1
|
Nakashima H, Kearney BM, Kinoshita M. The Liver X Receptor Promotes Immune Homeostasis via Controlled Activation of the Innate Immune System in the Liver. Biomolecules 2024; 15:25. [PMID: 39858420 PMCID: PMC11764419 DOI: 10.3390/biom15010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
The liver is an indispensable metabolic organ, responsible for accumulating and transporting various nutritional compounds in hepatocytes. However, the transport of these materials from the liver is an energetically intensive task because they contain a considerable number of hydrophobic components, including free cholesterol, and require specialized transfer proteins to shuttle these substances through an aqueous phase. Liver X receptors (LXRs) induce the expression of cholesterol transporters in macrophages to transport free cholesterol derived from apoptotic cells into extracellular space via high-density lipoproteins. Additionally, LXRs control innate immune cells through two major mechanisms: upregulating the phagocytic activity of macrophages and suppressing inflammatory reactions to prevent aggressive activation of immune cells. Therefore, the primary role of LXRs is to accelerate efferocytosis without provoking inflammation and facilitate the transfer of free cholesterol from the intracellular space. This mechanism makes the innate immune system a substantial contributor to systemic metabolic control. Concomitantly, LXRs are important factors in regulating systemic defense mechanisms through the efficient regulation of immune cells. LXR activation, therefore, has great potential for clinical applications in the treatment of metabolic, infectious, and autoimmune diseases. In this review, we discuss the current understanding of the link between LXRs and innate immune cells in the liver, along with prospects for clinical applications of LXR agonists.
Collapse
Affiliation(s)
- Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Saitama 359-8513, Japan; (B.M.K.); (M.K.)
| | | | | |
Collapse
|
2
|
Hiéronimus L, Huaux F. B-1 cells in immunotoxicology: Mechanisms underlying their response to chemicals and particles. FRONTIERS IN TOXICOLOGY 2023; 5:960861. [PMID: 37143777 PMCID: PMC10151831 DOI: 10.3389/ftox.2023.960861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Since their discovery nearly 40 years ago, B-1 cells have continued to challenge the boundaries between innate and adaptive immunity, as well as myeloid and lymphoid functions. This B-cell subset ensures early immunity in neonates before the development of conventional B (B-2) cells and respond to immune injuries throughout life. B-1 cells are multifaceted and serve as natural- and induced-antibody-producing cells, phagocytic cells, antigen-presenting cells, and anti-/pro-inflammatory cytokine-releasing cells. This review retraces the origin of B-1 cells and their different roles in homeostatic and infectious conditions before focusing on pollutants comprising contact-sensitivity-inducing chemicals, endocrine disruptors, aryl hydrocarbon receptor (AHR) ligands, and reactive particles.
Collapse
|
3
|
Olson WJ, Jakic B, Labi V, Woelk J, Derudder E, Baier G, Hermann-Kleiter N. A role for the nuclear receptor NR2F6 in peritoneal B cell homeostasis. Front Immunol 2022; 13:845235. [PMID: 36052079 PMCID: PMC9425112 DOI: 10.3389/fimmu.2022.845235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
B cells are key mediators of humoral immunity. Mature B cells fall into various sub-classes that can be separated by their ontogeny, expression of cell surface markers, anatomical location, and function. B1 subsets play important roles in natural immunity and constitute the majority of B cells in newborns. In the adult, B1 cells predominate in the pleural and peritoneal cavities, while the mature B2 follicular subset makes up the major fraction of B cells in lymphoid tissue, although important subsets of antibody-secreting B1 cells are also present at these sites. B1 cells are the main producers of natural IgM but can also contribute to elimination of some pathogens, while B2 cells primarily mediate response to foreign antigens. The differential molecular underpinning of the B1 and B2 subsets remains incompletely understood. Here we demonstrate that germline-deficiency of the orphan nuclear receptor NR2F6 causes a partial loss of B1b and B2 B cells in the peritoneum while leaving peritoneal B1a cells unaltered. A competitive bone marrow chimera in Nr2f6+/+ host mice produced similar numbers of Nr2f6+/+ and Nr2f6-/- peritoneal B1b and B2 cells. The proliferation of Nr2f6-/- peritoneal B cells was not altered, while the migration marker CXCR5 was reduced on all subsets but Beta7-integrin was reduced only on peritoneal B1b and B2 cells. Similarly, B1b and B2 but not B1a cells, exhibited significantly reduced survival.
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Bojana Jakic
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Woelk
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Khatun MR, Arifuzzaman S. RETRACTED ARTICLE: Selected TLR7/8 agonist and type I interferon (IFN-α) cooperatively redefine the microglia transcriptome. Inflammopharmacology 2020; 31:547. [PMID: 31190206 PMCID: PMC7087773 DOI: 10.1007/s10787-019-00610-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Background Microglia, the primary immune cells of the central nervous system, exerts multiple functions to mediate many neurological diseases. Upon any detection of invading pathogen products (e.g., TLR agonists) or host-released signaling factors (e.g., interferon/IFN), these cells undergo an activation process to release large numbers of inflammatory substances that participate in inflammation and homeostasis. The profound effects of inflammation associated with TLR7/8 agonist Resiquimod (R848) and type 1 interferon (e.g., IFN-α)-induced macrophage and dendritic cell activation on biological outcomes have long been recognized. However, the underlying mechanisms are not well defined in microglial cells. Methods The present study investigated the molecular signatures of microglia and identified genes that are uniquely or synergistically expressed in R848-, IFN-α- or R848 with IFN-α-treated primary microglial (PM) cells. We used RNA-sequencing, quantitative real-time PCR, and bioinformatics approaches to derive regulatory networks that control the transcriptional response of PM to R848, IFN-α and R848 with IFN-α. Results Our approach revealed that the inflammatory response in R848 with IFN-α-treated PM is faster and more intense than that in R848 or IFN-α-treated PM in terms of the number of differentially expressed genes and the magnitude of induction/repression. In particular, our integrative analysis enabled us to suggest the regulatory functions of TFs, which allowed the construction of a network model that explains how TLR7/8 and IFN-α-sensing pathways achieve specificity. Conclusion In conclusion, the systematic approach presented herein could be important to the understanding microglial activation-mediated molecular signatures induced by inflammatory stimuli related to TLR7/8, IFN-α or co-signaling, and associated transcriptional machinery of microglial functions and neuroinflammatory mechanisms. Electronic supplementary material The online version of this article (10.1007/s10787-019-00610-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mst Reshma Khatun
- Department of Biomedical Science, Ajou University, Suwon, Gyeonggi-do 16499 Republic of Korea
| | - Sarder Arifuzzaman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546 Republic of Korea
| |
Collapse
|
5
|
Glaría E, Letelier NA, Valledor AF. Integrating the roles of liver X receptors in inflammation and infection: mechanisms and outcomes. Curr Opin Pharmacol 2020; 53:55-65. [PMID: 32599447 DOI: 10.1016/j.coph.2020.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/10/2023]
Abstract
Liver X receptors (LXRs) are transcription factors from the nuclear receptor family that can be pharmacologically activated by high-affinity agonists. LXR activation exerts a combination of metabolic and anti-inflammatory actions that result in the modulation of immune responses and in the amelioration of inflammatory disorders. In addition, LXR agonists modulate the metabolism of infected cells and limit the infectivity and/or growth of several pathogens. This review gives an overview of the recent advances in understanding the complexity of the mechanisms through which the LXR pathway controls inflammation and host-cell pathogen interaction.
Collapse
Affiliation(s)
- Estibaliz Glaría
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Nicole A Letelier
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Assessment of leukocyte activity in mice devoid of the glucocorticoid receptor in the noradrenergic system (GR DBHCre). Immunobiology 2017; 223:227-238. [PMID: 29030008 DOI: 10.1016/j.imbio.2017.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 12/30/2022]
Abstract
Disturbances in brain monoamines, overactivity of the hypothalamo-pituitary adrenal (HPA) axis and pro-inflammatory tendency in the immune system are the key features of depressive disorders. Recently, several murine lines with mutations in glucocorticoid receptors (GRs) have been generated and these animals may be utilized for study depressive-like disorders. In the present study, we have investigated whether selective ablation of GRs in noradrenergic neurons affects functional properties of leukocytes and redirects them towards pro-inflammatory activity. Transgenic mice selectively devoid of GRs on noradrenergic cells were constructed using the Cre/loxP approach. Peritoneal leukocytes were collected from mutant and wild type (WT) animals of both sexes and were cultured in vitro for 24h both in basal conditions and after application of selected pro- or anti-inflammatory stimuli. Metabolic activity and adherence were measured in basal conditions. Nitric oxide (NO) synthesis and arginase (ARG) activity were assessed as the markers of functional status of the cells. Because adult mutant mice lack adrenal medulla and thereby peripheral adrenaline, we modulated pro- and anti-inflammatory culture conditions by addition of noradrenaline (10-6M). Finally, effects of in vivo pro-inflammatory challenge (with intraperitoneal administration of lipopolysaccharide) on properties of leukocytes were assessed 24h (in both sexes) and 48h later (in males only). The experiments indicated that selective ablation of GR in noradrenergic neurons did not affect fundamental properties of peritoneal leukocytes and exerted effects only under conditions of selected pro- or anti-inflammatory stimuli in vitro. Stronger response to pro-inflammatory stimulation in terms of NO synthesis and ARG activity may suggest pro-inflammatory tendency in mutant mice. In vivo inflammatory challenge failed to show any effect of GR ablation on selected parameters of leukocyte activity. Both in vitro studies and in vivo challenge revealed mainly sex-related differences in leukocyte activity.
Collapse
|
7
|
Prieto J, Felippe M. Development, phenotype, and function of non-conventional B cells. Comp Immunol Microbiol Infect Dis 2017; 54:38-44. [DOI: 10.1016/j.cimid.2017.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 12/27/2022]
|
8
|
Schulman IG. Liver X receptors link lipid metabolism and inflammation. FEBS Lett 2017; 591:2978-2991. [PMID: 28555747 DOI: 10.1002/1873-3468.12702] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
The response of immune cells to pathogens is often associated with changes in the flux through basic metabolic pathways. Indeed, in many cases changes in metabolism appear to be necessary for a robust immune response. The Liver X receptors (LXRs) are members of the nuclear hormone receptor superfamily that regulate gene networks controlling cholesterol and lipid metabolism. In immune cells, particularly in macrophages, LXRs also inhibit proinflammatory gene expression. This Review will highlight recent studies that connect LXR-dependent control of lipid metabolism to regulation of the immune response.
Collapse
Affiliation(s)
- Ira G Schulman
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
9
|
Prieto JMB, Tallmadge RL, Felippe MJB. Developmental expression of B cell molecules in equine lymphoid tissues. Vet Immunol Immunopathol 2016; 183:60-71. [PMID: 28063478 DOI: 10.1016/j.vetimm.2016.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023]
Abstract
Identification and classification of B cell subpopulations has been shown to be challenging and inconsistent among different species. Our study tested aspects of ontogeny, phenotype, tissue distribution, and function of equine CD5hi B cells, which represented a greater proportion of B cells early in development and in the peritoneal cavity. CD5hi and CD5lo B cells differentially expressed B cell markers (CD2, CD21, IgM) measured using flow cytometry, but similar mRNA expression of signature genes (DGKA, FGL2, PAX5, IGHM, IL10) measured using quantitative RT-PCR. Sequencing lambda light chain segments revealed that CD5hi B cells generated diverse immunoglobulin repertoires, and more frequently bound to fluorescence-labeled phosphorylcholine. This study shows developmental characteristics and tissue distribution of a newly described subpopulation of B cells in the horse.
Collapse
Affiliation(s)
- J M B Prieto
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - R L Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - M J B Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Estrogen receptor signal in regulation of B cell activation during diverse immune responses. Int J Biochem Cell Biol 2015; 68:42-7. [PMID: 26299327 DOI: 10.1016/j.biocel.2015.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022]
Abstract
The role of signalling through oestrogen receptors (ERs) in the regulation of B cell activation is an area of growing importance not only in terms protective immunity but also in the determination of the mechanisms of the onset of autoimmune disorders and cancers. The mode of signalling action of this single chain nuclear receptor protein molecule depends on its ability to bind to the promoters of Pax5, HOXC4 and apolipoprotein B RNA-editing enzyme activation-induced cytidine deaminase (AID) genes. ER-mediated transcriptional regulation induces class switch recombination of the immunoglobulin heavy chain variable (VH) to DH-JH genes and somatic hypermutation in developing B cells. The mode of action of ER is associated with BCR-signal pathways that involve the regulator proteins BAFF and APRIL. Additionally, the plasma membrane-bound G protein-coupled oestrogen receptor-1 (GEPR1) directs diverse cell signalling events in B cells that involve the MAPK pathways. These signals are immensely important during progenitor and precursor B cell activation. We have focused our goals on the medicinal aspects of ER-signalling mechanisms and their effects on polyclonal B cell activation.
Collapse
|
11
|
Quesada-García A, Valdehita A, Kropf C, Casanova-Nakayama A, Segner H, Navas JM. Thyroid signaling in immune organs and cells of the teleost fish rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2014; 38:166-174. [PMID: 24657316 DOI: 10.1016/j.fsi.2014.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Thyroid hormones are involved in modulating the immune system in mammals. In contrast, there is no information on the role played by these hormones in the immune system of teleost fish. Here we provide initial evidence for the presence of active thyroid signaling in immune organs and cells of teleosts. We demonstrate that immune organs (head kidney and spleen) and isolated leukocytes (from head kidney and peripheral blood) of the rainbow trout (Oncorhynchus mykiss) express both thyroid receptor α (THRA) and β (THRB). Absolute mRNA levels of THRA were significantly higher than those of THRB. THRA showed higher expression in immune organs and isolated immune cells compared to the reference organ, liver, while THRB showed the opposite. In vivo exposure of trout to triiodothryronine (T3) or the anti-thyroid agent propylthiouracil (PTU) altered THR expression in immune organs and cells. Effect of T3 and PTU over the relative expression of selected marker genes of immune cell subpopulations was also studied. Treatments changed the relative expression of markers of cytotoxic, helper and total T cells (cd4, cd8a, trb), B lymphocytes (mIgM) and macrophages (csf1r). These findings suggest that the immune system of rainbow trout is responsive to thyroid hormones.
Collapse
Affiliation(s)
- A Quesada-García
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - A Valdehita
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - C Kropf
- Centre for Fish and Wildlife Health, University of Bern, Switzerland
| | | | - H Segner
- Centre for Fish and Wildlife Health, University of Bern, Switzerland
| | - J M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| |
Collapse
|
12
|
|