1
|
Kraynak M, Flowers MT, Shapiro RA, Kapoor A, Levine JE, Abbott DH. Extraovarian gonadotropin negative feedback revealed by aromatase inhibition in female marmoset monkeys. Am J Physiol Endocrinol Metab 2017; 313:E507-E514. [PMID: 28679622 PMCID: PMC5792143 DOI: 10.1152/ajpendo.00058.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/09/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022]
Abstract
Whereas the ovary produces the majority of estradiol (E2) in mature female primates, extraovarian sources contribute to E2 synthesis and action, including the brain E2-regulating hypothalamic gonadotropin-releasing hormone. In ovary-intact female rodent models, aromatase inhibition (AI) induces a polycystic ovary syndrome-like hypergonadotropic hyperandrogenism due to absent E2-mediated negative feedback. To examine the role of extraovarian E2 on nonhuman primate gonadotropin regulation, the present study uses letrozole to elicit AI in adult female marmoset monkeys. Sixteen female marmosets (Callithrix jacchus; >2 yr) were randomly assigned to ovary-intact or ovariectomy (OVX) conditions and subsequently placed on a daily oral regimen of either ~200 µl vehicle alone (ovary-intact Control, n = 3; OVX, n = 3) or 1 mg ⋅ kg-1 ⋅ day-1 letrozole in vehicle (ovary-intact AI, n = 4; OVX + AI, n = 6). Blood samples were collected every 10 days, and plasma chorionic gonadotropin (CG) and steroid hormone levels were determined by validated radioimmunoassay and liquid chromatography/tandem mass spectrometry, respectively. Ovary-intact, AI-treated and OVX females exhibited elevated CG (P < 0.01, P = 0.004, respectively) compared with controls, and after 30 days, OVX + AI females exhibited a suprahypergonadotropic phenotype (P = 0.004) compared with ovary-intact + AI and OVX females. Androstenedione (P = 0.03) and testosterone (P = 0.05) were also elevated in ovary-intact, AI-treated females above all other groups. The current study thus confirms in a nonhuman primate that E2 depletion and diminished negative feedback in ovary-intact females engage hypergonadotropic hyperandrogenism. Additionally, we demonstrate that extraovarian estrogens, possibly neuroestrogens, contribute to female negative feedback regulation of gonadotropin release.
Collapse
Affiliation(s)
- Marissa Kraynak
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin;
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew T Flowers
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Robert A Shapiro
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Amita Kapoor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin; and
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - David H Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
2
|
He Y, Fang J, Xue L, Wu J, Dawar FU, Mei J. Potential contributions of heat shock proteins and related genes in sexual differentiation in yellow catfish (Pelteobagrus fulvidraco). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:465-475. [PMID: 28243861 DOI: 10.1007/s10695-016-0303-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Sex determination and differentiation in ectotherms are very complicated affairs and usually affected by both genetic and environmental factors. Because of their temperature-sensitive expression, heat shock proteins (HSPs) are good candidates for temperature-dependent sex determination (TSD). Similar to most thermosensitive fish species, the male to female ratio increases with temperature in yellow catfish (Pelteobagrus fulvidraco). Yellow catfish is also a type of sexual size dimorphic fish, and the male individuals grow much faster than females of the same age. Therefore, research of sex differentiation in yellow catfish is important in aquiculture. In this attempt, a total of seven HSPs and related genes were identified from transcriptomes of yellow catfish by 454 pyrosequencing and Solexa sequencing that we did previously, including five genes with complete open reading frame (ORF). Phylogenetically, all these genes were compared with their counterparts from other vertebrates. All these genes were sex-biased expressed in gonads. Hspa5, Hip, and Cdc37 were expressed more highly in ovary than in testis, whereas Hsp90α, Hspb2, Hspb8, and Hspbp1 were expressed more highly in testis than in ovary. Additionally, the expression of these genes was assessed after 17α-methyltestosterone (MT) and 17α-ethinylestradiol (EE2) treatment, respectively. Our result showed that working as co-chaperones, these HSPs and related genes may regulate sex steroid receptor activities to influence gonad development in yellow catfish. Our work would help in the understanding of the mechanism of sexual differentiation in teleosts.
Collapse
Affiliation(s)
- Yan He
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jie Fang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyao Xue
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Farman Ullah Dawar
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Grasa MDM, Gulfo J, Camps N, Alcalá R, Monserrat L, Moreno-Navarrete JM, Ortega FJ, Esteve M, Remesar X, Fernández-López JA, Fernández-Real JM, Alemany M. Modulation of SHBG binding to testosterone and estradiol by sex and morbid obesity. Eur J Endocrinol 2017; 176:393-404. [PMID: 28077498 DOI: 10.1530/eje-16-0834] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Sex hormone-binding globulin (SHBG) binds and transports testosterone and estradiol in plasma. The possibility that SHBG is a mixture of transporting proteins has been postulated. We analyzed in parallel the effects of obesity status on the levels and binding capacity of circulating SHBG and their relationship with testosterone and estradiol. DESIGN Anthropometric measures and plasma were obtained from apparently healthy young (i.e. 35 ± 7 years) premenopausal women (n = 32) and men (n = 30), with normal weight and obesity (BMI >30 kg/m2). METHODS SHBG protein (Western blot), as well as the plasma levels of testosterone, estradiol, cortisol and insulin (ELISA) were measured. Specific binding of estradiol and testosterone to plasma SHBG was analyzed using tritium-labeled hormones. RESULTS Significant differences in SHBG were observed within the obesity status and gender, with discordant patterns of change in testosterone and estradiol. In men, testosterone occupied most of the binding sites. Estrogen binding was much lower in all subjects. Lower SHBG of morbidly obese (BMI >40 kg/m2) subjects affected testosterone but not estradiol. The ratio of binding sites to SHBG protein levels was constant for testosterone, but not for estradiol. The influence of gender was maximal in morbid obesity, with men showing the highest binding/SHBG ratios. CONCLUSIONS The results reported here are compatible with SHBG being a mixture of at least two functionally different hormone-binding globulins, being affected by obesity and gender and showing different structure, affinities for testosterone and estradiol and also different immunoreactivity.
Collapse
Affiliation(s)
- María Del Mar Grasa
- Department of Biochemistry and Molecular Biomedicine; Faculty of BiologyUniversity of Barcelona, Barcelona, Spain
- Institute of BiomedicineUniversity of Barcelona, Barcelona, Spain
- CIBER Obesity and NutritionBarcelona/Girona, Spain
| | - José Gulfo
- Department of Biochemistry and Molecular Biomedicine; Faculty of BiologyUniversity of Barcelona, Barcelona, Spain
| | - Núria Camps
- Department of Biochemistry and Molecular Biomedicine; Faculty of BiologyUniversity of Barcelona, Barcelona, Spain
| | - Rosa Alcalá
- Department of Biochemistry and Molecular Biomedicine; Faculty of BiologyUniversity of Barcelona, Barcelona, Spain
| | - Laura Monserrat
- Department of Biochemistry and Molecular Biomedicine; Faculty of BiologyUniversity of Barcelona, Barcelona, Spain
| | - José María Moreno-Navarrete
- University Hospital 'Dr. Josep Trueta'Girona, Spain
- Girona Institute of Biomedical Researchand Hospital of Girona 'Dr. Josep Trueta', Spain
- CIBER Obesity and NutritionBarcelona/Girona, Spain
| | - Francisco José Ortega
- University Hospital 'Dr. Josep Trueta'Girona, Spain
- Girona Institute of Biomedical Researchand Hospital of Girona 'Dr. Josep Trueta', Spain
- CIBER Obesity and NutritionBarcelona/Girona, Spain
| | - Montserrat Esteve
- Department of Biochemistry and Molecular Biomedicine; Faculty of BiologyUniversity of Barcelona, Barcelona, Spain
- Institute of BiomedicineUniversity of Barcelona, Barcelona, Spain
- CIBER Obesity and NutritionBarcelona/Girona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine; Faculty of BiologyUniversity of Barcelona, Barcelona, Spain
- Institute of BiomedicineUniversity of Barcelona, Barcelona, Spain
- CIBER Obesity and NutritionBarcelona/Girona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine; Faculty of BiologyUniversity of Barcelona, Barcelona, Spain
- Institute of BiomedicineUniversity of Barcelona, Barcelona, Spain
- CIBER Obesity and NutritionBarcelona/Girona, Spain
| | - José Manuel Fernández-Real
- University Hospital 'Dr. Josep Trueta'Girona, Spain
- Girona Institute of Biomedical Researchand Hospital of Girona 'Dr. Josep Trueta', Spain
- CIBER Obesity and NutritionBarcelona/Girona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine; Faculty of BiologyUniversity of Barcelona, Barcelona, Spain
- Institute of BiomedicineUniversity of Barcelona, Barcelona, Spain
- CIBER Obesity and NutritionBarcelona/Girona, Spain
| |
Collapse
|
4
|
McCoy KA, Roark AM, Boggs ASP, Bowden JA, Cruze L, Edwards TM, Hamlin HJ, Cantu TM, McCoy JA, McNabb NA, Wenzel AG, Williams CE, Kohno S. Integrative and comparative reproductive biology: From alligators to xenobiotics. Gen Comp Endocrinol 2016; 238:23-31. [PMID: 27013381 PMCID: PMC5497304 DOI: 10.1016/j.ygcen.2016.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 12/24/2022]
Abstract
Dr. Louis J. Guillette Jr. thought of himself as a reproductive biologist. However, his interest in reproductive biology transcended organ systems, life history stages, species, and environmental contexts. His integrative and collaborative nature led to diverse and fascinating research projects conducted all over the world. He doesn't leave us with a single legacy. Instead, he entrusts us with several. The purpose of this review is to highlight those legacies, in both breadth and diversity, and to illustrate Dr. Guillette's grand contributions to the field of reproductive biology. He has challenged the field to reconsider how we think about our data, championed development of novel and innovative techniques to measure endocrine function, helped define the field of endocrine disruption, and lead projects to characterize new endocrine disrupting chemicals. He significantly influenced our understanding of evolution, and took bold and important steps to translate all that he has learned into advances in human reproductive health. We hope that after reading this manuscript our audience will appreciate and continue Dr. Guillette's practice of open-minded and passionate collaboration to understand the basic mechanisms driving reproductive physiology and to ultimately apply those findings to protect and improve wildlife and human health.
Collapse
Affiliation(s)
- Krista A McCoy
- Department of Biology, East Carolina University, Greenville, NC 278585, USA
| | - Alison M Roark
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Ashley S P Boggs
- Environmental Chemical Sciences, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC 29412, USA
| | - John A Bowden
- Environmental Chemical Sciences, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC 29412, USA
| | - Lori Cruze
- Department of Biology, Wofford College, Spartanburg, SC 29303, USA
| | - Thea M Edwards
- Department of Biology, University of the South, Sewanee, TN 37383, USA
| | - Heather J Hamlin
- School of Marine Sciences, Aquaculture Research Institute, University of Maine, Orono, ME 04469, USA
| | - Theresa M Cantu
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Jessica A McCoy
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Nicole A McNabb
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA; Graduate Program in Marine Biology, University of Charleston at College of Charleston, Charleston, SC 29412, USA
| | - Abby G Wenzel
- Environmental Chemical Sciences, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC 29412, USA; Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Cameron E Williams
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA; Graduate Program in Marine Biology, University of Charleston at College of Charleston, Charleston, SC 29412, USA
| | - Satomi Kohno
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA.
| |
Collapse
|
5
|
Chen Y, Wang S, Liu T, Wu Y, Li JL, Li M. WAP four-disulfide core domain protein 2 gene(WFDC2) is a target of estrogen in ovarian cancer cells. J Ovarian Res 2016; 9:10. [PMID: 26928556 PMCID: PMC4770698 DOI: 10.1186/s13048-015-0210-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND WAP four-disulfide core domain protein 2 (WFDC2) shows a tumor-restricted upregulated pattern of expression in ovarian cancer. METHODS We investigated the role of estradiol (E2) on cell growth in estrogen-sensitive or estrogen-insensitive ovarian cancer cell lines. Real-time (RT)-PCR and western blotting were used to examine the expression of WFDC2 at RNA and protein levels. Growth traits of cells transfected with WFDC2-shRNA or blank control were assessed using MMT arrays. Cell apoptosis was analyzed using annexin V-FITC/PI and flow cytometry. Estrogen receptor expression was evaluated using RT-PCR and flow cytometry. Apoptosis-related proteins induced by E2 directly and indirectly were determined using an antibody array comparing cells transfected with WFDC2- shRNA or a blank control. RESULTS High-dose (625 ng/ml) E2 increased the expression of WFDC2 in HO8910 cells at both the mRNA and protein levels. However, E2 had no effect on WFDC2 expression in estrogen-insensitive SKOV3 cells. Of interest, knockdown of WFDC2 enabled a considerable estrogen response in SKOV3 cells in terms of proliferation, similar to estrogen-responsive HO8910 cells. This transformation of SKOV3 cells into an estrogen-responsive phenotype was accompanied by upregulation of estrogen receptor beta (ERß) and an effect on cell apoptosis under E2 treatment by regulating genes related to cell proliferation and apoptosis. CONCLUSIONS We postulate that increased WFDC2 expression plays an important role in altering the estrogen pathway in ovarian cancer, and the identification of WFDC2 as a new player in endocrine-related cancer encourages further studies on the significance of this gene in cancer development and therapy.
Collapse
Affiliation(s)
- Yao Chen
- School of Biotechnology, Southern Medical University, 1023 Shatainan Road, Guangzhou, 510515, China.
| | - Suihai Wang
- School of Biotechnology, Southern Medical University, 1023 Shatainan Road, Guangzhou, 510515, China.
| | - Tiancai Liu
- School of Biotechnology, Southern Medical University, 1023 Shatainan Road, Guangzhou, 510515, China.
| | - Yingsong Wu
- School of Biotechnology, Southern Medical University, 1023 Shatainan Road, Guangzhou, 510515, China.
| | - Ji-Liang Li
- School of Biotechnology, Southern Medical University, 1023 Shatainan Road, Guangzhou, 510515, China. .,Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Ming Li
- School of Biotechnology, Southern Medical University, 1023 Shatainan Road, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Kruer TL, Cummins TD, Powell DW, Wittliff JL. Characterization of estrogen response element binding proteins as biomarkers of breast cancer behavior. Clin Biochem 2013; 46:1739-46. [PMID: 23868020 DOI: 10.1016/j.clinbiochem.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND While investigating estrogen response element (ERE) binding properties of human estrogen receptor-α (hERα) in breast cancer cytosols, other ERE-binding proteins (ERE-BP) were observed. DESIGN AND METHODS Recognition properties of ERE-BP were evaluated by electrophoretic mobility shift assays (EMSA) with ERE sequences of the 5'-flanking region of the estrogen responsive gene vitellogenin A2 (VitA2). Cytosols were incubated 16 h, 4 °C with [32P]ERE sequences and separated by EMSA. A method of estimating ERE-BP levels was developed by measuring band intensity from EMSA profiles, expressed in digital light units (DLU)/μg protein and normalized to total DLU. ERE-BP were purified by affinity chromatography and EMSA, and then identified by mass spectrometry. RESULTS ERE-BP in cytosols did not supershift in the presence of anti-hERα or anti-hERβ antibodies recognizing different ER epitopes suggesting that they are not fragments of either receptor isoform. ERE-BP competed with hERα for binding to VitA2-ERE. Increased levels of ERE-BP DNA-binding activities measured in 310 cytosols prepared from breast cancer biopsies correlated with decreased patient survival. Strikingly, breast cancer patients with ER negative status and high ERE-BP expression exhibited the poorest disease-free and overall survival. After purification, ERE-BP were identified as Ku70 (XRCC6) and Ku80 (XRCC5) using mass spectrometry. ERE-BP were confirmed to be Ku70/80 by supershift assay. CONCLUSION Presence of these novel ERE-binding proteins in a breast carcinoma is a strong predictor of poor prognosis. Our results suggest that ERE-BP, identified as Ku70/Ku80, in cytosols prepared from breast carcinoma biopsies are useful biomarkers for assessing risk of breast cancer recurrence.
Collapse
Affiliation(s)
- Traci L Kruer
- Hormone Receptor Laboratory, Department of Biochemistry & Molecular Biology, Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA; Institute for Molecular Diversity & Drug Design, University of Louisville, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
7
|
Jin L, Chen C, Guo R, Wan R, Li S. Role of corticotropin-releasing hormone family peptides in androgen receptor and vitamin D receptor expression and translocation in human breast cancer MCF-7 cells. Eur J Pharmacol 2012; 684:27-35. [DOI: 10.1016/j.ejphar.2012.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/09/2012] [Accepted: 03/22/2012] [Indexed: 01/30/2023]
|
8
|
Cañete P, Monllor A, Pineda A, Hernández R, Tarín JJ, Cano A. Levels of heat shock protein 27 in placentae from small for gestational age newborns. Gynecol Obstet Invest 2012; 73:248-51. [PMID: 22414777 DOI: 10.1159/000334408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/16/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Recent data suggest that hsp27, a low-molecular-weight heat shock protein, exerts important cellular actions, including the modulation of oestrogen action. We investigated whether hsp27 was differentially expressed in placental samples from small for gestational age (SGA) neonates. METHODS This study was performed in an academic hospital. Samples of villous tissue were obtained from placentae of 31 SGA (n = 16) or adequate to gestational age neonates (n = 15) delivered vaginally. The histological distribution of hsp27 in placental villi was investigated by immunohistochemistry, and the concentration of the protein was quantified by ELISA. Differences between groups were assessed by the nonparametric Mann-Whitney U test. RESULTS Specific staining for hsp27 was detected in trophoblastic cells in most of the villi. The levels of hsp27 were lower in placentae from SGA neonates than from adequate to gestational age neonates. CONCLUSION The expression of hsp27 was reduced in placentae from SGA neonates. Further work is required in order to clarify the role of hsp27 in placental physiology.
Collapse
Affiliation(s)
- Patricia Cañete
- Service of Obstetrics and Gynecology, Fundación para la Investigación Hospital Universitario Dr Peset, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Chen H, Gilbert LC, Lu X, Liu Z, You S, Weitzmann MN, Nanes MS, Adams J. A new regulator of osteoclastogenesis: estrogen response element-binding protein in bone. J Bone Miner Res 2011; 26:2537-47. [PMID: 21773989 PMCID: PMC3417837 DOI: 10.1002/jbmr.456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP)-like estrogen response element-binding protein (ERE-BP) competes with estrogen receptor α (ERα) for occupancy of estrogen response elements (EREs). Here we report that ERE-BP potently stimulates osteoclastogenesis. ERE-BP mRNA and protein were found to be expressed ubiquitously in bone. Overexpression of ERE-BP in cultured osteoblasts stimulated expression of the receptor activator of NF-κB ligand (RANKL) and decreased osteoprotegerin (OPG). The effect of ERE-BP on RANKL was shown to be transcriptional in transient transfection assay and competed with via the ER. Constitutive expression of ERE-BP increased the sensitivity of cells toward 1,25-dihydroxyvitamin D(3) stimulation of RANKL expression. In contrast, knockdown of ERE-BP in stromal ST-2 cells decreased basal RANKL promoter activity. Cocultures of ERE-BP lentivirus-transduced ST-2 cells with spleen monocytes induced formation of multinucleated osteoclasts (OCs) characterized by tartrate-resistant acid phosphatase, calcitonin receptors, and functional calcium resorption from bone slices. Although ERα competed with ERE-BP for an ERE in a dose-dependent manner, ERE-BP was an independent and potent regulator of RANKL and osteoclastogenesis. In preosteoclastic RAW cells, overexpression of ERE-BP increased RANK, upregulated NF-κB signaling, and enhanced differentiation toward a mature OC phenotype independent of RANKL. These results identify ERE-BP as a potent modulator of osteoclastogenesis. We hypothesize that ERE-BP may play a critical role in the regulation of bone homeostasis as a modulator of estrogen sensitivity as well as by direct action on the transcription of critical osteoclastogenic genes.
Collapse
Affiliation(s)
- Hong Chen
- Veterans Administration Medical Center and Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lisse TS, Hewison M, Adams JS. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling. Steroids 2011; 76:331-9. [PMID: 21236284 PMCID: PMC3042887 DOI: 10.1016/j.steroids.2011.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/11/2023]
Abstract
Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as "vitamin D or estrogen response element-binding proteins", behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements.
Collapse
Affiliation(s)
- Thomas S Lisse
- Department of Orthopaedic Surgery and Molecular Biology Institute, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
11
|
Heat shock protein 27 is required for sex steroid receptor trafficking to and functioning at the plasma membrane. Mol Cell Biol 2010; 30:3249-61. [PMID: 20439495 DOI: 10.1128/mcb.01354-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical sex steroid receptors (SRs) localize at the plasma membranes (PMs) of cells, initiating signal transduction through kinase cascades that contribute to steroid hormone action. Palmitoylation of the SRs is required for membrane localization and function, but the proteins that facilitate this modification and subsequent receptor trafficking are unknown. Initially using a proteomic approach, we identified that heat shock protein 27 (Hsp27) binds to a motif in estrogen receptor alpha (ERalpha) and promotes palmitoylation of the SR. Hsp27-induced acylation occurred on the ERalpha monomer and augmented caveolin-1 interactions with ERalpha, resulting in membrane localization, kinase activation, and DNA synthesis in breast cancer cells. Oligomerization of Hsp27 was required, and similar results were found for the trafficking of endogenous progesterone and androgen receptors to the PMs of breast and prostate cancer cells, respectively. Small interfering RNA (siRNA) knockdown of Hsp27 prevented sex SR trafficking to and signaling from the membrane. These results identify a conserved and novel function for Hsp27 with potential as a target for interrupting signaling from membrane sex SRs to tumor biology in hormone-responsive cancers.
Collapse
|
12
|
Rayner K, Chen YX, Siebert T, O'Brien ER. Heat Shock Protein 27: Clue to Understanding Estrogen-Mediated Atheroprotection? Trends Cardiovasc Med 2010; 20:54-8. [DOI: 10.1016/j.tcm.2010.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Kohno S, Katsu Y, Urushitani H, Ohta Y, Iguchi T, Guillette LJ. Potential contributions of heat shock proteins to temperature-dependent sex determination in the American alligator. Sex Dev 2009; 4:73-87. [PMID: 19940440 DOI: 10.1159/000260374] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/17/2009] [Indexed: 12/22/2022] Open
Abstract
Sex determination in the American alligator depends on the incubation temperature experienced during a thermo-sensitive period (TSP), although sex determination can be 'reversed' by embryonic exposure to an estrogenic compound. Thus, temperature and estrogenic signals play essential roles during temperature-dependent sex determination (TSD). The genetic basis for TSD is poorly understood, although previous studies observed that many of the genes associated with genetic sex determination (GSD) are expressed in species with TSD. Heat shock proteins (HSPs), good candidates because of their temperature-sensitive expression, have not been examined in regard to TSD but HSPs have the ability to modify steroid receptor function. A number of HSP cDNAs (HSP27, DNAJ, HSP40, HSP47, HSP60, HSP70A, HSP70B, HSP70C, HSP75, HSP90alpha, HSP90beta, and HSP108) as well as cold-inducible RNA binding protein (CIRBP) and HSP-binding protein (HSPBP) were cloned, and expression of their mRNA in the gonadal-adrenal-mesonephros complex (GAM) was investigated. Embryonic and neonatal GAMs exhibited mRNA for all of the HSPs examined during and after the TSP. One-month-old GAMs were separated into 3 portions (gonad, adrenal gland, and mesonephros), and sexual dimorphism in the mRNA expression of gonadal HSP27 (male > female), gonadal HSP70A (male < female), and adrenal HSP90 alpha (male > female) was observed. These findings provide new insights on TSD and suggest that further studies examining the role of HSPs during gonadal development are needed.
Collapse
Affiliation(s)
- S Kohno
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bag-1M inhibits the transactivation of the glucocorticoid receptor via recruitment of corepressors. FEBS Lett 2009; 583:2451-6. [DOI: 10.1016/j.febslet.2009.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/16/2009] [Accepted: 07/02/2009] [Indexed: 11/19/2022]
|
15
|
Chen H, Clemens TL, Hewison M, Adams JS. Estradiol and tamoxifen mediate rescue of the dominant-negative effects of estrogen response element-binding protein in vivo and in vitro. Endocrinology 2009; 150:2429-35. [PMID: 19106221 PMCID: PMC2671906 DOI: 10.1210/en.2008-1148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Biological responses to estrogens are dependent on the integrated actions of proteins, including the estrogen receptor (ER)-alpha, that regulate the transcription of estrogen response element (ERE)-containing target genes. We have identified a naturally occurring ERE antagonist, termed an ERE-binding protein (BP). To verify that ERE-BP can induce estradiol (E(2)) resistance in vivo, we generated transgenic mice that overexpress this protein in breast tissue. Female transgenic mice with high levels of ERE-BP were unable to lactate, and we hypothesized that this effect was dependent on the relative levels of ERE-BP and ERalpha ligand. To test this hypothesis, wild-type and ERE-BP-expressing female mice were implanted with capsules containing E(2), the selective estrogen receptor modulator tamoxifen, or placebo. Histological analysis of nonlactating mammary glands showed a 4.5-fold increase in gland branch number and 3.7-fold increase in ducts in ERE-BP mice treated with E(2) (7.5 mg, 21 d) compared with placebo-treated ERE-BP mice. Wild-type mice showed a 5.3-fold increase in branches and 1.4-fold increase in ducts under the same conditions. Similar results were obtained with tissue from lactating mice, in which tamoxifen also increased mammary gland branch number. Studies using ERE-BP-expressing MCF-7 breast cells showed that high doses of E(2) (1000 nM) restored normal ERalpha-chromatin interaction in these cells, whereas tamoxifen was able to achieve this effect at a dose of 10 nM. These data highlight the importance of ERE-BP as an attenuator of normal ERalpha signaling in vivo and further suggest that ERE-BP is a novel target for modulation by selective estrogen receptor modulators.
Collapse
MESH Headings
- Animals
- Estradiol/blood
- Estradiol/pharmacology
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor alpha/physiology
- Female
- Genes, Dominant/drug effects
- Genes, Dominant/physiology
- Humans
- Mammary Glands, Animal/anatomy & histology
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Matrix Attachment Region Binding Proteins/antagonists & inhibitors
- Matrix Attachment Region Binding Proteins/genetics
- Matrix Attachment Region Binding Proteins/metabolism
- Matrix Attachment Region Binding Proteins/physiology
- Mice
- Mice, Transgenic
- Nuclear Matrix-Associated Proteins/antagonists & inhibitors
- Nuclear Matrix-Associated Proteins/genetics
- Nuclear Matrix-Associated Proteins/metabolism
- Nuclear Matrix-Associated Proteins/physiology
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/physiology
- Selective Estrogen Receptor Modulators/pharmacology
- Tamoxifen/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hong Chen
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
16
|
Hong W, Baniahmad A, Liu Y, Li H. Bag-1M Is a Component of the In Vivo DNA–Glucocorticoid Receptor Complex at Hormone-Regulated Promoter. J Mol Biol 2008; 384:22-30. [DOI: 10.1016/j.jmb.2008.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/03/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
|
17
|
Abstract
Our perception of the vitamin D system continues to evolve. Recent studies have re-evaluated the parameters for adequate vitamin D status in humans, revealing a high prevalence of insufficiency in many populations throughout the world. Other reports have highlighted the potential consequences of vitamin D insufficiency beyond established effects on bone homeostasis. Most notably, there is now strong evidence of a role for vitamin D in modulating innate and adaptive immunities, with insufficiency being linked to infectious disease and other immune disorders. To date, signaling pathways for these new responses to vitamin D have been based on established endocrine models for active 1,25-dihydroxyvitamin D, despite present evidence for more localized, intracrine modes of action. In the following review, we provide a fresh perspective on vitamin D signaling in non-classical target cells such as macrophages by highlighting novel factors associated with the transport and action of this pluripotent secosteroid.
Collapse
Affiliation(s)
- Rene F Chun
- Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, 615 Charles E Young Drive South, Los Angeles, California 90095, USA
| | | | | |
Collapse
|