1
|
Ge Y, Zhan Z, Ye M, Jin X. The crosstalk between ubiquitination and endocrine therapy. J Mol Med (Berl) 2023; 101:461-486. [PMID: 36961537 DOI: 10.1007/s00109-023-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/25/2023]
Abstract
Endocrine therapy (ET), also known as hormone therapy, refers to the treatment of tumors by regulating and changing the endocrine environment and hormone levels. Its related mechanism is mainly through reducing hormone levels and blocking the binding of hormones to corresponding receptors, thus blocking the signal transduction pathway to stimulate tumor growth. However, with the application of ET, some patients show resistance to ET, which is attributed to abnormal accumulation of hormone receptors (HRs) and the production of multiple mutants of HRs. The targeted degradation of abnormal accumulation protein mediated by ubiquitination is an important approach that regulates the protein level and function of intracellular proteins in eukaryotes. Here, we provide a brief description of the traditional and novel drugs available for ET in this review. Then, we introduce the link between ubiquitination and ET. In the end, we elaborate the clinical application of ET combined with ubiquitination-related molecules. KEY MESSAGES: • A brief description of the traditional and novel drugs available for endocrine therapy (ET). • The link between ubiquitination and ET. • The clinical application of ET combined with ubiquitination-related molecules.
Collapse
Affiliation(s)
- Yidong Ge
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ziqing Zhan
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Meng Ye
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xiaofeng Jin
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
2
|
Hickey CM, Breckel C, Zhang M, Theune WC, Hochstrasser M. Protein quality control degron-containing substrates are differentially targeted in the cytoplasm and nucleus by ubiquitin ligases. Genetics 2021; 217:1-19. [PMID: 33683364 PMCID: PMC8045714 DOI: 10.1093/genetics/iyaa031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Intracellular proteolysis by the ubiquitin-proteasome system regulates numerous processes and contributes to protein quality control (PQC) in all eukaryotes. Covalent attachment of ubiquitin to other proteins is specified by the many ubiquitin ligases (E3s) expressed in cells. Here we determine the E3s in Saccharomyces cerevisiae that function in degradation of proteins bearing various PQC degradation signals (degrons). The E3 Ubr1 can function redundantly with several E3s, including nuclear-localized San1, endoplasmic reticulum/nuclear membrane-embedded Doa10, and chromatin-associated Slx5/Slx8. Notably, multiple degrons are targeted by more ubiquitylation pathways if directed to the nucleus. Degrons initially assigned as exclusive substrates of Doa10 were targeted by Doa10, San1, and Ubr1 when directed to the nucleus. By contrast, very short hydrophobic degrons-typical targets of San1-are shown here to be targeted by Ubr1 and/or San1, but not Doa10. Thus, distinct types of PQC substrates are differentially recognized by the ubiquitin system in a compartment-specific manner. In human cells, a representative short hydrophobic degron appended to the C-terminus of GFP-reduced protein levels compared with GFP alone, consistent with a recent study that found numerous natural hydrophobic C-termini of human proteins can act as degrons. We also report results of bioinformatic analyses of potential human C-terminal degrons, which reveal that most peptide substrates of Cullin-RING ligases (CRLs) are of low hydrophobicity, consistent with previous data showing CRLs target degrons with specific sequences. These studies expand our understanding of PQC in yeast and human cells, including the distinct but overlapping PQC E3 substrate specificity of the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Carolyn Breckel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Mengwen Zhang
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - William C Theune
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
3
|
Singh S, Ng J, Sivaraman J. Exploring the "Other" subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol Ther 2021; 224:107809. [PMID: 33607149 DOI: 10.1016/j.pharmthera.2021.107809] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The HECT E3 ligase family regulates key cellular signaling pathways, with its 28 members divided into three subfamilies: NEDD4 subfamily (9 members), HERC subfamily (6 members) and "Other" subfamily (13 members). Here, we focus on the less-explored "Other" subfamily and discuss the recent findings pertaining to their biological roles. The N-terminal regions preceding the conserved HECT domains are significantly diverse in length and sequence composition, and are mostly unstructured, except for short regions that incorporate known substrate-binding domains. In some of the better-characterized "Other" members (e.g., HUWE1, AREL1 and UBE3C), structure analysis shows that the extended region (~ aa 50) adjacent to the HECT domain affects the stability and activity of the protein. The enzymatic activity is also influenced by interactions with different adaptor proteins and inter/intramolecular interactions. Primarily, the "Other" subfamily members assemble atypical ubiquitin linkages, with some cooperating with E3 ligases from the other subfamilies to form branched ubiquitin chains on substrates. Viruses and pathogenic bacteria target and hijack the activities of "Other" subfamily members to evade host immune responses and cause diseases. As such, these HECT E3 ligases have emerged as potential candidates for therapeutic drug development.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
4
|
Hang C, Zhao S, Wang T, Zhang Y. Oncogenic UBE3C promotes breast cancer progression by activating Wnt/β-catenin signaling. Cancer Cell Int 2021; 21:25. [PMID: 33407510 PMCID: PMC7789303 DOI: 10.1186/s12935-020-01733-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023] Open
Abstract
Background Breast cancer (BrCa) is the most common female malignancy worldwide and has the highest morbidity among all cancers in females. Unfortunately, the mechanisms of BrCa growth and metastasis, which lead to a poor prognosis in BrCa patients, have not been well characterized. Methods Immunohistochemistry (IHC) was performed on a BrCa tissue microarray (TMA) containing 80 samples to evaluate ubiquitin protein ligase E3C (UBE3C) expression. In addition, a series of cellular experiments were conducted to reveal the role of UBE3C in BrCa. Results In this research, we identified UBE3C as an oncogenic factor in BrCa growth and metastasis for the first time. UBE3C expression was upregulated in BrCa tissues compared with adjacent breast tissues. BrCa patients with high nuclear UBE3C expression in tumors showed remarkably worse overall survival (OS) than those with low nuclear expression. Knockdown of UBE3C expression in MCF-7 and MDA-MB-453 BrCa cells inhibited cell proliferation, migration and invasion in vitro, while overexpression of UBE3C in these cells exerted the opposite effects. Moreover, UBE3C promoted β-catenin nuclear accumulation, leading to the activation of the Wnt/β-catenin signaling pathway in BrCa cells. Conclusion Collectively, these results imply that UBE3C plays crucial roles in BrCa development and progression and that UBE3C may be a novel target for the prevention and treatment of BrCa.
Collapse
Affiliation(s)
- Chen Hang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Shanojie Zhao
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Tiejun Wang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China. .,Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48, Huaishu Road, Wuxi, 214023, China.
| |
Collapse
|
5
|
Molecular Evolution, Neurodevelopmental Roles and Clinical Significance of HECT-Type UBE3 E3 Ubiquitin Ligases. Cells 2020; 9:cells9112455. [PMID: 33182779 PMCID: PMC7697756 DOI: 10.3390/cells9112455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600–700 E3 ubiquitin ligases embedded in the human genome. Notably, mutations in around 13% of these genes are causative of severe neurological diseases. Despite this, molecular and cellular context of ubiquitination remains poorly characterized, especially in the developing brain. In this review article, we summarize recent findings on brain-expressed HECT-type E3 UBE3 ligases and their murine orthologues, comprising Angelman syndrome UBE3A, Kaufman oculocerebrofacial syndrome UBE3B and autism spectrum disorder-associated UBE3C. We summarize evolutionary emergence of three UBE3 genes, the biochemistry of UBE3 enzymes, their biology and clinical relevance in brain disorders. Particularly, we highlight that uninterrupted action of UBE3 ligases is a sine qua non for cortical circuit assembly and higher cognitive functions of the neocortex.
Collapse
|
6
|
Nakazawa K, Shichino Y, Iwasaki S, Shiina N. Implications of RNG140 (caprin2)-mediated translational regulation in eye lens differentiation. J Biol Chem 2020; 295:15029-15044. [PMID: 32839273 DOI: 10.1074/jbc.ra120.012715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/07/2020] [Indexed: 01/02/2023] Open
Abstract
Regulation of gene expression at the translational level is key to determining cell fate and function. An RNA-binding protein, RNG140 (caprin2), plays a role in eye lens differentiation and has been reported to function in translational regulation. However, the mechanism and its role in eyes has remained unclear. Here, we show that RNG140 binds to the translation initiation factor eukaryotic initiation factor 3 (eIF3) and suppresses translation through mechanisms involving suppression of eIF3-dependent translation initiation. Comprehensive ribosome profiling revealed that overexpression of RNG140 in cultured Chinese hamster ovary cells reduces translation of long mRNAs, including those associated with cell proliferation. RNG140-mediated translational regulation also operates in the mouse eye, where RNG140 knockout increased the translation of long mRNAs. mRNAs involved in lens differentiation, such as crystallin mRNAs, are short and can escape translational inhibition by RNG140 and be translated in differentiating lenses. Thus, this study provides insights into the mechanistic basis of lens cell transition from proliferation to differentiation via RNG140-mediated translational regulation.
Collapse
Affiliation(s)
- Kaori Nakazawa
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan; Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan; Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, Japan.
| |
Collapse
|
7
|
Tao J, Liu Z, Wang Y, Wang L, Yao B, Li Q, Wang C, Tu K, Liu Q. MiR-542-3p inhibits metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by targeting UBE3C. Biomed Pharmacother 2017; 93:420-428. [PMID: 28666208 DOI: 10.1016/j.biopha.2017.06.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence demonstrates that aberrant miRNAs contribute to hepatocellular carcinoma (HCC) development and progression. However, the roles of various miRNAs in HCC remain to be determined. In present research, we confirmed that a reduced miR-542-3p expression was present in HCC tissues and cell lines. Our clinical analysis revealed that the down-regulated miR-542-3p expression was significantly correlated with poor prognostic features including advanced TNM stage and venous infiltration. Moreover, we confirmed that miR-542-3p was a novel independent prognostic marker for predicting 5-year survival of HCC patients. The ectopic overexpression of miR-542-3p inhibited cell migration, invasion and EMT progress, while down-regulated miR-542-3p reversed the effect. In addition, miR-542-3p could regulate UBE3C by directly binding to its 3'-UTR. In clinical samples of HCC, miR-542-3p inversely correlated with UBE3C, which was upregulated in HCC. Alternation of UBE3C expression at least partially abolished the migration, invasion and EMT progress effects of miR-542-3p on HCC cells. In conclusion, our results indicated that miR-542-3p functioned as a tumor suppressor gene in regulating the EMT and metastasis of HCC via targeting UBE3C, and may represent a novel potential therapeutic target and prognostic marker for HCC.
Collapse
Affiliation(s)
- Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
8
|
Tang L, Yi XM, Chen J, Chen FJ, Lou W, Gao YL, Zhou J, Su LN, Xu X, Lu JQ, Ma J, Yu N, Ding YF. Ubiquitin ligase UBE3C promotes melanoma progression by increasing epithelial-mesenchymal transition in melanoma cells. Oncotarget 2016; 7:15738-46. [PMID: 26894856 PMCID: PMC4941273 DOI: 10.18632/oncotarget.7393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/13/2016] [Indexed: 11/25/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer, exhibiting extensive local invasion and early distant metastasis. Aberrant expression of ubiquitin-protein ligase E3C (UBE3C) plays a key role in tumor development and progression. In the present study, we analyzed UBE3C expression in samples of cancerous and normal skin tissue. Levels of UBE3C expression were much higher in primary and metastatic melanoma tissues than in normal skin, cutaneous squamous cell carcinoma or basal cell carcinoma. Melanoma cells overexpressing UBE3C frequently exhibited a mesenchymal phenotype, including reduced expression of the epithelial marker E-cadherin and expression of the mesenchymal marker vimentin. Knockdown of UBE3C expression in melanoma cells significantly suppressed melanoma growth and progression. Furthermore, silencing UBE3C led to increased E-cadherin expression and decreased vimentin and Snail1 expression. Thus UBE3C promotes melanoma progression, possibly by inducing epithelial-mesenchymal transition in melanoma cells. Inhibiting UBE3C activity may suppress melanoma invasion and metastasis and may represent a targeted therapeutic approach.
Collapse
Affiliation(s)
- Li Tang
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Xue-Mei Yi
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Jia Chen
- Department of Pathology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Fu-Juan Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Wei Lou
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Yun-Lu Gao
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Jing Zhou
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Li-Na Su
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Xin Xu
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Jia-Qing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Jun Ma
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Ning Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| | - Yang-Feng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai, P. R. China
| |
Collapse
|
9
|
MiR-30a-5p/UBE3C axis regulates breast cancer cell proliferation and migration. Biochem Biophys Res Commun 2016; 516:1013-1018. [PMID: 27003255 DOI: 10.1016/j.bbrc.2016.03.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 11/22/2022]
Abstract
Aberrant expression of ubiquitin Protein ligase E3C (UBE3C) has been documented in breast cancer (BC). MicroRNAs (miRNAs) were shown to play an important role in the regulation of tumor properties in BC. However, whether miRNAs contributes to UBE3C expression in BC cells remains poorly understood. In this study, we report that UBE3C was a direct target of miR-30a-5p. Expression of miR-30a-5p in BC cells reduced UBE3C expression. MCF-7 and MDA-MB-453 cells were transfected miR-30a-5p-overexpression, and found that cell proliferation and migration were inhibited. In contrast, when miR-30a-5p inhibitor were transfected into MCF-7 and MDA-MB-453 cells, cell proliferation and migration were promoted. We study demonstrated that upregulation of miR-30a-5p was significantly suppressed levels of cyclin B1, cyclin D1 and c-myc. Moreover, Correlation analysis indicated that expression of miR-30a-5p was highly negatively correlated with UBE3C, which was upregulated in BC specimens. These data highlight the important role of miR-30a-5p/UBE3C axis in BC development and progression. Therefore, miR-30a-5p activation or UBE3C inhibition may be provide a novel strategy for the treatment of BC.
Collapse
|