrine effect at the peripheral target site can be opposite to what is expected of an agonist or antagonist at low concentrations. J/U or Bell-shaped NMDRs arise when the EDC has differential binding affinities and/or efficacies, relative to EH, for the peripheral and central receptors. Quantitative relationships between these biological variabilities and associated distributions were discovered, which can distinguish J/U and Bell-shaped NMDRs from monotonic responses. Conclusions The ubiquitous negative feedback regulation in endocrine systems can act as a universal mechanism for counterintuitive and nonmonotonic effects of EDCs. Depending on key receptor kinetic and signaling properties of EDCs and endogenous hormones, some individuals may be more susceptible to these complex endocrine effects.
Collapse
Affiliation(s)
- Zhenzhen Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, NJ 08854, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Wolcott NS, Redman WT, Karpinska M, Jacobs EG, Goard MJ. The estrous cycle modulates hippocampal spine dynamics, dendritic processing, and spatial coding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606418. [PMID: 39131375 PMCID: PMC11312567 DOI: 10.1101/2024.08.02.606418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Histological evidence suggests that the estrous cycle exerts a powerful effect on CA1 neurons in mammalian hippocampus. Decades have passed since this landmark observation, yet how the estrous cycle shapes dendritic spine dynamics and hippocampal spatial coding in vivo remains a mystery. Here, we used a custom hippocampal microperiscope and two-photon calcium imaging to track CA1 pyramidal neurons in female mice over multiple cycles. Estrous cycle stage had a potent effect on spine dynamics, with heightened density during periods of greater estradiol (proestrus). These morphological changes were accompanied by greater somatodendritic coupling and increased infiltration of back-propagating action potentials into the apical dendrite. Finally, tracking CA1 response properties during navigation revealed enhanced place field stability during proestrus, evident at the single-cell and population level. These results establish the estrous cycle as a driver of large-scale structural and functional plasticity in hippocampal circuits essential for learning and memory.
Collapse
Affiliation(s)
- Nora S Wolcott
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William T Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Intelligent Systems Center, Johns Hopkins University Applied Physics Lab, Laurel, MD 20723, USA
| | - Marie Karpinska
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Ann S. Bowers Women's Brain Health Initiative, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael J Goard
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Sakai H, Imai Y. Cell-specific functions of androgen receptor in skeletal muscles. Endocr J 2024; 71:437-445. [PMID: 38281756 DOI: 10.1507/endocrj.ej23-0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Androgens play a vital role not only in promoting the development of male sexual characteristics but also in exerting diverse physiological effects, including the regulation of skeletal muscle growth and function. Given that the effects of androgens are mediated through androgen receptor (AR) binding, an understanding of AR functionality is crucial for comprehending the mechanisms of androgen action on skeletal muscles. Drawing from insights gained using conditional knockout mouse models facilitated by Cre/loxP technology, we review the cell-specific functions of AR in skeletal muscles. We focus on three specific cell populations expressing AR within skeletal muscles: skeletal muscle cells, responsible for muscle contraction; satellite cells, which are essential stem cells contributing to the growth and regeneration of skeletal muscles; and mesenchymal progenitors, situated in interstitial areas and playing a crucial role in muscle homeostasis. Furthermore, the indirect effects of androgens on skeletal muscle through extra-muscle tissue are essential, especially for the regulation of skeletal muscle mass. The regulation of genes by AR varies across different cell types and contexts, including homeostasis, regeneration and hypertrophy of skeletal muscles. The varied mechanisms orchestrated by AR collectively influence the physiology of skeletal muscles.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| |
Collapse
|
6
|
Evangelista S, Vazakidou P, Koekkoek J, Heinzelmann MT, Lichtensteiger W, Schlumpf M, Tresguerres JAF, Linillos-Pradillo B, van Duursen MBM, Lamoree MH, Leonards PEG. High throughput LC-MS/MS method for steroid hormone analysis in rat liver and plasma - unraveling methodological challenges. Talanta 2024; 266:124981. [PMID: 37516072 DOI: 10.1016/j.talanta.2023.124981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
Comprehensive reference data for steroid hormones are lacking in rat models, particularly for early developmental stages and unconventional matrices as the liver. Therefore, we developed and validated an enzymatic, solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify a panel of 23 steroid hormones in liver and plasma from adult and neonatal rats. Our approach tackles methodological challenges, focusing on undesired byproducts associated with specific enzymatic treatment, and enables a thorough assessment of potential interferences in complex matrices by utilizing unstripped plasma and liver. We propose an optimized enzymatic hydrolysis protocol using a recombinant β-glucuronidase/sulfatase mix (BGS mix) to efficiently deconjugate steroid phase II conjugates. The streamlined sample preparation and high-throughput solid phase extraction in a 96-well plate significantly accelerate sample processing for complex matrices and alarge number of samples. We were able to achieve the necessary sensitivity for accurately measuring the target analytes, particularly estrogens, in small sample sizes of 5-20 mg of liver tissue and 100 μL of plasma. Through the analysis of liver and plasma samples from adult and neonatal rats, including both sexes, our study showed a novel set of steroid hormone reference intervals. This study provides a reliable diagnostic tool for the quantification of steroids in rat models and gives insight in liver and plasma-related steroid hormone dynamics at early developmental stages. In addition, the method covers several pathway intermediates and extend the list of steroid hormones to be investigated.
Collapse
Affiliation(s)
- Sara Evangelista
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands.
| | - Paraskevi Vazakidou
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Jacco Koekkoek
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Manuel T Heinzelmann
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Walter Lichtensteiger
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Margret Schlumpf
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jesus A F Tresguerres
- Departments of Physiology and of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Linillos-Pradillo
- Departments of Physiology and of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
7
|
Gent R, Van Rooyen D, Atkin SL, Swart AC. C11-hydroxy and C11-oxo C 19 and C 21 Steroids: Pre-Receptor Regulation and Interaction with Androgen and Progesterone Steroid Receptors. Int J Mol Sci 2023; 25:101. [PMID: 38203272 PMCID: PMC10778819 DOI: 10.3390/ijms25010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
C11-oxy C19 and C11-oxy C21 steroids have been identified as novel steroids but their function remains unclear. This study aimed to investigate the pre-receptor regulation of C11-oxy steroids by 11β-hydroxysteroid dehydrogenase (11βHSD) interconversion and potential agonist and antagonist activity associated with the androgen (AR) and progesterone receptors (PRA and PRB). Steroid conversions were investigated in transiently transfected HEK293 cells expressing 11βHSD1 and 11βHSD2, while CV1 cells were utilised for agonist and antagonist assays. The conversion of C11-hydroxy steroids to C11-oxo steroids by 11βHSD2 occurred more readily than the reverse reaction catalysed by 11βHSD1, while the interconversion of C11-oxy C19 steroids was more efficient than C11-oxy C21 steroids. Furthermore, 11-ketodihydrotestosterone (11KDHT), 11-ketotestosterone (11KT) and 11β-hydroxydihydrotestosterone (11OHDHT) were AR agonists, while only progestogens, 11β-hydroxyprogesterone (11βOHP4), 11β-hydroxydihydroprogesterone (11βOHDHP4), 11α-hydroxyprogesterone (11αOHP4), 11α-hydroxydihydroprogesterone (11αOHDHP4), 11-ketoprogesterone (11KP4), 5α-pregnan-17α-diol-3,11,20-trione (11KPdione) and 21-deoxycortisone (21dE) exhibited antagonist activity. C11-hydroxy C21 steroids, 11βOHP4, 11βOHDHP4 and 11αOHP4 exhibited PRA and PRB agonistic activity, while only C11-oxo steroids, 11KP4 and 11-ketoandrostanediol (11K3αdiol) demonstrated PRB agonism. While no steroids antagonised the PRA, 11OHA4, 11β-hydroxytestosterone (11OHT), 11KT and 11KDHT exhibited PRB antagonism. The regulatory role of 11βHSD isozymes impacting receptor activation is clear-C11-oxo androgens exhibit AR agonist activity; only C11-hydroxy progestogens exhibit PRA and PRB agonist activity. Regulation by the downstream metabolites of active C11-oxy steroids at the receptor level is apparent-C11-hydroxy and C11-oxo metabolites antagonize the AR and PRB, progestogens the former, androgens the latter. The findings highlight the intricate interplay between receptors and active as well as "inactive" C11-oxy steroids, suggesting novel regulatory tiers.
Collapse
Affiliation(s)
- Rachelle Gent
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Desmaré Van Rooyen
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Stephen L. Atkin
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Amanda C. Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
8
|
Unger CA, Hope MC, Aladhami AK, Cotham WE, Socia CE, Rice BC, Clegg DJ, Velázquez KT, LaVoie HA, Hollis F, Enos RT. A Novel Tissue-Specific Insight into Sex Steroid Fluctuations Throughout the Murine Estrous Cycle. Endocrinology 2023; 165:bqad175. [PMID: 37967240 PMCID: PMC11032246 DOI: 10.1210/endocr/bqad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
Serum sex steroid levels fluctuate throughout the reproductive cycle. However, the degree to which sex steroid tissue content mimics circulating content is unknown. Understanding the flux and physiological quantity of tissue steroid content is imperative for targeted hormonal therapy development. Utilizing a gold-standard ultrasensitive liquid chromatography-mass spectrometry (LC/MS) method we determined sex steroid (17β-estradiol [E2], testosterone, androstenedione, and progesterone) fluctuations in serum and in 15 tissues throughout the murine estrous cycle (proestrus, estrus, and diestrus I) and in ovariectomized (OVX) mice. We observed dynamic fluctuations in serum and tissue steroid content throughout the estrous cycle with proestrus generally presenting the highest content of E2, testosterone, and androstenedione, and lowest content of progesterone. In general, the trend in circulating steroid content between the stages of the estrous cycle was mimicked in tissue. However, the absolute amounts of steroid levels when normalized to tissue weight were found to be significantly different between the tissues with the serum steroid quantity often being significantly lower than the tissue quantity. Additionally, we found that OVX mice generally displayed a depletion of all steroids in the various tissues assessed, except in the adrenal glands which were determined to be the main site of peripheral E2 production after ovary removal. This investigation provides a comprehensive analysis of steroid content throughout the estrous cycle in a multitude of tissues and serum. We believe this information will help serve as the basis for the development of physiologically relevant, tissue-specific hormonal therapies.
Collapse
Affiliation(s)
- Christian A Unger
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC 29209, USA
| | - Marion C Hope
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC 29209, USA
| | - Ahmed K Aladhami
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC 29209, USA
| | - William E Cotham
- Department of Chemistry and Biochemistry, College of Arts and Science, University of South Carolina, Columbia, SC 29208, USA
| | - Cassidy E Socia
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC 29209, USA
| | - Barton C Rice
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC 29209, USA
| | - Deborah J Clegg
- Department of Internal Medicine, Texas Tech Health Sciences Center, El Paso, TX 7995, USA
| | - Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC 29209, USA
| | - Holly A LaVoie
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, School of Medicine, Columbia, SC 29209, USA
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
9
|
Poutanen M, Hagberg Thulin M, Härkönen P. Targeting sex steroid biosynthesis for breast and prostate cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00609-y. [PMID: 37684402 DOI: 10.1038/s41568-023-00609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modelling, University of Turku, Turku, Finland.
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland.
| | - Malin Hagberg Thulin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pirkko Härkönen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
10
|
Carsia RV, McIlroy PJ, John-Alder HB. Invited review: Adrenocortical function in avian and non-avian reptiles: Insights from dispersed adrenocortical cells. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111424. [PMID: 37080352 DOI: 10.1016/j.cbpa.2023.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Herein we review our work involving dispersed adrenocortical cells from several lizard species: the Eastern Fence Lizard (Sceloporus undulatus), Yarrow's Spiny Lizard (Sceloporus jarrovii), Striped Plateau Lizard (Sceloporus virgatus) and the Yucatán Banded Gecko (Coleonyx elegans). Early work demonstrated changes in steroidogenic function of adrenocortical cells derived from adult S. undulatus associated with seasonal interactions with sex. However, new information suggests that both sexes operate within the same steroidogenic budget over season. The observed sex effect was further explored in orchiectomized and ovariectomized lizards, some supported with exogenous testosterone. Overall, a suppressive effect of testosterone was evident, especially in cells from C. elegans. Life stage added to this complex picture of adrenal steroidogenic function. This was evident when sexually mature and immature Sceloporus lizards were subjected to a nutritional stressor, cricket restriction/deprivation. There were divergent patterns of corticosterone, aldosterone, and progesterone responses and associated sensitivities of each to corticotropin (ACTH). Finally, we provide strong evidence that there are multiple, labile subpopulations of adrenocortical cells. We conclude that the rapid (days) remodeling of adrenocortical steroidogenic function through fluctuating cell subpopulations drives the circulating corticosteroid profile of Sceloporus lizard species. Interestingly, progesterone and aldosterone may be more important with corticosterone serving as essential supportive background. In the wild, the flux in adrenocortical cell subpopulations may be adversely susceptible to climate-change related disruptions in food sources and to xenobiotic/endocrine-disrupting chemicals. We urge further studies using native lizard species as bioindicators of local pollutants and as models to examine the broader eco-exposome.
Collapse
Affiliation(s)
- Rocco V Carsia
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Patrick J McIlroy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, 311 North Fifth Street, Camden, NJ 08102, United States
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, The Pinelands Field Station Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, United States
| |
Collapse
|
11
|
Sex Steroid Hormone Analysis in Human Tear Fluid Using a Liquid Chromatography-Mass Spectrometry Method. Int J Mol Sci 2022; 23:ijms232314864. [PMID: 36499192 PMCID: PMC9735929 DOI: 10.3390/ijms232314864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The marked sexual dimorphism prevalent in inflammatory/autoimmune diseases is mostly due to sex hormone actions. One common eye disease that disproportionately affects women is dry eye. Thus, our aim was to optimise our highly sensitive liquid chromatography-tandem mass spectrometry method for steroid hormone quantification in tear fluid (TF). We used tears and matched serum samples from 10 heathy individuals. Estrone, estradiol testosterone, progesterone, androstenedione, and dehydroepiandrosterone, were quantified with an HPLC coupled with a Triple Quad 5500 MS. Estrone was measured in 80% of female and 20% of male TF samples (mean ± SD, 68.9 ± 62.2 pmol/L), whereas estradiol was undetectable in tears. Progesterone was identified in half of the female tear samples (2.91 ± 3.47 nmol/L) but in none of the male samples, whereas testosterone was quantifiable only in male tears (0.24 ± 0.1 nmol/L). TF hormone levels were, on average, from 1.4% to 55% of systemic values. Estrone, progesterone, and testosterone levels in tears correlated with the matching serum samples (r = 0.82, 0.79, and 0.85, respectively), but androstenedione and dehydroepiandrosterone showed no correlations. Our LC-MS/MS method could detect five out of the six steroid hormones studied in individual human TF samples and could therefore be used to analyse the role of sex steroids in eye diseases.
Collapse
|
12
|
Colldén H, Nilsson ME, Norlén AK, Landin A, Windahl SH, Wu J, Horkeby K, Lagerquist MK, Ryberg H, Poutanen M, Vandenput L, Ohlsson C. Dehydroepiandrosterone Supplementation Results in Varying Tissue-specific Levels of Dihydrotestosterone in Male Mice. Endocrinology 2022; 163:6750032. [PMID: 36201601 PMCID: PMC9588255 DOI: 10.1210/endocr/bqac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/23/2022]
Abstract
Dehydroepiandrosterone (DHEA), an adrenal androgen precursor, can be metabolized in target tissues into active sex steroids. It has been proposed that DHEA supplementation might result in restoration of physiological local sex steroid levels, but knowledge on the effect of DHEA treatment on local sex steroid levels in multiple tissues is lacking. To determine the effects of DHEA on tissue-specific levels of sex steroids, we treated orchiectomized (ORX) male mice with DHEA for 3 weeks and compared them with vehicle-treated ORX mice and gonadal intact mice. Intra-tissue levels of sex steroids were analyzed in reproductive organs (seminal vesicles, prostate, m. levator ani), major body compartments (white adipose tissue, skeletal muscle, and brain), adrenals, liver, and serum using a sensitive and validated gas chromatography-mass spectrometry method. DHEA treatment restored levels of both testosterone (T) and dihydrotestosterone (DHT) to approximately physiological levels in male reproductive organs. In contrast, this treatment did not increase DHT levels in skeletal muscle or brain. In the liver, DHEA treatment substantially increased levels of T (at least 4-fold) and DHT (+536%, P < 0.01) compared with vehicle-treated ORX mice. In conclusion, we provide a comprehensive map of the effect of DHEA treatment on intra-tissue sex steroid levels in ORX mice with a restoration of physiological levels of androgens in male reproductive organs while DHT levels were not restored in the skeletal muscle or brain. This, and the unexpected supraphysiological androgen levels in the liver, may be a cause for concern considering the uncontrolled use of DHEA.
Collapse
Affiliation(s)
- Hannah Colldén
- Correspondence: Claes Ohlsson, MD, PhD, Professor, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 11, SE-41345 Göteborg. ; or Hannah Colldén, MSc, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 11, SE-41345 Göteborg.
| | - Maria E Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Region Västra Götaland, SE-413 45 Gothenburg, Sweden
| | - Anna-Karin Norlén
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Region Västra Götaland, SE-413 45 Gothenburg, Sweden
| | - Andreas Landin
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, SE-413 45 Gothenburg, Sweden
| | - Sara H Windahl
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 141 86 Huddinge, Sweden
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Karin Horkeby
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Marie K Lagerquist
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Henrik Ryberg
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Region Västra Götaland, SE-413 45 Gothenburg, Sweden
| | - Matti Poutanen
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland
| | | | - Claes Ohlsson
- Correspondence: Claes Ohlsson, MD, PhD, Professor, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 11, SE-41345 Göteborg. ; or Hannah Colldén, MSc, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 11, SE-41345 Göteborg.
| |
Collapse
|
13
|
van Winden LJ, Vermeulen RFM, van den Noort V, Gaarenstroom KN, Kenter GG, Brood-van Zanten MMA, Korse CM, van Beurden M, van Rossum HH. Changes in Sex Steroids and relation with Menopausal Complaints in Women Undergoing Risk-Reducing Salpingo-Oophorectomy. J Endocr Soc 2022; 6:bvac069. [PMID: 35592509 PMCID: PMC9113512 DOI: 10.1210/jendso/bvac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Context Risk-reducing salpingo-oophorectomy (RRSO) is performed in BRCA1 or 2 mutant carriers to minimize ovarian cancer risk. Although studies have been performed investigating sex steroid levels, menopausal complaints, and sexual functioning in relation to RRSO, their exact relationship remains unknown. Objectives To investigate the impact of RRSO on serum sex steroid levels and their association with menopausal complaints and sexual functioning. Methods This prospective observational cohort study included 57 premenopausal and 37 postmenopausal women at risk of ovarian cancer and opting for RRSO. Data collection involved validated questionnaires on sexual functioning and menopausal complaints. Testosterone, androstenedione, estradiol, and estrone levels in serum determined by liquid chromatography-tandem mass spectrometry were obtained 1 day before, 6 weeks, and 7 months after RRSO. Results In premenopausal women, all 4 steroids were decreased both 6 weeks (P < 0.01) and 7 months (P < 0.01) after RRSO. Furthermore, in these women, decreases in estrogens were associated with a decrease in sexual functioning 7 months after RRSO (P < 0.05). In postmenopausal women, only testosterone was decreased 6 weeks and 7 months (P < 0.05) after RRSO, which was associated with an increase in menopausal complaints at 7 months post-RRSO (P < 0.05). Conclusion Our results suggest that in premenopausal women, decreases in estrogens are related to a decrease in sexual functioning and that in postmenopausal women, testosterone is decreased after RRSO, which indicates that postmenopausal ovaries maintain some testosterone production. Furthermore, in postmenopausal women, a large decrease of testosterone was associated with more menopausal complaints, indicating that future studies investigating testosterone supplementation are warranted.
Collapse
Affiliation(s)
- Lennart J van Winden
- Dept. of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ravi F M Vermeulen
- Dept. of Gynecology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vincent van den Noort
- Department of Biometrics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Gemma G Kenter
- Dept. of Gynecology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Monique M A Brood-van Zanten
- Dept. of Gynecology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Dept. of Gynecology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Catharina M Korse
- Dept. of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marc van Beurden
- Dept. of Gynecology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Huub H van Rossum
- Dept. of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|