1
|
Li D, Guo B, Liang Q, Liu Y, Zhang L, Hu N, Zhang X, Yang F, Ruan C. Tissue-engineered parathyroid gland and its regulatory secretion of parathyroid hormone. J Tissue Eng Regen Med 2020; 14:1363-1377. [PMID: 32511868 DOI: 10.1002/term.3080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/11/2022]
Abstract
Parathyroid glands (PTGs) are important endocrine organs being mainly responsible for the secretion of parathyroid hormone (PTH) to regulate the balance of calcium (Ca) /phosphorus (P) ions in the body. Once PTGs get injured or removed, their resulting defect or loss of PTH secretion should disturb the level of Ca/P in blood, thus damaging other related organs (bone, kidney, etc.) and even causing death. Recently, tissue-engineered PTGs (TE-PTGs) have attracted lots of attention as a potential treatment for the related diseases of PTGs caused by hypoparathyroidism and hyperparathyroidism, including tetany, muscle cramp, nephrolithiasis, nephrocalcinosis, and osteoporosis. Although great progress has been made in the establishment of TE-PTGs with an effective strategy to integrate the key factors of cells and biomaterials, its regulatory secretion of PTH to mimic its natural rhythms in the body remains a huge challenge. This review comprehensively describes an overview of PTGs from physiology and pathology to cytobiology and tissue engineering. The state of the arts in TE-PTGs and the feasible strategies to regulate PTH secretion behaviors are highlighted to provide an important foundation for further investigation.
Collapse
Affiliation(s)
- Duo Li
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Baochun Guo
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Qingfei Liang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Yunhui Liu
- University of Chinese Academy of Sciences, Beijing, PR China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Lu Zhang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Nan Hu
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Fan Yang
- University of Chinese Academy of Sciences, Beijing, PR China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
2
|
Kisand K, Peterson P. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Clin Immunol 2015; 35:463-78. [PMID: 26141571 DOI: 10.1007/s10875-015-0176-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is an autosomal recessive disease caused by mutations in the autoimmune regulator (AIRE) gene. This review focuses on the clinical and immunological features of APECED, summarizes the current knowledge on the function of AIRE and discusses the importance of autoantibodies in disease diagnosis and prognosis. Additionally, we review the outcome of recent immunomodulatory treatments in APECED patients.
Collapse
Affiliation(s)
- Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Str., Tartu, EE50411, Estonia,
| | | |
Collapse
|
3
|
Silva BC, Fleischer J, Lenane Z, Fan WW, McMahon DJ, Bilezikian JP. Spontaneous Remission of Primary Hyperparathyroidism Related to an Autoimmune Disease: A Case Report. AACE Clin Case Rep 2015. [DOI: 10.4158/ep14353.cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
4
|
Park SY, Eom YS, Choi B, Yi HS, Yu SH, Lee K, Jin HS, Chung YS, Jung TS, Lee S. Genetic and clinical characteristics of korean patients with isolated hypoparathyroidism: from the Korean hypopara registry study. J Korean Med Sci 2013; 28:1489-95. [PMID: 24133354 PMCID: PMC3792604 DOI: 10.3346/jkms.2013.28.10.1489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022] Open
Abstract
Isolated hypoparathyroidism (IH) shows heterogeneous phenotypes and can be caused by defects in a variety of genes. The goal of our study was to determine the clinical features and to analyze gene mutations in a large cohort of Korean patients with sporadic or familial IH. We recruited 23 patients. They showed a broad range of onset age and various values of biochemical data. Whole exome sequencing was performed on two affected cases and one unaffected individual in a family. All coding exons and exon-intron borders of GCMB, CASR, and prepro-PTH were sequenced using PCR-amplified DNA. In one family who underwent the whole exome sequencing analysis, approximately 300 single nucleotide changes emerged as candidates for genetic alteration. Among them, we identified a functional mutation in exon 2 of GCMB (C106R) in two affected cases. Besides, heterozygous gain-of-function mutations in the CASR gene were found in other subjects; D410E and P221L. We also found one single nucleotide polymorphism (SNP) in the prepro-PTH gene, five SNPs in the CASR gene, and four SNPs in the GCMB gene. The current study represents a variety of biochemical phenotypes in IH patients with the molecular genetic diagnosis of IH.
Collapse
Affiliation(s)
- So Young Park
- Department of Internal Medicine, Cheil General Hospital, Kwandong University College of Medicine, Seoul, Korea
| | - Young Sil Eom
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon, Korea
| | - Byoungho Choi
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon, Korea
| | - Seung-Hee Yu
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon, Korea
| | - Kiyoung Lee
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon, Korea
| | - Hyun-Seok Jin
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Yoon-Sok Chung
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
- Department of Endocrinology and Metaboilism, Ajou University School of Medicine, Suwon, Korea
| | - Tae Sik Jung
- Department of Internal Medicine, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon, Korea
| |
Collapse
|