1
|
Nie Z, Guo C, Das SK, Chow CC, Batchelor E, Simons SS, Levens D. Dissecting transcriptional amplification by MYC. eLife 2020; 9:52483. [PMID: 32715994 PMCID: PMC7384857 DOI: 10.7554/elife.52483] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Supraphysiological MYC levels are oncogenic. Originally considered a typical transcription factor recruited to E-boxes (CACGTG), another theory posits MYC a global amplifier increasing output at all active promoters. Both models rest on large-scale genome-wide "-omics'. Because the assumptions, statistical parameter and model choice dictates the '-omic' results, whether MYC is a general or specific transcription factor remains controversial. Therefore, an orthogonal series of experiments interrogated MYC's effect on the expression of synthetic reporters. Dose-dependently, MYC increased output at minimal promoters with or without an E-box. Driving minimal promoters with exogenous (glucocorticoid receptor) or synthetic transcription factors made expression more MYC-responsive, effectively increasing MYC-amplifier gain. Mutations of conserved MYC-Box regions I and II impaired amplification, whereas MYC-box III mutations delivered higher reporter output indicating that MBIII limits over-amplification. Kinetic theory and experiments indicate that MYC activates at least two steps in the transcription-cycle to explain the non-linear amplification of transcription that is essential for global, supraphysiological transcription in cancer.
Collapse
Affiliation(s)
- Zuqin Nie
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States
| | - Chunhua Guo
- Steroid Hormones Section, NIDDK/LERB, NIH, Bethesda, United States
| | - Subhendu K Das
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States
| | - Carson C Chow
- Mathematical Biology Section, NIDDK/LBM, NIH, Bethesda, United States
| | - Eric Batchelor
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States.,Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, United States.,Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States
| | - S Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, NIH, Bethesda, United States
| | - David Levens
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States
| |
Collapse
|
2
|
Chow CC, Simons SS. An Approach to Greater Specificity for Glucocorticoids. Front Endocrinol (Lausanne) 2018; 9:76. [PMID: 29593646 PMCID: PMC5859375 DOI: 10.3389/fendo.2018.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid steroids are among the most prescribed drugs each year. Nonetheless, the many undesirable side effects, and lack of selectivity, restrict their greater usage. Research to increase glucocorticoid specificity has spanned many years. These efforts have been hampered by the ability of glucocorticoids to both induce and repress gene transcription and also by the lack of success in defining any predictable properties that control glucocorticoid specificity. Correlations of transcriptional specificity have been observed with changes in steroid structure, receptor and chromatin conformation, DNA sequence for receptor binding, and associated cofactors. However, none of these studies have progressed to the point of being able to offer guidance for increased specificity. We summarize here a mathematical theory that allows a novel and quantifiable approach to increase selectivity. The theory applies to all three major actions of glucocorticoid receptors: induction by agonists, induction by antagonists, and repression by agonists. Simple graphical analysis of competition assays involving any two factors (steroid, chemical, peptide, protein, DNA, etc.) yields information (1) about the kinetically described mechanism of action for each factor at that step where the factor acts in the overall reaction sequence and (2) about the relative position of that step where each factor acts. These two pieces of information uniquely provide direction for increasing the specificity of glucocorticoid action. Consideration of all three modes of action indicate that the most promising approach for increased specificity is to vary the concentrations of those cofactors/pharmaceuticals that act closest to the observed end point. The potential for selectivity is even greater when varying cofactors/pharmaceuticals in conjunction with a select class of antagonists.
Collapse
Affiliation(s)
- Carson C. Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| | - S. Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| |
Collapse
|
3
|
Pradhan MA, Blackford JA, Devaiah BN, Thompson PS, Chow CC, Singer DS, Simons SS. Kinetically Defined Mechanisms and Positions of Action of Two New Modulators of Glucocorticoid Receptor-regulated Gene Induction. J Biol Chem 2015; 291:342-54. [PMID: 26504077 DOI: 10.1074/jbc.m115.683722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 11/06/2022] Open
Abstract
Most of the steps in, and many of the factors contributing to, glucocorticoid receptor (GR)-regulated gene induction are currently unknown. A competition assay, based on a validated chemical kinetic model of steroid hormone action, is now used to identify two new factors (BRD4 and negative elongation factor (NELF)-E) and to define their sites and mechanisms of action. BRD4 is a kinase involved in numerous initial steps of gene induction. Consistent with its complicated biochemistry, BRD4 is shown to alter both the maximal activity (Amax) and the steroid concentration required for half-maximal induction (EC50) of GR-mediated gene expression by acting at a minimum of three different kinetically defined steps. The action at two of these steps is dependent on BRD4 concentration, whereas the third step requires the association of BRD4 with P-TEFb. BRD4 is also found to bind to NELF-E, a component of the NELF complex. Unexpectedly, NELF-E modifies GR induction in a manner that is independent of the NELF complex. Several of the kinetically defined steps of BRD4 in this study are proposed to be related to its known biochemical actions. However, novel actions of BRD4 and of NELF-E in GR-controlled gene induction have been uncovered. The model-based competition assay is also unique in being able to order, for the first time, the sites of action of the various reaction components: GR < Cdk9 < BRD4 ≤ induced gene < NELF-E. This ability to order factor actions will assist efforts to reduce the side effects of steroid treatments.
Collapse
Affiliation(s)
- Madhumita A Pradhan
- From the Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology
| | - John A Blackford
- From the Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology
| | | | | | - Carson C Chow
- the Mathematical Biology Section, NIDDK/Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland 20892
| | | | - S Stoney Simons
- From the Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology,
| |
Collapse
|
4
|
Grimm SL, Ward RD, Obr AE, Franco HL, Fernandez-Valdivia R, Kim JS, Roberts JM, Jeong JW, DeMayo FJ, Lydon JP, Edwards DP, Weigel NL. A role for site-specific phosphorylation of mouse progesterone receptor at serine 191 in vivo. Mol Endocrinol 2015; 28:2025-37. [PMID: 25333515 DOI: 10.1210/me.2014-1206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Progesterone receptors (PRs) are phosphorylated on multiple sites, and a variety of roles for phosphorylation have been suggested by cell-based studies. Previous studies using PR-null mice have shown that PR plays an important role in female fertility, regulation of uterine growth, the uterine decidualization response, and proliferation as well as ductal side-branching and alveologenesis in the mammary gland. To study the role of PR phosphorylation in vivo, a mouse was engineered with homozygous replacement of PR with a PR serine-to-alanine mutation at amino acid 191. No overt phenotypes were observed in the mammary glands or uteri of PR S191A treated with progesterone (P4). In contrast, although PR S191A mice were fertile, litters were 19% smaller than wild type and the estrous cycle was lengthened slightly. Moreover, P4-dependent gene regulation in primary mammary epithelial cells (MECs) was altered in a gene-selective manner. MECs derived from wild type and PR S191A mice were grown in a three-dimensional culture. Both formed acinar structures that were morphologically similar, and proliferation was stimulated equally by P4. However, P4 induction of receptor activator of nuclear factor-κB ligand and calcitonin was selectively reduced in S191A cultures. These differences were confirmed in freshly isolated MECs. Chromatin immunoprecipitation analysis showed that the binding of S191A PR to some of the receptor activator of nuclear factor-κB ligand enhancers and a calcitonin enhancer was substantially reduced. Thus, the elimination of a single phosphorylation site is sufficient to modulate PR activity in vivo. PR contains many phosphorylation sites, and the coordinate regulation of multiple sites is a potential mechanism for selective modulation of PR function.
Collapse
Affiliation(s)
- Sandra L Grimm
- Departments of Molecular and Cellular Biology (S.L.G., R.D.W., A.E.O., H.L.F., R.F.-V., J.-S.K., J.M.R., J.-W.J., F.J.D., J.P.L., D.P.E., N.L.W.) and Pathology and Immunology (D.P.E.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chow CC, Finn KK, Storchan GB, Lu X, Sheng X, Simons SS. Kinetically-defined component actions in gene repression. PLoS Comput Biol 2015; 11:e1004122. [PMID: 25816223 PMCID: PMC4376387 DOI: 10.1371/journal.pcbi.1004122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
Gene repression by transcription factors, and glucocorticoid receptors (GR) in particular, is a critical, but poorly understood, physiological response. Among the many unresolved questions is the difference between GR regulated induction and repression, and whether transcription cofactor action is the same in both. Because activity classifications based on changes in gene product level are mechanistically uninformative, we present a theory for gene repression in which the mechanisms of factor action are defined kinetically and are consistent for both gene repression and induction. The theory is generally applicable and amenable to predictions if the dose-response curve for gene repression is non-cooperative with a unit Hill coefficient, which is observed for GR-regulated repression of AP1LUC reporter induction by phorbol myristate acetate. The theory predicts the mechanism of GR and cofactors, and where they act with respect to each other, based on how each cofactor alters the plots of various kinetic parameters vs. cofactor. We show that the kinetically-defined mechanism of action of each of four factors (reporter gene, p160 coactivator TIF2, and two pharmaceuticals [NU6027 and phenanthroline]) is the same in GR-regulated repression and induction. What differs is the position of GR action. This insight should simplify clinical efforts to differentially modulate factor actions in gene induction vs. gene repression.
Collapse
Affiliation(s)
- Carson C. Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CCC); (SSS)
| | - Kelsey K. Finn
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geoffery B. Storchan
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xinping Lu
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaoyan Sheng
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
| | - S. Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CCC); (SSS)
| |
Collapse
|
6
|
Abstract
The different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system, we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression. We now extend this framework to the actions of antisteroids in gene induction. The theory shows why changes in PAA cannot be explained simply by differences in ligand affinity for receptor and requires action at a second step or site in the overall sequence of reactions. The theory also provides a method for locating the position of this second site, relative to a concentration limited step (CLS), which is a previously identified step in glucocorticoid-regulated transactivation that always occurs at the same position in the overall sequence of events of gene induction. Finally, the theory predicts that classes of antagonist ligands may be grouped on the basis of their maximal PAA with excess added cofactor and that the members of each class differ by how they act at the same step in the overall gene induction process. Thus, this theory now makes it possible to predict how different cofactors modulate antisteroid PAA, which should be invaluable in developing more selective antagonists.
Collapse
Affiliation(s)
- Carson C Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD 20892-5621, USA
| | - Karen M Ong
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD 20892-5621, USA ; Computational Biology Program, New York University School of Medicine, New York, NY 10016, USA
| | - Benjamin Kagan
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD 20892-1772, USA ; Science Department, Tuscarora High School, Loudoun County Public Schools, Leesburg, VA 20176, USA
| | - S Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD 20892-1772, USA
| |
Collapse
|
7
|
C. Chow C, M. Ong K, Kagan B, Stoney Simons Jr. S. Theory of partial agonist activity of steroid hormones. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.2.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Klopčič I, Kolšek K, Dolenc MS. Glucocorticoid-like activity of propylparaben, butylparaben, diethylhexyl phthalate and tetramethrin mixtures studied in the MDA-kb2 cell line. Toxicol Lett 2014; 232:376-83. [PMID: 25448277 DOI: 10.1016/j.toxlet.2014.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022]
Abstract
Endocrine-disrupting compounds can interfere with the endocrine organs or hormone system and cause tumors, birth defects and developmental disorders in humans. The estrogen-like activity of compounds has been widely studied but little is known concerning their possible modulation of the glucocorticoid receptor. Steroidal (synthetic and natural) and non-steroidal endocrine-active compounds commonly occur as complex mixtures in human environments. Identification of such molecular species, which are responsible for modulating the glucocorticoid receptor are necessary to fully assess their risk. We have used the MDA-kb2 cell line, which expresses endogenous glucocorticoid receptor and a stably transfected luciferase reporter gene construct, to quantify the glucocorticoid-like activity of four compounds present in products in everyday use - propylparaben (PP), butylparaben (BP), diethylhexyl phthalate (DEHP) and tetramethrin (TM). We tested all possible combinations of these compounds at two concentrations (1 μM and 10 nM) and compared their glucocorticoid-like activity. At the concentration of 1 μM seven mixtures were identified to have glucocorticoid-like activity except: DEHP+TM, BP+TM, DEHP+PP+TM, BP+PP+TM. At the concentration of 10 nM only three mixtures have glucocorticoid modulatory activity: DEHP+PP, BP+PP, DEHP+BP+PP+TM. Identified glucocorticoid-like activities were between 1.25 and 1.51 fold at the concentration of 1 μM and between 1.23 and 1.44 fold at the concentration of 10 nM in comparison with the solvent control. Individually BP, PP, and DEHP had glucocorticoid-like activity of 1.60, 1.57 and 1.50 fold over the solvent control at the concentration of 1 μM. On the other hand PP and DEHP, at the concentration of 10nM, showed no glucocorticoid-like activity, while BP showed 1.44 fold. The assertion that individual glucocorticoid-like compounds do not produce harm because they are present at low, ineffective levels in humans may be irrelevant when we include mixed exposures. This study emphasizes that risk assessment of compounds should take mixture effects into account.
Collapse
Affiliation(s)
- Ivana Klopčič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - Katra Kolšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia.
| |
Collapse
|