1
|
Yan CY, Ma YR, Sun F, Zhang RJ, Fang Y, Zhang QY, Wu FY, Zhao SX, Song HD. Candidate gene associations reveal sex-specific Graves' disease risk alleles among Chinese Han populations. Mol Genet Genomic Med 2020; 8:e1249. [PMID: 32342657 PMCID: PMC7336758 DOI: 10.1002/mgg3.1249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND With several susceptibility single nucleotide polymorphisms identified by case-control association studies, Graves' disease is one of the most common forms of autoimmune thyroid disease. In this study, we aimed to determine whether any observed differences in genetic associations are influenced by sex in Chinese Han populations. METHODS A total of 8,835 patients with Graves' disease and 9,936 sex-matched healthy controls were enrolled in the study. Confirmed by a two-staged association analysis, sex-specific analyses among 20 Graves' disease susceptibility loci were conducted. RESULTS A significant sex-gene interaction was detected primarily at rs5912838 on Xq21.1 between the GPR174 and ITM2A genes, whereby male Graves' disease patients possessed a significantly higher frequency of risk alleles than their female counterparts. Interestingly, compared to women, male patients with Graves' disease had a higher cumulative genetic risk and higher persistent thyroid stimulating hormone receptor antibody-positive rate after receiving antithyroid drug therapy for at least 1 year. CONCLUSION The findings of this study suggest the existence of one potential sex-specific Graves' disease variant on Xq21.1. This could increase our understanding of the pivotal mechanism behind Graves' disease and ultimately aid in identifying possible therapeutic targets.
Collapse
Affiliation(s)
- Chen-Yan Yan
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ru Ma
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Jia Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Fang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian-Yue Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Yao Wu
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Xia Zhao
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huai-Dong Song
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Muller I, Barrett-Lee PJ. The antigenic link between thyroid autoimmunity and breast cancer. Semin Cancer Biol 2019; 64:122-134. [PMID: 31128301 DOI: 10.1016/j.semcancer.2019.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The association between breast cancer and benign thyroid disorders, in particular thyroid autoimmunity, has been debated for decades. Autoantibodies to thyroid peroxidase, the hallmark of thyroid autoimmunity, have a higher prevalence among patients with breast cancer compared with the general population. Furthermore a correlation between their positivity and a better prognosis of breast cancer was found in several independent small-scale studies, even if such observation was not confirmed in a subsequent retrospective study conducted on the largest patient cohort to date. The thyroid and mammary glands present several biological similarities, therefore the hypothesis of an immune response to shared thyroid/breast antigens could in part explain the association between thyroid autoimmunity and breast cancer. The sodium iodide symporter is expressed in both glands, however it seems unlikely to be the key common antigen, considering that autoantibodies targeting it are rare. Instead thyroid peroxidase, one of the major thyroid autoantigens, is also expressed in breast tissue and therefore represents the main antigenic link between thyroid autoimmunity and breast cancer. Furthermore lactoperoxidase, an enzyme of the same family that shares structural similarities with thyroid peroxidase, is expressed in neoplastic breast cells and is responsible for the cross-reactivity with some autoantibodies to thyroid peroxidase. Novel strategies for the diagnosis and treatment of breast cancer might take advantage of the antigenic link between thyroid and breast tissues.
Collapse
Affiliation(s)
- Ilaria Muller
- Thyroid Research Group, Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | |
Collapse
|