1
|
Elia A, Pataccini G, Saldain L, Ambrosio L, Lanari C, Rojas P. Antiprogestins for breast cancer treatment: We are almost ready. J Steroid Biochem Mol Biol 2024; 241:106515. [PMID: 38554981 DOI: 10.1016/j.jsbmb.2024.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The development of antiprogestins was initially a gynecological purpose. However, since mifepristone was developed, its application for breast cancer treatment was immediately proposed. Later, new compounds with lower antiglucocorticoid and antiandrogenic effects were developed to be applied to different pathologies, including breast cancer. We describe herein the studies performed in the breast cancer field with special focus on those reported in recent years, ranging from preclinical biological models to those carried out in patients. We highlight the potential use of antiprogestins in breast cancer prevention in women with BRCA1 mutations, and their use for breast cancer treatment, emphasizing the need to elucidate which patients will respond. In this sense, the PR isoform ratio has emerged as a possible tool to predict antiprogestin responsiveness. The effects of combined treatments of antiprogestins together with other drugs currently used in the clinic, such as tamoxifen, CDK4/CDK6 inhibitors or pembrolizumab in preclinical models is discussed since it is in this scenario that antiprogestins will be probably introduced. Finally, we explain how transcriptomic or proteomic studies, that were carried out in different luminal breast cancer models and in breast cancer samples that responded or were predicted to respond to the antiprogestin therapy, show a decrease in proliferative pathways. Deregulated pathways intrinsic of each model are discussed, as well as how these analyses may contribute to a better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Andrés Elia
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Gabriela Pataccini
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Leo Saldain
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Luisa Ambrosio
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina
| | - Paola Rojas
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME CONICET), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Saritha F, Aiswarya N, Aswath Kumar R, Dileep KV. Structural analysis and ensemble docking revealed the binding modes of selected progesterone receptor modulators. J Biomol Struct Dyn 2023; 41:12401-12410. [PMID: 36752314 DOI: 10.1080/07391102.2023.2166999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023]
Abstract
Uterine fibroids (UF) are benign smooth muscle neoplasm of uterus that have a significant impact on a woman's quality of life as they perturb hormonal homeostasis resulting in heavy menstrual bleeding, impaired fertility, pregnancy complications and loss. UF can be surgically removed through invasive procedures, but their recurrence rate is often high. Progesterone receptor (PR) has an imperative role in UF management. Mifepristone, ulipristal acetate (UPA) and asoprisnil (ASO) are some selective progesterone receptor modulators (SPRMs), acts on PR, but due to their side effects in long term use, they were withdrawn from the market. Hence, there is a dire need for novel, highly efficient with least side effects, therapeutics for the treatment of UF. To contribute toward the drug discovery for UF, we made an extensive structural comparison of reported PR crystal structures, also elucidated the binding modes of four existing SPRMs against human PR through ensemble docking approach. Our studies revealed the presence of 5 highly repeating water molecules that has an important role in ligand binding and structural stability. Our ensemble docking and MD simulation revealed that studied ligands have preferential selectivity toward the specific conformation of PR. It is anticipated that our study will be a useful resource to all the drug discovery scientists who are engaged in the identification of lead molecules against UF.
Collapse
Affiliation(s)
- F Saritha
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - N Aiswarya
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - R Aswath Kumar
- Department of Obstetrics and Gynaecology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - K V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| |
Collapse
|
3
|
Abascal MF, Elía A, Alvarez M, Pataccini G, Sequeira G, Riggio M, Figueroa V, Lamb CA, Rojas PA, Spengler E, Martínez-Vazquez P, Burruchaga J, Liguori M, Sahores A, Wargon V, Molinolo A, Hewitt S, Lombes M, Sartorius C, Vanzulli SI, Giulianelli S, Lanari C. Progesterone receptor isoform ratio dictates antiprogestin/progestin effects on breast cancer growth and metastases: A role for NDRG1. Int J Cancer 2021; 150:1481-1496. [PMID: 34935137 DOI: 10.1002/ijc.33913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Progesterone receptors (PR) ligands are being tested in luminal breast cancer. There are mainly two PR isoforms, PRA and PRB, and their ratio (PRA/PRB) may be predictive of antiprogestin response. Our aim was to investigate: the impact of the PR isoform ratio on metastatic behavior, the PR isoform ratio in paired primary tumors and lymph node metastases (LNM) and, the effect of antiprogestin/progestins on metastatic growth. Using murine and human metastatic models, we demonstrated that tumors with PRB > PRA (PRB-H) have a higher proliferation index but less metastatic ability than those with PRA > PRB (PRA-H). Antiprogestins and progestins inhibited metastatic burden in PRA-H and PRB-H models, respectively. In breast cancer samples, LNM retained the same PRA/PRB ratio as their matched primary tumors. Moreover, PRA-H LNM expressed higher total PR levels than the primary tumors. The expression of NDRG1, a metastasis suppressor protein, was higher in PRB-H compared with PRA-H tumors and was inversely regulated by antiprogestins/progestins. The binding of the corepressor SMRT at the progesterone responsive elements of the NDRG1 regulatory sequences, together with PRA, impeded its expression in PRA-H cells. Antiprogestins modulate the interplay between SMRT and AIB1 recruitment in PRA-H or PRB-H contexts regulating NDRG1 expression and thus, metastasis. In conclusion, we provide a mechanistic interpretation to explain the differential role of PR isoforms in metastatic growth and highlight the therapeutic benefit of using antiprogestins in PRA-H tumors. The therapeutic effect of progestins in PRB-H tumors is suggested. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Andrés Elía
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Michelle Alvarez
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires
| | - Gabriela Pataccini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Gonzalo Sequeira
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Hospital Público de Gestión Descentralizada Dr. Arturo Oñativia, Argentina
| | - Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Paola A Rojas
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Eunice Spengler
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | | | - Javier Burruchaga
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | - Marcos Liguori
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | - Ana Sahores
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Victoria Wargon
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | | | | | - Marc Lombes
- INSERM and Fac Med Paris-Sud, Université Paris Saclay, UMR-S 1185, Le Kremlin-Bicêtre, France
| | - Carol Sartorius
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Instituto de Biología de Organismos Marinos, IBIOMAR-CCT CENPAT-CONICET, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| |
Collapse
|
4
|
Effect of 17β-Estradiol, Progesterone, and Tamoxifen on Neurons Infected with Toxoplasma gondii In Vitro. Microorganisms 2021; 9:microorganisms9102174. [PMID: 34683495 PMCID: PMC8541540 DOI: 10.3390/microorganisms9102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is the causal agent of toxoplasmosis, which produces damage in the central nervous system (CNS). Toxoplasma-CNS interaction is critical for the development of disease symptoms. T. gondii can form cysts in the CNS; however, neurons are more resistant to this infection than astrocytes. The probable mechanism for neuron resistance is a permanent state of neurons in the interface, avoiding the replication of intracellular parasites. Steroids regulate the formation of Toxoplasma cysts in mice brains. 17β-estradiol and progesterone also participate in the control of Toxoplasma infection in glial cells in vitro. The aim of this study was to evaluate the effects of 17β-estradiol, progesterone, and their specific agonists-antagonists on Toxoplasma infection in neurons in vitro. Neurons cultured were pretreated for 48 h with 17β-estradiol or progesterone at 10, 20, 40, 80, or 160 nM/mL or tamoxifen 1 μM/mL plus 17β-estradiol at 10, 20, 40, 80, and 160 nM/mL. In other conditions, the neurons were pretreated during 48 h with 4,4',4″-(4-propyl-[1H] pyrozole-1,3,5-triyl) trisphenol or 23-bis(4-hydroxyphenyl) propionitrile at 1 nM/mL, and mifepristone 1 µM/mL plus progesterone at 10, 20, 40, 80, and 160 nM/mL. Neurons were infected with 5000 tachyzoites of the T. gondii strain RH. The effect of 17β estradiol, progesterone, their agonists, or antagonists on Toxoplasma infection in neurons was evaluated at 24 and 48 h by immunocytochemistry. T. gondii replication was measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. 17β-Estradiol alone or plus tamoxifen reduced infected neurons (50%) compared to the control at 48 h. Progesterone plus estradiol decreased the number of intracellular parasites at 48 h of treatment compared to the control (p < 0.001). 4,4',4″-(4-propyl-[1H] pyrozole-1,3,5-triyl) trisphenol and 23-bis(4-hydroxyphenyl) propionitrile reduced infected neurons at 48 h of treatment significantly compared to the control (p < 0.05 and p < 0.001, respectively). The Toxoplasma infection process was decreased by the effect of 17β-estradiol alone or combined with tamoxifen or progesterone in neurons in vitro. These results suggest the essential participation of progesterone and estradiol and their classical receptors in the regulation of T. gondii neuron infection.
Collapse
|
5
|
Takedomi K, Ohta M, Ekimoto T, Ikeguchi M. Effect of Water Molecules on the Activating S810L Mutation of the Mineralocorticoid Receptor. J Chem Inf Model 2021; 61:3583-3592. [PMID: 34228431 DOI: 10.1021/acs.jcim.1c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mineralocorticoid receptor (MR) is a nuclear receptor whose endogenous ligands are mineralocorticoids, a type of steroid hormone. The activating S810L mutation is known to cause severe early-onset and pregnancy-related hypertension. Progesterone binds to the wild-type (WT) MR as a passive antagonist with fast dissociation; however, it binds to the S810L mutant as a full agonist with slow dissociation. The switch in the biological activity of progesterone is considered to be one of the causes of the disease. First, we used steered molecular dynamics simulations to analyze the dissociation process of progesterone for the WT and the S810L mutant. Progesterone in the WT dissociated from the ligand-binding pocket with a weak force in comparison with progesterone in the S810L mutant due to the large inflow of water molecules into the pocket. Therefore, we used conventional molecular dynamics simulations for the ligand-free structures of the WT and the S810L mutant to investigate the effect of the mutation on the inflow of water. In the WT, water molecules enter the ligand-binding pocket in two ways: in the vicinity of (i) Arg817 and (ii) Ser810. In contrast, few water molecules enter the pocket in the S810L mutant because of the large size and hydrophobic nature of the Leu810 side chain. Fast dissociation is a common feature among passive antagonists of MR; therefore, we inferred that the water inflow could be responsible for the dissociation kinetics of progesterone in the WT and the S810L mutant.
Collapse
Affiliation(s)
- Kei Takedomi
- Graduate School of Medicinal Life Science, Yokohama City University, Yokohama 230-0045, Japan.,Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama 227-0033, Japan
| | - Masateru Ohta
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Yokohama 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medicinal Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medicinal Life Science, Yokohama City University, Yokohama 230-0045, Japan.,HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Yokohama 230-0045, Japan
| |
Collapse
|
6
|
Lai PF, Georgiou EX, Tribe RM, Johnson MR. The impact of progesterone and RU-486 on classic pro-labour proteins & contractility in human myometrial tissues during 24-hour exposure to tension & interleukin-1β. Mol Cell Endocrinol 2020; 500:110633. [PMID: 31678609 DOI: 10.1016/j.mce.2019.110633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/19/2019] [Accepted: 10/26/2019] [Indexed: 01/16/2023]
Abstract
Increased expression of pro-labour genes that encode cyclooxygenase-2 (COX-2), oxytocin receptor (OTR) and connexin-43 (Cx43) at parturition is often attributed to P4 functional withdrawal, based on findings from animal models and human primary myometrial cells. However, the cause of reduced myometrial P4 responsiveness that promotes contractions at labour is not fully determined. Uterine stretch occurs with advancing gestation but most in vitro experimental models do not take this into consideration. We aimed to examine whether tissue-level myometrial stretch influences the ability of P4 to regulate pro-labour protein abundance by using myometrial biopsies from term gestation pregnant women to assess the impact of 24 h exposure to combinations of (i) stretch-mediated tension, (ii) P4 (100 nM) and (iii) an anti-progestin, RU-486 (1 μM). Firstly, we observed baseline COX-2 and Cx43 protein levels increased, whereas P4 content along with calponin-1 and progesterone receptor (PR) protein abundance decreased, in vehicle-treated tissues. P4 supplementation subtly reduced COX-2 levels in un-stretched tissues. Spontaneous and oxytocin-augmented contractility were unchanged by tissue culture exposure to P4 and/or RU-486. Interleukin-1β (IL-1β; 1 ng/ml) enhanced COX-2 protein and PGE2 content in un-stretched tissues. Overall, tissue stretch may, in part, regulate P4-sensitive pro-labour protein levels, but this is likely to be reliant on interaction with other in utero factors that were absent in our tissue cultures. More complex culture conditions should be evaluated in future to aid further development of a physiologically relevant model to improve our understanding of in utero myometrial P4 responsiveness.
Collapse
Affiliation(s)
- Pei F Lai
- Division of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW10 9NH, UK
| | - Ektoras X Georgiou
- Division of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW10 9NH, UK
| | - Rachel M Tribe
- Department of Women and Children's Health, Kings College London, London, SE1 7EH, UK
| | - Mark R Johnson
- Division of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, SW10 9NH, UK.
| |
Collapse
|
7
|
Zheng L, Lin VC, Mu Y. Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics. PLoS One 2016; 11:e0165824. [PMID: 27824891 PMCID: PMC5100906 DOI: 10.1371/journal.pone.0165824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022] Open
Abstract
Progesterone receptor (PR), a member of nuclear receptor (NR) superfamily, plays a vital role for female reproductive tissue development, differentiation and maintenance. PR ligand, such as progesterone, induces conformation changes in PR ligand binding domain (LBD), thus mediates subsequent gene regulation cascades. PR LBD may adopt different conformations upon an agonist or an antagonist binding. These different conformations would trigger distinct transcription events. Therefore, the dynamics of PR LBD would be of general interest to biologists for a deep understanding of its structure-function relationship. However, no apo-form (non-ligand bound) of PR LBD model has been proposed either by experiments or computational methods so far. In this study, we explored the structural dynamics of PR LBD using molecular dynamics simulations and advanced sampling tools in both ligand-bound and the apo-forms. Resolved by the simulation study, helix 11, helix 12 and loop 895–908 (the loop between these two helices) are quite flexible in antagonistic conformation. Several residues, such as Arg899 and Glu723, could form salt-bridging interaction between helix 11 and helix 3, and are important for the PR LBD dynamics. And we also propose that helix 12 in apo-form PR LBD, not like other NR LBDs, such as human estrogen receptor α (ERα) LBD, may not adopt a totally extended conformation. With the aid of umbrella sampling and metadynamics simulations, several stable conformations of apo-form PR LBD have been sampled, which may work as critical structural models for further large scale virtual screening study to discover novel PR ligands for therapeutic application.
Collapse
Affiliation(s)
- Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Valerie Chunling Lin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- * E-mail:
| |
Collapse
|
8
|
Esber N, Cherbonnier C, Resche-Rigon M, Hamze A, Alami M, Fagart J, Loosfelt H, Lombès M, Chabbert-Buffet N. Anti-Tumoral Effects of Anti-Progestins in a Patient-Derived Breast Cancer Xenograft Model. Discov Oncol 2016; 7:137-47. [DOI: 10.1007/s12672-016-0255-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 12/27/2022] Open
|
9
|
The expression of thyroid hormone receptors (THR) is regulated by the progesterone receptor system in first trimester placental tissue and in BeWo cells in vitro. Eur J Obstet Gynecol Reprod Biol 2015; 195:31-39. [PMID: 26476797 DOI: 10.1016/j.ejogrb.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/06/2015] [Accepted: 09/03/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Thyroid hormones are essential for the maintenance of pregnancy and a deficiency in maternal thyroid hormones has been associated with early pregnancy losses. The aim of this study was a systematic investigation of the influence of mifepristone (RU 486) on the expression of the thyroid hormone receptor (THR) isoforms THRα1, THRα2, THRβ1 and THRβ2 on protein and mRNA-level. METHODS Samples of placental tissue were obtained from patients with mifepristone induced termination of pregnancy (n=13) or mechanical induced termination of normal pregnancy (n=20), each from the 4th to 13th week of pregnancy. Expression of THRα1, THRα2, THRβ1 and THRβ2 was analysed on protein level by immunohistochemistry and on mRNA level by real time RT-PCR (TaqMan). The influence of progesterone on THR gene expression was analysed in the trophoblast tumour cell line BeWo by real time RT-PCR (TaqMan). RESULTS Nuclear expression of THRα1, THRα2 and THRβ1 is downregulated on protein level in mifepristone (RU 486) treated villous trophoblast tissue. In decidual tissue, we found a significant downregulation only for THRα1 in mifepristone treated tissue. On mRNA level, we also found a significantly reduced expression of THRA but no significant downregulation for THRB in placental tissue. The gene THRA encodes the isoform THRα and the gene THRB encodes the isoform THRβ. The majority of cells expressing the thyroid hormone receptors in the decidua are decidual stromal cells. In addition, in vitro experiments with trophoblast tumour cells showed that progesterone significantly induced THRA but not THRB expression. CONCLUSIONS Termination of pregnancy with mifepristone (RU 486) leads to a downregulation of THRα1, THRα2 and THRβ1 in villous trophoblasts and in addition to a decreased expression of THRA in placental tissue. Decreased expression of THRα1 induced by RU486 could also be found in the decidua. Therefore inhibition of the progesterone receptor may be responsible for this downregulation. This assumption is supported by the finding, that stimulation of the progesterone receptor by progesterone itself up-regulated THRA in trophoblast cells in vitro.
Collapse
|
10
|
Jones SL, Gardner Gregory J, Pfaus JG. RU486 facilitates or disrupts the sensitization of sexual behaviors by estradiol in the ovariectomized Long-Evans rat: Effect of timecourse. Horm Behav 2015. [PMID: 26210062 DOI: 10.1016/j.yhbeh.2015.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An acute injection of estradiol benzoate (EB) to the ovariectomized (OVX) rat activates low levels of lordosis, and subsequent progesterone (P) administration augments lordosis and recruits a complete pattern of sexual behavior including appetitive behaviors (e.g., hops/darts and solicitations). However, repeated injections of 5μg or 10μg EB (but not 2μg EB), administered every 4days to sexually-experienced OVX rats results in a behavioral sensitization, such that lordosis quotients (LQs) and appetitive behaviors progressively increase. We have shown that adrenal P does not play a critical role because behavioral sensitization to EB is not prevented by adrenalectomy. Here we tested whether P receptors play a role by examining the effect of chronic administration of the P receptor antagonist RU486 at a dose that reliably inhibits sexual behavior in fully primed OVX rats. Females were treated with EB (5 or 10μg), and 5mg RU486 dissolved in 0.4mL vehicle (VEH; 80% sesame oil, 15% benzyl benzoate, 5% benzyl alcohol) 48h and 5h prior to each of 7 tests, respectively, occurring at 4-day intervals in unilevel 4-hole pacing chambers. Control animals were treated with 2, 5, or 10μg EB+VEH. As expected, sensitization did not occur in females treated with 2μg EB+VEH, and those females received fewer intromissions and ejaculations than all other groups. RU486 did not prevent the sensitization of LQ, moderate and high lordosis magnitudes (LM2 and LM3) or appetitive sexual behaviors on early tests, and in fact potentiated appetitive behaviors, LQ, LM2 and LM3, consistent with its facilitative actions in females treated with EB-alone, as we and others have reported previously. However, despite the initial facilitation, blocking P receptors by chronic administration of RU486 inhibited the maintenance of behavioral sensitization to EB.
Collapse
Affiliation(s)
- S L Jones
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - J Gardner Gregory
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - J G Pfaus
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
11
|
Amazit L, Le Billan F, Kolkhof P, Lamribet K, Viengchareun S, Fay MR, Khan JA, Hillisch A, Lombès M, Rafestin-Oblin ME, Fagart J. Finerenone Impedes Aldosterone-dependent Nuclear Import of the Mineralocorticoid Receptor and Prevents Genomic Recruitment of Steroid Receptor Coactivator-1. J Biol Chem 2015. [PMID: 26203193 DOI: 10.1074/jbc.m115.657957] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldosterone regulates sodium homeostasis by activating the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily. Hyperaldosteronism leads todeleterious effects on the kidney, blood vessels, and heart. Although steroidal antagonists such as spironolactone and eplerenone are clinically useful for the treatment of cardiovascular diseases, they are associated with several side effects. Finerenone, a novel nonsteroidal MR antagonist, is presently being evaluated in two clinical phase IIb trials. Here, we characterized the molecular mechanisms of action of finerenone and spironolactone at several key steps of the MR signaling pathway. Molecular modeling and mutagenesis approaches allowed identification of Ser-810 and Ala-773 as key residues for the high MR selectivity of finerenone. Moreover, we showed that, in contrast to spironolactone, which activates the S810L mutant MR responsible for a severe form of early onset hypertension, finerenone displays strict antagonistic properties. Aldosterone-dependent phosphorylation and degradation of MR are inhibited by both finerenone and spironolactone. However, automated quantification of MR subcellular distribution demonstrated that finerenone delays aldosterone-induced nuclear accumulation of MR more efficiently than spironolactone. Finally, chromatin immunoprecipitation assays revealed that, as opposed to spironolactone, finerenone inhibits MR, steroid receptor coactivator-1, and RNA polymerase II binding at the regulatory sequence of the SCNN1A gene and also remarkably reduces basal MR and steroid receptor coactivator-1 recruitment, unraveling a specific and unrecognized inactivating mechanism on MR signaling. Overall, our data demonstrate that the highly potent and selective MR antagonist finerenone specifically impairs several critical steps of the MR signaling pathway and therefore represents a promising new generation MR antagonist.
Collapse
Affiliation(s)
- Larbi Amazit
- From the INSERM, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France, the Faculté de Médecine Paris-Sud, Université Paris-Sud, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France, UMS 32, Institut Biomédical de Bicêtre, Le Kremlin-Bicêtre F-94276, France
| | - Florian Le Billan
- From the INSERM, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France, the Faculté de Médecine Paris-Sud, Université Paris-Sud, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France
| | | | - Khadija Lamribet
- From the INSERM, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France, the Faculté de Médecine Paris-Sud, Université Paris-Sud, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France
| | - Say Viengchareun
- From the INSERM, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France, the Faculté de Médecine Paris-Sud, Université Paris-Sud, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France
| | - Michel R Fay
- INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon, CRB3, 75890 Paris, France, and the Université Paris-Denis Diderot, Site Bichat, Paris, France
| | - Junaid A Khan
- From the INSERM, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France, the Faculté de Médecine Paris-Sud, Université Paris-Sud, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France
| | - Alexander Hillisch
- Medicinal Chemistry, Bayer Pharma AG, Global Drug Discovery, 42113 Wuppertal, Germany
| | - Marc Lombès
- From the INSERM, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France, the Faculté de Médecine Paris-Sud, Université Paris-Sud, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France
| | - Marie-Edith Rafestin-Oblin
- INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon, CRB3, 75890 Paris, France, and the Université Paris-Denis Diderot, Site Bichat, Paris, France
| | - Jérôme Fagart
- From the INSERM, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France, the Faculté de Médecine Paris-Sud, Université Paris-Sud, UMR-S 1185, Le Kremlin-Bicêtre F-94276, France, INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon, CRB3, 75890 Paris, France, and the Université Paris-Denis Diderot, Site Bichat, Paris, France
| |
Collapse
|
12
|
Abstract
Progesterone and progesterone receptors (PRs) are essential for the development and cyclical regulation of hormone-responsive tissues including the breast and reproductive tract. Altered functions of PR isoforms contribute to the pathogenesis of tumors that arise in these tissues. In the breast, progesterone acts in concert with estrogen to promote proliferative and pro-survival gene programs. In sharp contrast, progesterone inhibits estrogen-driven growth in the uterus and protects the ovary from neoplastic transformation. Progesterone-dependent actions and associated biology in diverse tissues and tumors are mediated by two PR isoforms, PR-A and PR-B. These isoforms are subject to altered transcriptional activity or expression levels, differential crosstalk with growth factor signaling pathways, and distinct post-translational modifications and cofactor-binding partners. Herein, we summarize and discuss the recent literature focused on progesterone and PR isoform-specific actions in breast, uterine, and ovarian cancers. Understanding the complexity of context-dependent PR actions in these tissues is critical to developing new models that will allow us to advance our knowledge base with the goal of revealing novel and efficacious therapeutic regimens for these hormone-responsive diseases.
Collapse
Affiliation(s)
- Caroline H Diep
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Andrea R Daniel
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Laura J Mauro
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Todd P Knutson
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Carol A Lange
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| |
Collapse
|
13
|
Knutson TP, Lange CA. Tracking progesterone receptor-mediated actions in breast cancer. Pharmacol Ther 2014; 142:114-25. [PMID: 24291072 PMCID: PMC3943696 DOI: 10.1016/j.pharmthera.2013.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022]
Abstract
Ovarian steroid hormones contribute to breast cancer initiation and progression primarily through the actions of their nuclear transcription factors, the estrogen receptor alpha (ERα) and progesterone receptors (PRs). These receptors are important drivers of the luminal A and B subtypes of breast cancer, where estrogen-blocking drugs have been effective endocrine therapies for patients with these tumors. However, many patients do not respond, or become resistant to treatment. When endocrine therapies fail, the luminal subtypes of breast cancer are more difficult to treat because these subtypes are among the most heterogeneous in terms of mutation diversity and gene expression profiles. Recent evidence suggests that progestin and PR actions may be important drivers of luminal breast cancers. Clinical trial data has demonstrated that hormone replacement therapy with progestins drives invasive breast cancer and results in greater mortality. PR transcriptional activity is dependent upon cross-talk with growth factor signaling pathways that alter PR phosphorylation, acetylation, or SUMOylation as mechanisms for regulating PR target gene selection required for increased cell proliferation and survival. Site-specific PR phosphorylation is the primary driver of gene-selective PR transcriptional activity. However, PR phosphorylation and heightened transcriptional activity is coupled to rapid PR protein degradation; the range of active PR detected in tumors is likely to be dynamic. Thus, PR target gene signatures may provide a more accurate means of tracking PR's contribution to tumor progression rather than standard clinical protein-based (IHC) assays. Further development of antiprogestin therapies should be considered alongside antiestrogens and aromatase inhibitors.
Collapse
Affiliation(s)
- Todd P Knutson
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|