1
|
Thompson MD, Percy ME, Cole DEC, Bichet DG, Hauser AS, Gorvin CM. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit Rev Clin Lab Sci 2024; 61:317-346. [PMID: 38497103 DOI: 10.1080/10408363.2023.2286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Maire E Percy
- Departments of Physiology and Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel G Bichet
- Department of Physiology and Medicine, Hôpital du Sacré-Coeur, Université de Montréal, QC, Canada
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Ghaddhab C, Capper CP, Larrivée-Vanier S, Fayad W, Olivier P, Van Vliet G, Auchus RJ, Deladoëy J. Severe Aldosterone Synthase Deficiency in a 9-Day-Old Lebanese Boy: The Importance of Functional Studies to Establish Pathogenicity of Seemingly Benign Variants in CYP11B2. Horm Res Paediatr 2024; 98:96-102. [PMID: 38316111 DOI: 10.1159/000536437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Aldosterone synthase deficiency is a rare autosomal recessive disease characterized by vomiting, dehydration, salt wasting, life-threatening hyperkalemia in infancy, followed by failure to thrive. It results from pathogenic variants in CYP11B2. CASE PRESENTATION A boy, born in Montreal to Lebanese parents who are first cousins, was referred at 9 days of life for severe dehydration. A diagnosis of primary adrenal insufficiency was made, and treatment was started with fludrocortisone and hydrocortisone. Exome sequencing revealed a homozygous variant p.(Asn201Asp)(N201D) in CYP11B2. In silico, this variant was considered benign, but in vitro functional expression studies established it caused the severe aldosterone deficiency. It ended the diagnostic odyssey and allowed to safely stop hydrocortisone replacement. CONCLUSION If a gene variant co-segregates with a phenotype, in vitro functional studies are required even if in silico studies are negative.
Collapse
Affiliation(s)
- Chiraz Ghaddhab
- Endocrinology Service and Research Center, Centre Hospitalier Universitaire Ste-Justine and Department of Pediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Cameron P Capper
- Department of Pediatrics, Balamand University/St-Georges Hospital, Beyrouth, Lebanon
| | - Stéphanie Larrivée-Vanier
- Endocrinology Service and Research Center, Centre Hospitalier Universitaire Ste-Justine and Department of Pediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Wissam Fayad
- Department of Pediatrics, Balamand University/St-Georges Hospital, Beyrouth, Lebanon
| | - Patricia Olivier
- Endocrinology Service and Research Center, Centre Hospitalier Universitaire Ste-Justine and Department of Pediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Guy Van Vliet
- Endocrinology Service and Research Center, Centre Hospitalier Universitaire Ste-Justine and Department of Pediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Johnny Deladoëy
- Endocrinology Service and Research Center, Centre Hospitalier Universitaire Ste-Justine and Department of Pediatrics, Université de Montréal, Montreal, Québec, Canada
- Department of Pediatrics, University of Southern Switzerland, Lugano, Switzerland
| |
Collapse
|
3
|
Larrivée-Vanier S, Jean-Louis M, Magne F, Bui H, Rouleau GA, Spiegelman D, Samuels ME, Kibar Z, Van Vliet G, Deladoëy J. Whole-Exome Sequencing in Congenital Hypothyroidism Due to Thyroid Dysgenesis. Thyroid 2022; 32:486-495. [PMID: 35272499 PMCID: PMC9145262 DOI: 10.1089/thy.2021.0597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Context: Congenital hypothyroidism due to thyroid dysgenesis (CHTD) is a predominantly sporadic and nonsyndromic (NS) condition of unknown etiology. NS-CHTD shows a 40-fold increase in relative risk among first-degree relatives (1 in 100 compared with a birth prevalence of 1 in 4000 in the general population), but a discordance rate between monozygotic (MZ) twins of 92%. This suggests a two-hit mechanism, combining a genetic predisposition (incomplete penetrance of inherited variants) with postzygotic events (accounting for MZ twin discordance). Objective: To evaluate whether whole-exome sequencing (WES) allows to identify new predisposing genes in NS-CHTD. Methods: We performed a case-control study by comparing the whole exome of 36 nonconsanguineous cases of NS-CHTD (33 with lingual thyroid ectopy and 3 with athyreosis, based on technetium pertechnetate scintigraphy at diagnosis) with that of 301 unaffected controls to assess for enrichment in rare protein-altering variants. We performed an unbiased approach using a gene-based burden with a false discovery rate correction. Moreover, we identified all rare pathogenic and likely pathogenic variants, based on in silico prediction tools, in 27 genes previously associated with congenital hypothyroidism (CH) (thyroid dysgenesis [TD] and dyshormonogenesis). Results: After correction for multiple testing, no enrichment in rare protein-altering variants was observed in NS-CHTD. Pathogenic or likely pathogenic variants (21 variants in 12 CH genes) were identified in 42% of cases. Eight percent of cases had variants in more than one gene (oligogenic group); these were not more severely affected than monogenic cases. Moreover, cases with protein-altering variants in dyshormonogenesis-related genes were not more severely affected than those without. Conclusions: No new predisposing genes were identified following an unbiased analysis of WES data in a well-characterized NS-CHTD cohort. Nonetheless, the discovery rate of rare pathogenic or likely pathogenic variants was 42%. Eight percent of the cases harbored multiple variants in genes associated with TD or dyshormonogenesis, but these variants did not explain the variability of hypothyroidism observed in dysgenesis. WES did not identify a genetic cause in NS-CHTD cases, confirming the complex etiology of this disease. Additional studies in larger cohorts and/or novel discovery approaches are required.
Collapse
Affiliation(s)
- Stéphanie Larrivée-Vanier
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Canada
| | - Martineau Jean-Louis
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Canada
| | - Fabien Magne
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Canada
| | - Helen Bui
- Department of Endocrinology, McGill University Health Center, Montréal, Canada
| | - Guy A. Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Mark E. Samuels
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| | - Zoha Kibar
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Guy Van Vliet
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - Johnny Deladoëy
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Canada
- Pediatric Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- Address correspondence to: Johnny Deladoëy, MD, PhD, Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Campus Est, Lugano 6900, Switzerland
| |
Collapse
|
4
|
Da DZ, Wang Y, Wang M, Long Z, Wang Q, Liu J. Congenital Hypothyroidism Patients With Thyroid Hormone Receptor Variants Are Not Rare: A Systematic Review. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2021; 58:469580211067943. [PMID: 34919466 PMCID: PMC8721697 DOI: 10.1177/00469580211067943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Primary congenital hypothyroidism (CH) is a common endocrine and metabolic disease. Various genetic factors, including the thyroid hormone receptor (TSHR), play an important role in CH. Aim To explore the occurrence of pathogenic TSHR variants in CH. Methods We searched published articles in PubMed, Web of Science, and Cochrane Library databases, from the establishment of the database to September 26, 2021. Studies with sequencing partial or full exons of TSHR in CH patients were included. Gene polymorphism was excluded. Results A total of 66 articles (44 case-control studies and 22 case reports) were selected from the database. Though case-control studies, we found the incidence of pathogenic TSHR variants were not rare (range from 0% to 30.6%) and varied greatly in different countries and race. The pathogenic genotypes varied in different regions. All the variants were “loss-of-function” mutations, in which the p.(Arg450His) variant was the most common variant. In addition, we analyzed the case reports and found that CH patients with a family genetic background expressed homozygous genotypes. Homozygotes had more obvious symptoms of hypothyroidism and higher risk of comorbidities than heterozygotes. Conclusion Pathogenic TSHR variants are not uncommon cause of the CH, especially in the Arabs. The role of TSHR gene detection in the treatment of children with CH needs to be further studied.
Collapse
Affiliation(s)
- Dong-Zhu Da
- Department of Breast-Thyroid-Vascular Surgery, Shanghai General Hospital, Shanghai, China.,Department of Breast and Thyroid Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Ye Wang
- Department of Breast-Thyroid-Vascular Surgery, Shanghai General Hospital, Shanghai, China
| | - Min Wang
- Department of Breast-Thyroid-Vascular Surgery, Shanghai General Hospital, Shanghai, China
| | - Zhi Long
- Department of Pediatrics, Shanghai General Hospital, Shanghai, China
| | - Qian Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai, China
| | - Jun Liu
- Department of Breast-Thyroid-Vascular Surgery, Shanghai General Hospital, Shanghai, China
| |
Collapse
|