1
|
Masuda Y, Yamaguchi S, Nishizawa T. Cholesterol-lowering pattern affects the progression of atherosclerosis in apolipoprotein E deficient mice. J Pharmacol Sci 2016; 132:271-274. [DOI: 10.1016/j.jphs.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023] Open
|
2
|
Preclinical models of atherosclerosis. The future of Hybrid PET/MR technology for the early detection of vulnerable plaque. Expert Rev Mol Med 2016; 18:e6. [PMID: 27056676 DOI: 10.1017/erm.2016.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of death in developed countries. The aetiology is currently multifactorial, thus making them very difficult to prevent. Preclinical models of atherothrombotic diseases, including vulnerable plaque-associated complications, are now providing significant insights into pathologies like atherosclerosis, and in combination with the most recent advances in new non-invasive imaging technologies, they have become essential tools to evaluate new therapeutic strategies, with which can forecast and prevent plaque rupture. Positron emission tomography (PET)/computed tomography imaging is currently used for plaque visualisation in clinical and pre-clinical cardiovascular research, albeit with significant limitations. However, the combination of PET and magnetic resonance imaging (MRI) technologies is still the best option available today, as combined PET/MRI scans provide simultaneous data acquisition together with high quality anatomical information, sensitivity and lower radiation exposure for the patient. The coming years may represent a new era for the implementation of PET/MRI in clinical practice, but first, clinically efficient attenuation correction algorithms and research towards multimodal reagents and safety issues should be validated at the preclinical level.
Collapse
|
3
|
Du Y, Wang L, Hong B. High-density lipoprotein-based drug discovery for treatment of atherosclerosis. Expert Opin Drug Discov 2015; 10:841-55. [PMID: 26022101 DOI: 10.1517/17460441.2015.1051963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Although there has been great progress achieved by the use of intensive statin therapy, the burden of atherosclerotic cardiovascular disease (CVD) remains high. This has initiated the search for novel high-density lipoprotein (HDL)-based therapeutics. Recent years have witnessed a shift from traditional raising HDL-C levels to enhancing HDL functionality, in which the process of reverse cholesterol transport (RCT) has acquired much attention. AREAS COVERED In this review, the authors describe the key factors involved in RCT process for potential drug targets to reduce the CVD risk. Furthermore, the review provides a summary of the effective screening methods that have been developed to target RCT and their applications. This review also introduces some new strategies currently being clinically developed, which have the potential to improve HDL function in the RCT process. EXPERT OPINION It is rational that the functionality of HDL is more important than the plasma HDL-C level in the evaluation of pharmacological treatment in atherosclerosis. HDL-based strategies designed to promote macrophage RCT are a major area of current drug discovery and development for atherosclerotic diseases. A better understanding of the functionality of HDL and its relationship with atherosclerosis will expand our knowledge of the role of HDL in lipid metabolism, holding promise for a future successful HDL-based therapy.
Collapse
Affiliation(s)
- Yu Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Tiantan Xili, Beijing 100050 , China
| | | | | |
Collapse
|
4
|
Dockendorff C, Faloon PW, Germain A, Yu M, Youngsaye W, Nag PP, Bennion M, Penman M, Nieland TJF, Dandapani S, Perez JR, Munoz B, Palmer MA, Schreiber SL, Krieger M. Discovery of bisamide-heterocycles as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Bioorg Med Chem Lett 2015; 25:2594-8. [PMID: 25958245 DOI: 10.1016/j.bmcl.2015.03.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/01/2022]
Abstract
A new series of potent inhibitors of cellular lipid uptake from HDL particles mediated by scavenger receptor, class B, type I (SR-BI) was identified. The series was identified via a high-throughput screen of the National Institutes of Health Molecular Libraries Small Molecule Repository (NIH MLSMR) that measured the transfer of the fluorescent lipid DiI from HDL particles to CHO cells overexpressing SR-BI. The series is characterized by a linear peptidomimetic scaffold with two adjacent amide groups, as well as an aryl-substituted heterocycle. Analogs of the initial hit were rapidly prepared via Ugi 4-component reaction, and select enantiopure compounds were prepared via a stepwise sequence. Structure-activity relationship (SAR) studies suggest an oxygenated arene is preferred at the western end of the molecule, as well as highly lipophilic substituents on the central and eastern nitrogens. Compound 5e, with (R)-stereochemistry at the central carbon, was designated as probe ML279. Mechanistic studies indicate that ML279 stabilizes the interaction of HDL particles with SR-BI, and its effect is reversible. It shows good potency (IC50=17 nM), is non-toxic, plasma stable, and has improved solubility over our alternative probe ML278.
Collapse
Affiliation(s)
- Chris Dockendorff
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Chemistry, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA.
| | - Patrick W Faloon
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Andrew Germain
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Miao Yu
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Willmen Youngsaye
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Partha P Nag
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Melissa Bennion
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Marsha Penman
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sivaraman Dandapani
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - José R Perez
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michelle A Palmer
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Dockendorff C, Faloon PW, Pu J, Yu M, Johnston S, Bennion M, Penman M, Nieland TJF, Dandapani S, Perez JR, Munoz B, Palmer MA, Schreiber SL, Krieger M. Benzo-fused lactams from a diversity-oriented synthesis (DOS) library as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Bioorg Med Chem Lett 2015; 25:2100-5. [PMID: 25900219 DOI: 10.1016/j.bmcl.2015.03.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023]
Abstract
We report a new series of 8-membered benzo-fused lactams that inhibit cellular lipid uptake from HDL particles mediated by Scavenger Receptor, Class B, Type I (SR-BI). The series was identified via a high-throughput screen of the National Institutes of Health Molecular Libraries Small Molecule Repository (NIH MLSMR), measuring the transfer of the fluorescent lipid DiI from HDL particles to CHO cells overexpressing SR-BI. The series is part of a previously reported diversity-oriented synthesis (DOS) library prepared via a build-couple-pair approach. Detailed structure-activity relationship (SAR) studies were performed with a selection of the original library, as well as additional analogs prepared via solution phase synthesis. These studies demonstrate that the orientation of the substituents on the aliphatic ring have a critical effect on activity. Additionally, a lipophilic group is required at the western end of the molecule, and a northern hydroxyl group and a southern sulfonamide substituent also proved to be optimal. Compound 2p was found to possess a superior combination of potency (av IC50=0.10μM) and solubility (79μM in PBS), and it was designated as probe ML312.
Collapse
Affiliation(s)
- Chris Dockendorff
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Chemistry, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA.
| | - Patrick W Faloon
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Jun Pu
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Miao Yu
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Stephen Johnston
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Melissa Bennion
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Marsha Penman
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sivaraman Dandapani
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - José R Perez
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michelle A Palmer
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Mechanisms regulating hepatic SR-BI expression and their impact on HDL metabolism. Atherosclerosis 2011; 217:299-307. [DOI: 10.1016/j.atherosclerosis.2011.05.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/11/2011] [Accepted: 05/26/2011] [Indexed: 11/22/2022]
|
7
|
Datar R, Kaesemeyer WH, Chandra S, Fulton DJ, Caldwell RW. Acute activation of eNOS by statins involves scavenger receptor-B1, G protein subunit Gi, phospholipase C and calcium influx. Br J Pharmacol 2010; 160:1765-72. [PMID: 20649578 DOI: 10.1111/j.1476-5381.2010.00817.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Statins (HMG CoA reductase inhibitors) have beneficial effects independent of reducing cholesterol synthesis and this includes their ability to acutely activate endothelial nitric oxide synthase (eNOS). The mechanism by which this occurs is largely unknown and thus we characterized the pathways by which statins activate NOS, including involvement of scavenger receptor-B1 (SR-B1), which is expressed in endothelial cells and maintains cholesterol concentrations. EXPERIMENTAL APPROACH Nitric oxide production was monitored in bovine aortic endothelial cells (BAECs) exposed to lovastatin (LOV) or pravastatin (PRA) for 10-20 min, alone or following pre-exposure to the end product of HMG-CoA reductase (mevalonate), G protein inhibitors (pertussis/cholera toxins), phospholipase C (PLC) inhibitor (U-73122), or intracellular and extracellular calcium chelators - BAPTA-AM and EGTA (respectively), or a function blocking antibody to SR-B1. KEY RESULTS Both statins increased NO production in a rapid, dose-dependent and HMG-CoA reductase-independent manner. Inhibiting Gi protein or PLC almost completely blocked statin-induced NO generation. Additionally, removing extracellular calcium inhibited statin-induced NO production. COS-7 cells co-transfected with eNOS and SR-B1 increased NO production when exposed to LOV or high-density lipoprotein (HDL), an agonist of SR-B1. These effects were not observed in COS-7 cells with eNOS alone or co-transfected with bradykinin receptor 2, indicating specificity for SR-B1. Further, pretreatment of BAEC with blocking antibody for SR-B1 blocked NO responses to statins and HDL. CONCLUSIONS AND IMPLICATIONS LOV and PRA acutely activate eNOS through pathways that include the cell surface receptor SR-B1, Gi protein, phosholipase C and entry of extracellular calcium into endothelial cells.
Collapse
Affiliation(s)
- R Datar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
8
|
Masson D, Koseki M, Ishibashi M, Larson CJ, Miller SG, King BD, Tall AR. Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arterioscler Thromb Vasc Biol 2009; 29:2054-60. [PMID: 19815817 DOI: 10.1161/atvbaha.109.191320] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Increasing HDL levels is a potential strategy for the treatment of atherosclerosis. METHODS AND RESULTS ITX5061, a molecule initially characterized as a p38 MAPK inhibitor, increased HDL-C levels by 20% in a human population of hypertriglyceridemic subjects with low HDL levels. ITX5061 also moderately increased apoA-I but did not affect VLDL/LDL cholesterol or plasma triglyceride concentrations. ITX5061 increased HDL-C in WT and human apoA-I transgenic mice, and kinetic experiments showed that ITX5061 decreased the fractional catabolic rate of HDL-CE and reduced its hepatic uptake. In transfected cells, ITX5061 inhibited SR-BI-dependent uptake of HDL-CE. Moreover, ITX5061 failed to increase HDL-C levels in SR-BI(-/-) mice. To assess effects on atherosclerosis, ITX5061 was given to atherogenic diet-fed Ldlr(+/-) mice with or without CETP expression for 18 weeks. In both the control and CETP-expressing groups, ITX5061-treated mice displayed reductions of early atherosclerotic lesions in the aortic arch -40%, P<0.05), and a nonsignificant trend to reduced lesion area in the proximal aorta. CONCLUSIONS Our data indicate that ITX5061 increases HDL-C levels by inhibition of SR-BI activity. This suggests that pharmacological inhibition of SR-BI has the potential to raise HDL-C and apoA-I levels without adverse effects on VLDL/LDL cholesterol levels in humans.
Collapse
Affiliation(s)
- David Masson
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang L, Geng Y, Xiao N, Yin M, Mao L, Ren G, Zhang C, Liu P, Lu N, An L, Pan J. High Dietary n-6/n-3 PUFA Ratio Promotes HDL Cholesterol Level, but does not Suppress Atherogenesis in Apolipoprotein E-Null Mice 1. J Atheroscler Thromb 2009; 16:463-71. [DOI: 10.5551/jat.no1347] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
Nieland TJF, Shaw JT, Jaipuri FA, Duffner JL, Koehler AN, Banakos S, Zannis VI, Kirchhausen T, Krieger M. Identification of the molecular target of small molecule inhibitors of HDL receptor SR-BI activity. Biochemistry 2007; 47:460-72. [PMID: 18067275 DOI: 10.1021/bi701277x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Scavenger receptor, class B, type I (SR-BI), controls high-density lipoprotein (HDL) metabolism by mediating cellular selective uptake of lipids from HDL without the concomitant degradation of the lipoprotein particle. We previously identified in a high-throughput chemical screen of intact cells five compounds (BLT-1-5) that inhibit SR-BI-dependent lipid transport from HDL, but do not block HDL binding to SR-BI on the cell surface. Although these BLTs are widely used to examine the diverse functions of SR-BI, their direct target(s), SR-BI itself or some other component of the SR-BI pathway, has not been identified. Here we show that SR-BI in the context of a membrane lipid environment is the target of BLT-1, -3, -4, and -5. The analysis using intact cells and an in vitro system of purified SR-BI reconstituted into liposomes was aided by information derived from structure-activity relationship (SAR) analysis of the most potent of these BLTs, the thiosemicarbazone BLT-1. We found that the sulfur atom of BLT-1 was crucially important for its inhibitory activity, because changing it to an oxygen atom resulted in the isostructural, but essentially inactive, semicarbazone derivative BLT-1sc. SAR analysis also established the importance of BLT-1's hydrophobic tail. BLTs and their corresponding inactive compounds can be used to explore the mechanism and function of SR-BI-mediated selective lipid uptake in diverse mammalian experimental models. Consequently, BLTs may help determine the therapeutic potential of SR-BI-targeted pharmaceutical drugs.
Collapse
Affiliation(s)
- Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, Room 68-483, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nieland TJF, Shaw JT, Jaipuri FA, Maliga Z, Duffner JL, Koehler AN, Krieger M. Influence of HDL-cholesterol-elevating drugs on the in vitro activity of the HDL receptor SR-BI. J Lipid Res 2007; 48:1832-45. [PMID: 17533223 DOI: 10.1194/jlr.m700209-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of atherosclerotic disease often focuses on reducing plasma LDL-cholesterol or increasing plasma HDL-cholesterol. We examined in vitro the effects on HDL receptor [scavenger receptor class B type I (SR-BI)] activity of three classes of clinical and experimental plasma HDL-cholesterol-elevating compounds: niacin, fibrates, and HDL376. Fenofibrate (FF) and HDL376 were potent (IC(50) approximately 1 microM), direct inhibitors of SR-BI-mediated lipid transport in cells and in liposomes reconstituted with purified SR-BI. FF, a prodrug, was a more potent inhibitor of SR-BI than an activator of peroxisome proliferator-activated receptor alpha, a target of its active fenofibric acid (FFA) derivative. Nevertheless, FFA, four other fibrates (clofibrate, gemfibrozil, ciprofibrate, and bezafibrate), and niacin had little, if any, effect on SR-BI, suggesting that they do not directly target SR-BI in vivo. However, similarities of HDL376 treatment and SR-BI gene knockout on HDL metabolism in vivo (increased HDL-cholesterol and HDL particle sizes) and structure-activity relationship analysis suggest that SR-BI may be a target of HDL376 in vivo. HDL376 and other inhibitors may help elucidate SR-BI function in diverse mammalian models and determine the therapeutic potential of SR-BI-directed pharmaceuticals.
Collapse
Affiliation(s)
- Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|