1
|
Larsen AR, Brusgaard K, Christesen HT, Detlefsen S. Genotype-histotype-phenotype correlations in hyperinsulinemic hypoglycemia. Histol Histopathol 2024; 39:817-844. [PMID: 38305063 DOI: 10.14670/hh-18-709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Hyperinsulinemic hypoglycemia (HH) of pancreatic origin includes congenital hyperinsulinism (CHI), insulinoma, insulinomatosis, and adult-onset non-insulinoma persistent hyperinsulinemic hypoglycemia syndrome (NI-PHHS). In this review, we describe the genotype-histotype-phenotype correlations in HH and their therapeutic implications. CHI can occur from birth or later on in life. Histologically, diffuse CHI shows diffuse beta cell hypertrophy with a few giant nuclei per islet of Langerhans, most frequently caused by loss-of-function mutations in ABCC8 or KCNJ11. Focal CHI is histologically characterized by focal adenomatous hyperplasia consisting of confluent hyperplastic islets, caused by a paternal ABCC8/KCNJ11 mutation combined with paternal uniparental disomy of 11p15. CHI in Beckwith-Wiedemann syndrome is caused by mosaic changes in the imprinting region 11p15.4-11p15.5, leading to segmental or diffuse overgrowth of endocrine tissue in the pancreas. Morphological mosaicism of pancreatic islets is characterized by occurence of hyperplastic (type 1) islets in one or a few lobules and small (type 2) islets in the entire pancreas. Other rare genetic causes of CHI show less characteristic or unspecific histology. HH with a predominant adult onset includes insulinomas, which are pancreatic insulin-producing endocrine neoplasms, in some cases with metastatic potential. Insulinomas occur sporadically or as part of multiple endocrine neoplasia type 1 due to MEN1 mutations. MAFA mutations may histologically lead to insulinomatosis with insulin-producing neuroendocrine microadenomas or neuroendocrine neoplasms. NI-PHHS is mainly seen in adults and shows slight histological changes in some patients, which have been defined as major and minor criteria. The genetic cause is unknown in most cases. The diagnosis of HH, as defined by genetic, histological, and phenotypic features, has important implications for patient management and outcome.
Collapse
Affiliation(s)
- Annette Rønholt Larsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Steno Diabetes Center, Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Steno Diabetes Center, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Steno Diabetes Center, Odense University Hospital, Odense, Denmark
| | - Sönke Detlefsen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
2
|
Pizzoferro M, Masselli G, Maiorana A, Casciani E, Sollaku S, Dionisi-Vici C, Spada M, Altini C, Villani MF, Rufini V, Gualdi G, Garganese MC. PET/CT in congenital hyperinsulinism: transforming patient's lives by molecular hybrid imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2022; 12:44-53. [PMID: 35535120 PMCID: PMC9077170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Congenital hyperinsulinism (HI) is a life-threatening condition characterized by severe and recurrent episodes of hypoglycaemia due to defects in key genes involved in regulating insulin secretion. The delay in diagnosis and inappropriate management of HI lead to high risk of permanent hypoglycemic brain injury. The management of HI is challenging as each form of HI (focal, diffuse, and atypical) requires its own therapeutic strategy. In HI diagnostic work-up, integrated PET/CT scan is currently the first-line imaging technique allowing to differentiate between diffuse and focal form and, in the latter case, to localize the focus within the pancreas with high precision. Only in focal HI partial pancreatectomy is the treatment of choice and a curative surgical treatment means a real chance of transforming patient's lives and HI patient's future. The aim of this review is to discuss the role of PET/CT imaging in HI scenario, its technical advantages and limitations and how successful surgery is strongly dependent on accurate preoperative assessment (genetic analysis and PET/CT scan). A multidisciplinary approach in HI diagnosis and treatment inside a single team (involving different expertise) allows to manage children safely and properly, supporting their families in an organized care network.
Collapse
Affiliation(s)
- Milena Pizzoferro
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children’s HospitalRome, Italy
| | - Gabriele Masselli
- Nuclear Medicine Section, Pio XI Private HospitalRome, Italy
- Radiology and Molecular Imaging Department, Umberto I Hospital, Sapienza UniversityRome, Italy
| | - Arianna Maiorana
- Division of Metabolic Diseases, Department of Pediatric Specialties, IRCCS Bambino Gesù Children’s HospitalRome, Italy
| | | | - Saadi Sollaku
- Nuclear Medicine Section, Pio XI Private HospitalRome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Department of Pediatric Specialties, IRCCS Bambino Gesù Children’s HospitalRome, Italy
| | - Marco Spada
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, IRCCS Bambino Gesù Children’s HospitalRome, Italy
| | - Claudio Altini
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children’s HospitalRome, Italy
| | - Maria Felicia Villani
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children’s HospitalRome, Italy
| | - Vittoria Rufini
- Institute of Nuclear Medicine, Policlinico Gemelli Foundation, Catholic University of The Sacred HeartRome, Italy
| | | | - Maria Carmen Garganese
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children’s HospitalRome, Italy
| |
Collapse
|
3
|
Melikyan M, Gubaeva D, Nikitina I, Ryzhkova D, Mitrofanova L, Yukhacheva D, Pershin D, Shcherbina A, Vasilyev E, Proshchina A, Krivova Y, Tiulpakov A. The coincidence of two rare diseases with opposite metabolic phenotype: a child with congenital hyperinsulinism and Bloom syndrome. J Pediatr Endocrinol Metab 2022; 35:405-409. [PMID: 34700371 DOI: 10.1515/jpem-2021-0464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Congenital hyperinsulinism (CHI) is a group of rare genetic disorders characterized by insulin overproduction. CHI causes life-threatening hypoglycemia in neonates and infants. Bloom syndrome is a rare autosomal recessive disorder caused by mutations in the BLM gene resulting in genetic instability and an elevated rate of spontaneous sister chromatid exchanges. It leads to insulin resistance, early-onset diabetes, dyslipidemia, growth delay, immune deficiency and cancer predisposition. Recent studies demonstrate that the BLM gene is highly expressed in pancreatic islet cells and its mutations can alter the expression of other genes which are associated with apoptosis control and cell proliferation. CASE PRESENTATION A 5-month-old female patient from consanguineous parents presented with drug-resistant CHI and dysmorphic features. Genetic testing revealed a homozygous mutation in the KCNJ11 gene and an additional homozygous mutation in the BLM gene. While 18F-DOPA PET scan images were consistent with a focal CHI form and intraoperative frozen-section histopathology was consistent with diffuse CHI form, postoperative histopathological examination revealed features of an atypical form. CONCLUSIONS In our case, the patient carries two distinct diseases with opposite metabolic phenotypes.
Collapse
Affiliation(s)
| | | | - Irina Nikitina
- Almazov National Medical Research Center, Saint-Petersburg, Russia
| | - Daria Ryzhkova
- Almazov National Medical Research Center, Saint-Petersburg, Russia
| | | | - Daria Yukhacheva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | | | - Anatoly Tiulpakov
- Endocrinology Research Center, Moscow, Russia.,Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
4
|
Banerjee I, Raskin J, Arnoux JB, De Leon DD, Weinzimer SA, Hammer M, Kendall DM, Thornton PS. Congenital hyperinsulinism in infancy and childhood: challenges, unmet needs and the perspective of patients and families. Orphanet J Rare Dis 2022; 17:61. [PMID: 35183224 PMCID: PMC8858501 DOI: 10.1186/s13023-022-02214-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/06/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycemia in infants and children, and carries a considerable risk of neurological damage and developmental delays if diagnosis and treatment are delayed. Despite rapid advances in diagnosis and management, long-term developmental outcomes have not significantly improved in the past years. CHI remains a disease that is associated with significant morbidity, and psychosocial and financial burden for affected families, especially concerning the need for constant blood glucose monitoring throughout patients' lives. RESULTS In this review, we discuss the key clinical challenges and unmet needs, and present insights on patients' and families' perspective on their daily life with CHI. Prevention of neurocognitive impairment and successful management of patients with CHI largely depend on early diagnosis and effective treatment by a multidisciplinary team of specialists with experience in the disease. CONCLUSIONS To ensure the best outcomes for patients and their families, improvements in effective screening and treatment, and accelerated referral to specialized centers need to be implemented. There is a need to develop a wider range of centers of excellence and networks of specialized care to optimize the best outcomes both for patients and for clinicians. Awareness of the presentation and the risks of CHI has to be raised across all professions involved in the care of newborns and infants. For many patients, the limited treatment options currently available are insufficient to manage the disease effectively, and they are associated with a range of adverse events. New therapies would benefit all patients, even those that are relatively stable on current treatments, by reducing the need for constant blood glucose monitoring and facilitating a personalized approach to treatment.
Collapse
Affiliation(s)
- Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - Julie Raskin
- Congenital Hyperinsulinism International, Glen Ridge, NJ, USA
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Diva D De Leon
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Stuart A Weinzimer
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Paul S Thornton
- Congenital Hyperinsulinism Center, Cook Children's Medical Center, Fort Worth, TX, USA
| |
Collapse
|
5
|
Haris B, Saraswathi S, Hussain K. Somatostatin analogues for the treatment of hyperinsulinaemic hypoglycaemia. Ther Adv Endocrinol Metab 2020; 11:2042018820965068. [PMID: 33329885 PMCID: PMC7720331 DOI: 10.1177/2042018820965068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/11/2020] [Indexed: 01/10/2023] Open
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is a biochemical finding of low blood glucose levels due to the dysregulation of insulin secretion from pancreatic β-cells. Under normal physiological conditions, glucose metabolism is coupled to β-cell insulin secretion so that blood glucose levels are maintained within the physiological range of 3.5-5.5 mmol/L. However, in HH this coupling of glucose metabolism to insulin secretion is perturbed so that insulin secretion becomes unregulated. HH typically occurs in the neonatal, infancy and childhood periods and can be due to many different causes. Adults can also present with HH but the causes in adults tend to be different. Somatostatin (SST) is a peptide hormone that is released by the delta cells (δ-cells) in the pancreas. It binds to G protein-coupled SST receptors to regulate a variety of location-specific and selective functions such as hormone inhibition, neurotransmission and cell proliferation. SST plays a potent role in the regulation of both insulin and glucagon secretion in response to changes in glucose levels by negative feedback mechanism. The half-life of SST is only 1-3 min due to quick degradation by peptidases in plasma and tissues. Thus, a direct continuous intravenous or subcutaneous infusion is required to achieve the therapeutic effect. These limitations prompted the discovery of SST analogues such as octreotide and lanreotide, which have longer half-lives and therefore can be administered as injections. SST analogues are used to treat different forms of HH in children and adults and therapeutic effect is achieved by suppressing insulin secretion from pancreatic β-cells by complex mechanisms. These treatments are associated with several side effects, especially in the newborn period, with necrotizing enterocolitis being the most serious side effect and hence SS analogues should be used with extreme caution in this age group.
Collapse
Affiliation(s)
- Basma Haris
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| | - Saras Saraswathi
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| | - Khalid Hussain
- Professor of Paediatrics, Weill Cornell Medicine-Qatar, Division Chief – Endocrinology, Department of Paediatric Medicine, Division of Endocrinology, Sidra Medicine, OPC, C6-340 |PO Box 26999, Al Luqta Street, Education City North Campus, Doha, Qatar
| |
Collapse
|
6
|
Worth C, Yau D, Salomon Estebanez M, O'Shea E, Cosgrove K, Dunne M, Banerjee I. Complexities in the medical management of hypoglycaemia due to congenital hyperinsulinism. Clin Endocrinol (Oxf) 2020; 92:387-395. [PMID: 31917867 DOI: 10.1111/cen.14152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/12/2022]
Abstract
Congenital Hyperinsulinism (CHI) is a rare disease of hypoglycaemia but is the most common form of recurrent and severe hypoglycaemia causing brain injury and neurodisability in children. The management of CHI is complex due to the limited choice of medications, all with a limited therapeutic window, often lacking efficacy and associated with serious side effects. The therapeutic strategy in CHI is to recognize and treat hypoglycaemia promptly, thereby optimizing long-term neurological outcomes; this should be achieved through individualized treatment plans that deliver glycaemic stability while minimizing side effects. Further, such a strategy should consider the likelihood of reduction in disease severity over time, with dose adjustments and medication withdrawal as indicated to optimize both safety and tolerability. The option for pancreatic surgery should also be considered in specific circumstances as appropriate for the patient's best long-term interests.
Collapse
Affiliation(s)
- Christopher Worth
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Daphne Yau
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
- Department of Pediatrics, Division of Endocrinology, Jim Pattison Children's Hospital, Saskatoon, SK, Canada
| | - Maria Salomon Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Elaine O'Shea
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Karen Cosgrove
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mark Dunne
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, Arnoux JB, Larsen AR, Sanyoura M, Greeley SAW, Calzada-León R, Harman B, Houghton JAL, Nishimura-Meguro E, Laver TW, Ellard S, Del Gaudio D, Christesen HT, Bellanné-Chantelot C, Flanagan SE. Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat 2020; 41:884-905. [PMID: 32027066 PMCID: PMC7187370 DOI: 10.1002/humu.23995] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023]
Abstract
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Cécile Saint-Martin
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Amy E Knight Johnson
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | | | - Pamela Bowman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Annette Rønholt Larsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Raúl Calzada-León
- Pediatric Endocrinology, Endocrine Service, National Institute for Pediatrics, Mexico City, Mexico
| | - Bradley Harman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Elisa Nishimura-Meguro
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Daniela Del Gaudio
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center, Odense University Hospital, Odense, Denmark
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
8
|
Increased proliferation and altered cell cycle regulation in pancreatic stem cells derived from patients with congenital hyperinsulinism. PLoS One 2019; 14:e0222350. [PMID: 31525223 PMCID: PMC6746350 DOI: 10.1371/journal.pone.0222350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is characterised by inappropriate insulin secretion causing profound hypoglycaemia and brain damage if inadequately controlled. Pancreatic tissue isolated from patients with diffuse CHI shows abnormal proliferation rates, the mechanisms of which are not fully resolved. Understanding cell proliferation in CHI may lead to new therapeutic options, alongside opportunities to manipulate β-cell mass in patients with diabetes. We aimed to generate cell-lines from CHI pancreatic tissue to provide in vitro model systems for research. Three pancreatic mesenchymal stem cell-lines (CHIpMSC1-3) were derived from patients with CHI disease variants: focal, atypical and diffuse. All CHIpMSC lines demonstrated increased proliferation compared with control adult-derived pMSCs. Cell cycle alterations including increased CDK1 levels and decreased p27Kip1 nuclear localisation were observed in CHIpMSCs when compared to control pMSCs. In conclusion, CHIpMSCs are a useful in vitro model to further understand the cell cycle alterations leading to increased islet cell proliferation in CHI.
Collapse
|
9
|
Apperley L, Giri D, Houghton JAL, Flanagan SE, Didi M, Senniappan S. A rare case of congenital hyperinsulinism (CHI) due to dual genetic aetiology involving HNF4A and ABCC8. J Pediatr Endocrinol Metab 2019; 32:301-304. [PMID: 30730840 DOI: 10.1515/jpem-2018-0389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/30/2018] [Indexed: 12/19/2022]
Abstract
Background Congenital hyperinsulinism (CHI) occurs due to an unregulated insulin secretion from the pancreatic β-cells resulting in hypoglycaemia. Causative mutations in multiple genes have been reported. Phenotypic variability exists both within and between different genetic subgroups. Case presentation A male infant born at 35+6 weeks' gestation with a birth weight of 4.3 kg [+3.6 standard deviation score (SDS)] had recurrent hypoglycaemic episodes from birth. Biochemical investigations confirmed a diagnosis of CHI. Diazoxide was started and the dose was progressively increased to maintain euglycaemia. His father was slim and had been diagnosed with type 2 diabetes in his 30s. Sequence analysis identified a heterozygous hepatocyte nuclear factor 4 alpha (HNF4A) mutation (p.Arg245Pro, c.734G>C) and compound heterozygous ABCC8 mutations (p.Gly92Ser, c.274G>A and p.Ala1185Val, c.3554C>T) in the patient. The p.Ala1185Val ABCC8 mutation was inherited from his unaffected mother and the p.Arg245Pro HNF4A and p.Gly92Ser ABCC8 mutations from his father. All three mutations were predicted to be pathogenic. Identification of the HNF4A mutation in the father established a diagnosis of maturity-onset diabetes of the young (MODY), which enabled medication change resulting in improved glycaemic control. Conclusions We report a rare patient with CHI due to dual genetic aetiology. Although he is currently responsive to the maximum dose of diazoxide, the long-term prognosis remains unclear.
Collapse
Affiliation(s)
- Louise Apperley
- Department of Paediatric Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Dinesh Giri
- Department of Paediatric Endocrinology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Jayne A L Houghton
- Department of Molecular Genetics, The Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Mohammed Didi
- Department of Paediatric Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
10
|
Banerjee I, Salomon‐Estebanez M, Shah P, Nicholson J, Cosgrove KE, Dunne MJ. Therapies and outcomes of congenital hyperinsulinism-induced hypoglycaemia. Diabet Med 2019; 36:9-21. [PMID: 30246418 PMCID: PMC6585719 DOI: 10.1111/dme.13823] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2018] [Indexed: 12/01/2022]
Abstract
Congenital hyperinsulinism is a rare disease, but is the most frequent cause of persistent and severe hypoglycaemia in early childhood. Hypoglycaemia caused by excessive and dysregulated insulin secretion (hyperinsulinism) from disordered pancreatic β cells can often lead to irreversible brain damage with lifelong neurodisability. Although congenital hyperinsulinism has a genetic cause in a significant proportion (40%) of children, often being the result of mutations in the genes encoding the KATP channel (ABCC8 and KCNJ11), not all children have severe and persistent forms of the disease. In approximately half of those without a genetic mutation, hyperinsulinism may resolve, although timescales are unpredictable. From a histopathology perspective, congenital hyperinsulinism is broadly grouped into diffuse and focal forms, with surgical lesionectomy being the preferred choice of treatment in the latter. In contrast, in diffuse congenital hyperinsulinism, medical treatment is the best option if conservative management is safe and effective. In such cases, children receiving treatment with drugs, such as diazoxide and octreotide, should be monitored for side effects and for signs of reduction in disease severity. If hypoglycaemia is not safely managed by medical therapy, subtotal pancreatectomy may be required; however, persistent hypoglycaemia may continue after surgery and diabetes is an inevitable consequence in later life. It is important to recognize the negative cognitive impact of early-life hypoglycaemia which affects half of all children with congenital hyperinsulinism. Treatment options should be individualized to the child/young person with congenital hyperinsulinism, with full discussion regarding efficacy, side effects, outcomes and later life impact.
Collapse
Affiliation(s)
- I. Banerjee
- Department of Paediatric EndocrinologyRoyal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - M. Salomon‐Estebanez
- Department of Paediatric EndocrinologyRoyal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - P. Shah
- Endocrinology DepartmentGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | - J. Nicholson
- Paediatric Psychosocial DepartmentRoyal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
| | - K. E. Cosgrove
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - M. J. Dunne
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Congenital hyperinsulinism is the most common cause of persistent hypoglycemia in infants and children. Early and appropriate recognition and treatment of hypoglycemia is vital to minimize neurocognitive impairment. RECENT FINDINGS There are at least 11 known monogenic forms of hyperinsulinism and several associated syndromes. Molecular diagnosis allows for prediction of the effectiveness of diazoxide and the likelihood of focal hyperinsulinism. Inactivating mutations in the genes encoding the ATP-sensitive potassium channel (KATP hyperinsulinism) account for 60% of all identifiable mutations, including 85% of diazoxide-unresponsive cases. Syndromes or disorders associated with hyperinsulinism include Beckwith-Wiedemann syndrome, Kabuki syndrome, Turner syndrome, and congenital disorders of glycosylation. Although focal hyperinsulinism can be cured by resection of the lesion, therapeutic options for nonfocal hyperinsulinism remain limited and include diazoxide, octreotide, long-acting somatostatin analogs, and near-total pancreatectomy. Although sirolimus has been reported to improve glycemic control in infants with diazoxide-unresponsive hyperinsulinism, the extent of improvement has been limited, and significant adverse events have been reported. SUMMARY Identification of the cause of congenital hyperinsulinism helps guide management decisions. Use of therapies with limited benefit and significant potential risks should be avoided.
Collapse
|
12
|
Li N, Yang Z, Li Q, Yu Z, Chen X, Li JC, Li B, Ning SL, Cui M, Sun JP, Yu X. Ablation of somatostatin cells leads to impaired pancreatic islet function and neonatal death in rodents. Cell Death Dis 2018; 9:682. [PMID: 29880854 PMCID: PMC5992210 DOI: 10.1038/s41419-018-0741-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
Abstract
The somatostatin (SST)-secreting cells were mainly distributed in the pancreatic islets, brain, stomach and intestine in mammals and have many physiological functions. In particular, the SST-secreting δ cell is the third most common cell type in the islets of Langerhans. Recent studies have suggested that dysregulation of paracrine interaction between the pancreatic δ cells and β cells results in impaired glucose homeostasis and contributes to diabetes development. However, direct evidence of the functional importance of SST cells in glucose homeostasis control is still lacking. In the present study, we specifically ablated SST-secreting cells by crossing Sst-cre transgenic mice with R26 DTA mice (Sst Cre R26 DTA ). The Sst Cre R26 DTA mice exhibited neonatal death. The life spans of these mice with severe hypoglycemia were extended by glucose supplementation. Moreover, we observed that SST cells deficiency led to increased insulin content and excessive insulin release, which might contribute to the observed hypoglycemia. Unexpectedly, although SST is critical for the regulation of insulin content, factors other than SST that are produced by pancreatic δ cells via their endogenous corticotropin-releasing hormone receptor 2 (CRHR2) activity play the main roles in maintaining normal insulin release, as well as neonatal glucose homeostasis in the resting state. Taken together, our results identified that the SST cells in neonatal mouse played critical role in control of insulin release and normal islet function. Moreover, we provided direct in vivo evidence of the functional importance of the SST cells, which are essential for neonatal survival and the maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Zhao Yang
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Qing Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Zhen Yu
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Xu Chen
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Jia-Cheng Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Bo Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Shang-Lei Ning
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Min Cui
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Jin-Peng Sun
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China.,School of Medicine, Duke University, Durham, North Carolina, 27705, USA
| | - Xiao Yu
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China.
| |
Collapse
|
13
|
Craigie RJ, Salomon-Estebanez M, Yau D, Han B, Mal W, Newbould M, Cheesman E, Bitetti S, Mohamed Z, Sajjan R, Padidela R, Skae M, Flanagan S, Ellard S, Cosgrove KE, Banerjee I, Dunne MJ. Clinical Diversity in Focal Congenital Hyperinsulinism in Infancy Correlates With Histological Heterogeneity of Islet Cell Lesions. Front Endocrinol (Lausanne) 2018; 9:619. [PMID: 30386300 PMCID: PMC6199412 DOI: 10.3389/fendo.2018.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
Background: Congenital Hyperinsulinism (CHI) is an important cause of severe and persistent hypoglycaemia in infancy and childhood. The focal form (CHI-F) of CHI can be potentially cured by pancreatic lesionectomy. While diagnostic characteristics of CHI-F pancreatic histopathology are well-recognized, correlation with clinical phenotype has not been established. Aims: We aimed to correlate the diversity in clinical profiles of patients with islet cell organization in CHI-F pancreatic tissue. Methods: Clinical datasets were obtained from 25 patients with CHI-F due to ABCC8/KCNJ11 mutations. 18F-DOPA PET-CT was used to localize focal lesions prior to surgery. Immunohistochemistry was used to support protein expression studies. Results: In 28% (n = 7) of patient tissues focal lesions were amorphous and projected into adjoining normal pancreatic tissue without clear delineation from normal tissue. In these cases, severe hypoglycaemia was detected within, on average, 2.8 ± 0.8 (range 1-7) days following birth. By contrast, in 72% (n = 18) of tissues focal lesions were encapsulated within a defined matrix capsule. In this group, the onset of severe hypoglycaemia was generally delayed; on average 46.6 ± 14.3 (range 1-180) days following birth. For patients with encapsulated lesions and later-onset hypoglycaemia, we found that surgical procedures were curative and less complex. Conclusion: CHI-F is associated with heterogeneity in the organization of focal lesions, which correlates well with clinical presentation and surgical outcomes.
Collapse
Affiliation(s)
- Ross J. Craigie
- Paediatric Surgery, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Maria Salomon-Estebanez
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Daphne Yau
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Bing Han
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Walaa Mal
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Melanie Newbould
- Paediatric Histopathology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Edmund Cheesman
- Paediatric Histopathology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Stefania Bitetti
- Paediatric Histopathology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Zainab Mohamed
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Rakesh Sajjan
- Nuclear Medicine, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Raja Padidela
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Mars Skae
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Sarah Flanagan
- Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Sian Ellard
- Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Karen E. Cosgrove
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Indraneel Banerjee
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Mark J. Dunne
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Mark J. Dunne
| |
Collapse
|