1
|
Kukobat R, Škrbić R, Vallejos-Burgos F, Mercadelli E, Gardini D, Silvestroni L, Zanelli C, Esposito L, Stević D, Atlagić SG, Bodroža D, Gagić Ž, Pilipović S, Tubić B, Pajić NB. Enhanced dissolution of anticancer drug letrozole from mesoporous zeolite clinoptilolite. J Colloid Interface Sci 2024; 653:170-178. [PMID: 37713915 DOI: 10.1016/j.jcis.2023.08.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
High dissolution of anticancer drugs directly adsorbed onto porous carriers is indispensable for the development of drug delivery systems with high bioavailability. We report direct adsorption/loading of the anticancer drug letrozole (LTZ) onto the clinoptilolite (CLI) zeolite after the surface activation.In vitroLTZ dissolution from the CLI zeolites reached 95 % after 23 h in an acidic medium, being faster than the dissolution of the pure LTZ molecules. Fast dissolution occurs due to uniform exposure of the LTZ onto the external surface of the CLI zeolites, being accessible to the solvent for dissolution. On the other hand, the LTZ molecules were hidden in the bulk phase, giving a slow dissolution rate. Small positive value of the CLI/LTZ adsorption energy of 0.06 eV suggests that the release process is favourable in aqueous media. The main merit of the CLI/LTZ system is its quick onset of action and high bioavailability. This work demonstrates a possibility of enhancement of the dissolution of poorly soluble LTZ from the CLI zeolite, being promising for the further development of drug delivery systems.
Collapse
Affiliation(s)
- Radovan Kukobat
- University of Banja Luka, Faculty of Medicine, Centre for Biomedical Research, Save Mrkalja 16, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina; University of Banja Luka, Faculty of Technology, Department of Chemical Engineering and Technology, B.V Stepe Stepanovica 73, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina.
| | - Ranko Škrbić
- University of Banja Luka, Faculty of Medicine, Centre for Biomedical Research, Save Mrkalja 16, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina; University of Banja Luka, Faculty of Medicine, Department of Pharmacology, Toxicology and clinical Pharmacology, Save Mrkalja 16, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Fernando Vallejos-Burgos
- Morgan Advanced Materials, Carbon Science Centre of Excellence, 310 Innovation Blvd., Suite 250, State College, PA 16803, USA
| | - Elisa Mercadelli
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Davide Gardini
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Laura Silvestroni
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Chiara Zanelli
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Laura Esposito
- CNR-ISSMC (former ISTEC), Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza I-48018, Italy
| | - Dragana Stević
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Suzana Gotovac Atlagić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Darko Bodroža
- University of Banja Luka, Faculty of Technology, Department of Chemical Engineering and Technology, B.V Stepe Stepanovica 73, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina; University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Žarko Gagić
- University of Banja Luka, Faculty of Medicine, Pharmacy Department, the Republic of Srpska, Bosnia and Herzegovina
| | - Saša Pilipović
- Agency for Medical Products and Medical Devices of Bosnia and Herzegovina, Maršala Tita 9, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Biljana Tubić
- University of Banja Luka, Faculty of Medicine, Pharmacy Department, the Republic of Srpska, Bosnia and Herzegovina
| | - Nataša Bubić Pajić
- University of Banja Luka, Faculty of Medicine, Pharmacy Department, the Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
2
|
Stanelle-Bertram S, Beck S, Mounogou NK, Schaumburg B, Stoll F, Al Jawazneh A, Schmal Z, Bai T, Zickler M, Beythien G, Becker K, de la Roi M, Heinrich F, Schulz C, Sauter M, Krasemann S, Lange P, Heinemann A, van Riel D, Leijten L, Bauer L, van den Bosch TPP, Lopuhaä B, Busche T, Wibberg D, Schaudien D, Goldmann T, Lüttjohann A, Ruschinski J, Jania H, Müller Z, Pinho Dos Reis V, Krupp-Buzimkic V, Wolff M, Fallerini C, Baldassarri M, Furini S, Norwood K, Käufer C, Schützenmeister N, von Köckritz-Blickwede M, Schroeder M, Jarczak D, Nierhaus A, Welte T, Kluge S, McHardy AC, Sommer F, Kalinowski J, Krauss-Etschmann S, Richter F, von der Thüsen J, Baumgärtner W, Klingel K, Ondruschka B, Renieri A, Gabriel G. CYP19A1 mediates severe SARS-CoV-2 disease outcome in males. Cell Rep Med 2023; 4:101152. [PMID: 37572667 PMCID: PMC10518605 DOI: 10.1016/j.xcrm.2023.101152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
Male sex represents one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that mediate sex-dependent disease outcome are as yet unknown. Here, we identify the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (also known as aromatase) as a host factor that contributes to worsened disease outcome in SARS-CoV-2-infected males. We analyzed exome sequencing data obtained from a human COVID-19 cohort (n = 2,866) using a machine-learning approach and identify a CYP19A1-activity-increasing mutation to be associated with the development of severe disease in men but not women. We further analyzed human autopsy-derived lungs (n = 86) and detect increased pulmonary CYP19A1 expression at the time point of death in men compared with women. In the golden hamster model, we show that SARS-CoV-2 infection causes increased CYP19A1 expression in the lung that is associated with dysregulated plasma sex hormone levels and reduced long-term pulmonary function in males but not females. Treatment of SARS-CoV-2-infected hamsters with a clinically approved CYP19A1 inhibitor (letrozole) improves impaired lung function and supports recovery of imbalanced sex hormones specifically in males. Our study identifies CYP19A1 as a contributor to sex-specific SARS-CoV-2 disease outcome in males. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may furnish a new therapeutic strategy for individualized patient management and treatment.
Collapse
Affiliation(s)
| | - Sebastian Beck
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Nancy Kouassi Mounogou
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Berfin Schaumburg
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Fabian Stoll
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Amirah Al Jawazneh
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Zoé Schmal
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Tian Bai
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Martin Zickler
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Madeleine de la Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Fabian Heinrich
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martina Sauter
- Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Core Facility Experimental Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philine Lange
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Heinemann
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Debby van Riel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lonneke Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lisa Bauer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Boaz Lopuhaä
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tobias Busche
- Medical School East Westphalia-Lippe & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Torsten Goldmann
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Research Center Borstel, Leibniz Center for Medicine and Biosciences, German Center for Lung Research (DZL), Borstel, Germany
| | - Anna Lüttjohann
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Jenny Ruschinski
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Hanna Jania
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Zacharias Müller
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany
| | | | - Vanessa Krupp-Buzimkic
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Wolff
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Katrina Norwood
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maria Schroeder
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, Member of the German Center for Lung Research, Hannover, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice C McHardy
- German Center for Infection Research (DZIF), Braunschweig, Germany; Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2355), Hannover Medical School, Hannover, Germany
| | - Frank Sommer
- Division Men's Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the German Center for Lung Research (DZL), Borstel, Germany; Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan von der Thüsen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Gülsah Gabriel
- Department for Viral Zoonoses - One Health, Leibniz Institute of Virology, Hamburg, Germany; Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany; German Center for Infection Research (DZIF), Braunschweig, Germany.
| |
Collapse
|
3
|
Tarik Alhamdany A, Saeed AMH, Alaayedi M. Nanoemulsion and Solid Nanoemulsion for Improving Oral Delivery of a Breast Cancer Drug: Formulation, Evaluation, and a Comparison Study. Saudi Pharm J 2021; 29:1278-1288. [PMID: 34819790 PMCID: PMC8596290 DOI: 10.1016/j.jsps.2021.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Letrozole (LZ) is an aromatase inhibitor, which inhibits the formation of estrogens from androgens. Nanoemulsion is a liquid emulsion formulation utilized to increase solubility, bioavailability, and drug delivery to cancer cells. This study aims to improve LZ oral delivery through formulating solid nanoemulsion (SNE). Peppermint oil, tween 80, and transcutol P were used as an oil, surfactant, and co-surfactant, respectively. The optimized nanoemulsion (NE-3) was then incorporated into solid polyethylene glycol (PEG) to formulate (SNE). The optimized (NE-3), SNE-2, and the available marketed tablet have been compared. The optimized (NE-3) was selected according to specific parameters of optimum small nano-size 80 nm, PDI of 0.181, the zeta potential of-98.2, high transmittance (99.78%), optimum pH (5.6), a high percent of LZ content (99.03 ± 1.90), the relatively low viscosity of 60.2 mPa.s, and a rapid release of LZ within 30 min. NE-3 was selected to be formulated as SNE. LZ's best release rate was 80% in 5 min with a content homogeneity of 99.85 ± 0.04 for SNE-2. Zero-order kinetics is determined to have the greatest R2 values. Field emission scanning electron microscopy (FE-SEM) detected that SNE-2 was (36.75-96.64 nm) with a spherical form and no adhesion or aggregation. FT-IR showed no significant variations in position and shape of the absorption peaks between the pure drug and optimal formulation diagrams. This novel nanoemulsion technology aids in improving the solubility of poorly water-soluble drugs, particularly the SNE delivery method, which has a higher in-vitro release rate and expiration date of LZ than others.
Collapse
Affiliation(s)
- Anas Tarik Alhamdany
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ashti M H Saeed
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Maryam Alaayedi
- Department of Pharmaceutics, College of Pharmacy, University of Kerbala, Kerbala, Iraq
| |
Collapse
|
4
|
A simple, precise, and sensitive HPLC method for quantification of letrozole in rat plasma: development, validation, and preclinical pharmacokinetics. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00276-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA simple bioanalytical liquid chromatographic method was developed and validated to quantify letrozole (LTZ) in rat plasma. Protein precipitation using acidified chilled acetonitrile (containing 0.1% orthophosphoric acid) was used to extract LTZ from the plasma. Chromatographic separation was carried out on Kinetex C18 reverse phase (RP) column (250 mm × 4.6 mm i.d., 5 μm) using a mixture of 20 mM acetate buffer (pH 5.5) and acetonitirile (60:40 %v/v) eluting at 1.0 mL/min flow rate with the method responses measured at 240 nm. The optimized method was selective and established good linearity with recovery ranging between 91.16 and 99.44%. The validation experiments revealed that the method showed acceptable precision (2.61–7.48%) and accuracy (97.44–102.70%) and was found to be stable. The sensitivity of the method was demonstrated by the lowest concentration (LLOQ) detected at 75 ng/mL. Using the developed method, single-dose oral pharmacokinetics in Sprague-Dawley rats was carried out to successfully confirm the applicability of the method for the quantification of LTZ in biological matrix.
Collapse
|
5
|
Dieni CV, Contemori S, Biscarini A, Panichi R. De Novo Synthesized Estradiol: A Role in Modulating the Cerebellar Function. Int J Mol Sci 2020; 21:ijms21093316. [PMID: 32392845 PMCID: PMC7247543 DOI: 10.3390/ijms21093316] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022] Open
Abstract
The estrogen estradiol is a potent neuroactive steroid that may regulate brain structure and function. Although the effects of estradiol have been historically associated with gonadal secretion, the discovery that this steroid may be synthesized within the brain has expanded this traditional concept. Indeed, it is accepted that de novo synthesized estradiol in the nervous system (nE2) may modulate several aspects of neuronal physiology, including synaptic transmission and plasticity, thereby influencing a variety of behaviors. These modulations may be on a time scale of minutes via non-classical and often membrane-initiated mechanisms or hours and days by classical actions on gene transcription. Besides the high level, recent investigations in the cerebellum indicate that even a low aromatase expression can be related to the fast nE2 effect on brain functioning. These pieces of evidence point to the importance of an on-demand and localized nE2 synthesis to rapidly contribute to regulating the synaptic transmission. This review is geared at exploring a new scenario for the impact of estradiol on brain processes as it emerges from the nE2 action on cerebellar neurotransmission and cerebellum-dependent learning.
Collapse
Affiliation(s)
- Cristina V. Dieni
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (C.V.D.); (R.P.); Tel.: +1-(205)-996-8660 (C.V.D.); +39-075-5858205 (R.P.)
| | - Samuele Contemori
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane 4072, Australia;
| | - Andrea Biscarini
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06129 Perugia, Italy;
| | - Roberto Panichi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06129 Perugia, Italy;
- Correspondence: (C.V.D.); (R.P.); Tel.: +1-(205)-996-8660 (C.V.D.); +39-075-5858205 (R.P.)
| |
Collapse
|
6
|
Plasma and brain pharmacokinetics of letrozole and drug interaction studies with temozolomide in NOD-scid gamma mice and sprague dawley rats. Cancer Chemother Pharmacol 2018; 83:81-89. [PMID: 30357450 DOI: 10.1007/s00280-018-3705-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/15/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE The aromatase inhibitor, letrozole, is being investigated in experimental animal models as a novel treatment for high-grade gliomas (HGGs). To facilitate optimal dosing for such studies, we evaluated the plasma and brain pharmacokinetics (PK) of letrozole in NOD-scid gamma (NSG) mice, which are frequently employed for assessing efficacy against patient-derived tumor cells. Furthermore, we evaluated the potential PK interactions between letrozole and temozolomide (TMZ) in Sprague-Dawley rats. METHODS NSG mice were administered letrozole (8 mg/kg; i.p) as a single or multiple dose (b.i.d, 10 days). Brain tissue and blood samples were collected over 24 h. Letrozole and TMZ interaction study employed jugular vein-cannulated rats (three groups; TMZ alone, letrozole alone and TMZ + letrozole). Intracerebral microdialysis was performed for brain extracellular fluid (ECF) collection simultaneously with venous blood sampling. Drug levels were measured employing HPLC and PK analysis was conducted using Phoenix WinNonlin®. RESULTS In NSG mice, peak plasma and brain tissue letrozole concentrations (Cmax) were 3-4 and 0.8-0.9 µg/ml, respectively. The elimination half-life was 2.6 h with minimal accumulation following multiple dosing. In the drug interaction study, no PK changes were evident when TMZ and letrozole were given in combination. For instance, peak plasma and brain ECF TMZ levels when given alone were 14.7 ± 1.1 and 4.6 ± 0.6 µg/ml, respectively, and 12.6 ± 2.4 and 3.4 ± 0.8 µg/ml, respectively, when given with letrozole. CONCLUSIONS These results will guide the optimization of dosing regimen for further development of letrozole for HGG treatment.
Collapse
|
7
|
Dieni CV, Sullivan JA, Faralli M, Contemori S, Biscarini A, Pettorossi VE, Panichi R. 17 beta-estradiol synthesis modulates cerebellar dependent motor memory formation in adult male rats. Neurobiol Learn Mem 2018; 155:276-286. [PMID: 30125696 DOI: 10.1016/j.nlm.2018.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Neurosteroid 17 beta-estradiol (E2) is a steroid synthesized de novo in the nervous system that might influence neuronal activity and behavior. Nevertheless, the impact of E2 on the functioning of those neural systems in which it is slightly synthesized is less questioned. The vestibulo-ocular reflex (VOR) adaptation, may provide an ideal arena for investigating this issue. Indeed, E2 modulates cerebellar parallel fiber-Purkinje cell synaptic plasticity that underlies encoding of VOR adaptation. Moreover, aromatase expression in the cerebellum of adult rodents is maintained at very low levels and localized to Purkinje cells. The significance of age-related maintenance of low levels of aromatase expression in the cerebellum on behavior, however, has yet to be explored. Our aim in this study was to determine whether E2 synthesis exerts an effective and persistent modulation of VOR adaptation in adult male rats. To answer this question, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in VOR adaptation using an oral dose (2.5 mg/kg) of the aromatase inhibitor Letrozole in peri-pubertal and post-pubertal male rats. We found that Letrozole acutely impaired gain increases and decreases in VOR adaptation without altering basal ocular-motor performance and that these effects were similar in peri-pubertal and post-pubertal rats. Thus, in adult male rats neurosteroid E2 effectively modulates VOR adaptation in both of the periods studied. These findings imply that the adult cerebellum uses E2 synthesis for modulating motor memory formation and suggest that low and extremely localized E2 production may play a role in adaptive phenomena.
Collapse
Affiliation(s)
- Cristina V Dieni
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Mario Faralli
- Department of Medical-Surgical Specialization, Otolaryngology and Cervicofacial Surgery Division, University of Perugia, 06127 Perugia, Italy
| | - Samuele Contemori
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy
| | - Andrea Biscarini
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy
| | - Vito E Pettorossi
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy
| | - Roberto Panichi
- Department of Experimental Medicine Section of Physiology and Biochemistry, University of Perugia, 06127 Perugia, Italy.
| |
Collapse
|
8
|
Choi HS, Lee MJ, Choi SR, Smeester BA, Beitz AJ, Lee JH. Spinal Sigma-1 Receptor-mediated Dephosphorylation of Astrocytic Aromatase Plays a Key Role in Formalin-induced Inflammatory Nociception. Neuroscience 2018; 372:181-191. [PMID: 29289721 DOI: 10.1016/j.neuroscience.2017.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023]
Abstract
Aromatase is a key enzyme responsible for the biosynthesis of estrogen from testosterone. Although recent evidence indicates that spinal cord aromatase participates in nociceptive processing, the mechanisms underlying its regulation and its involvement in nociception remain unclear. The present study focuses on the potential role of astrocyte aromatase in formalin-induced acute pain and begins to uncover one mechanism by which spinal aromatase activation is controlled. Following intraplantar formalin injection, nociceptive responses were quantified and immunohistochemistry/co-immunoprecipitation assays were used to investigate the changes in spinal Fos expression and the phospho-serine levels of spinal aromatase. Intrathecal (i.t.) injection of letrozole (an aromatase inhibitor) mitigated both the late phase formalin-induced nociceptive responses and formalin-induced spinal Fos expression. Furthermore, formalin-injected mice showed significantly reduced phospho-serine levels of aromatase, which is associated with the rapid activation of this enzyme. However, sigma-1 receptor inhibition with i.t. BD1047 blocked the dephosphorylation of aromatase and potentiated the pharmacological effect of letrozole on formalin-induced nociceptive responses. In addition, i.t. administration of a sub-effective dose of BD1047 potentiated the pharmacological effect of cyclosporin A (a calcineurin inhibitor) on both the formalin-induced reduction in phospho-serine levels of aromatase and nociceptive behavior. These results suggest that dephosphorylation is an important regulatory mechanism involved in the rapid activation of aromatase and that spinal sigma-1 receptors mediate this dephosphorylation of aromatase through an intrinsic calcineurin pathway.
Collapse
Affiliation(s)
- Hoon-Seong Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Mi-Ji Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Branden A Smeester
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats. Brain Struct Funct 2017; 223:837-850. [PMID: 28942480 DOI: 10.1007/s00429-017-1514-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
The vestibulo-ocular reflex (VOR) adaptation is an ideal model for investigating how the neurosteroid 17 beta-estradiol (E2) contributes to the modification of behavior by regulating synaptic activities. We hypothesized that E2 impacts VOR adaptation by affecting cerebellar synaptic plasticity at the parallel fiber-Purkinje cell (PF) synapse. To verify this hypothesis, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in adaptation of the VOR in male rats using an oral dose (2.5 mg/kg) of the aromatase inhibitor letrozole. We also assessed the effect of letrozole on synaptic plasticity at the PF synapse in vitro, using cerebellar slices from male rats. We found that letrozole acutely impaired both gain increases and decreases adaptation of the VOR without altering basal ocular-motor performance. Moreover, letrozole prevented long-term potentiation at the PF synapse (PF-LTP) without affecting long-term depression (PF-LTD). Thus, in male rats neurosteroid E2 has a relevant impact on VOR adaptation and affects exclusively PF-LTP. These findings suggest that E2 might regulate changes in VOR adaptation by acting locally on cerebellar and extra-cerebellar synaptic plasticity sites.
Collapse
|
10
|
Shingel KI, Selyanin M, Filion MC, Polyak F. Solid dispersions of drugs in hyaluronan matrix: The role of the biopolymer in modulating drug activity in vivo. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Sato SM, Woolley CS. Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model. eLife 2016; 5. [PMID: 27083045 PMCID: PMC4862752 DOI: 10.7554/elife.12917] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Status epilepticus (SE) is a common neurological emergency for which new treatments are needed. In vitro studies suggest a novel approach to controlling seizures in SE: acute inhibition of estrogen synthesis in the brain. Here, we show in rats that systemic administration of an aromatase (estrogen synthase) inhibitor after seizure onset strongly suppresses both electrographic and behavioral seizures induced by kainic acid (KA). We found that KA-induced SE stimulates synthesis of estradiol (E2) in the hippocampus, a brain region commonly involved in seizures and where E2 is known to acutely promote neural activity. Hippocampal E2 levels were higher in rats experiencing more severe seizures. Consistent with a seizure-promoting effect of hippocampal estrogen synthesis, intra-hippocampal aromatase inhibition also suppressed seizures. These results reveal neurosteroid estrogen synthesis as a previously unknown factor in the escalation of seizures and suggest that acute administration of aromatase inhibitors may be an effective treatment for SE. DOI:http://dx.doi.org/10.7554/eLife.12917.001 Seizures occur when connected groups of cells in the brain become over-active and fire together. Current anti-seizure medications work by reducing brain activity generally. Although this is often effective in controlling seizures, it can also lead to negative side effects like drowsiness, dizziness or difficulty concentrating. A better alternative would be to target a factor that promotes activity especially during seizures. Most people think of estrogens as being female sex hormones. However, estrogens are also made in the brain of both sexes, where they could promote activity during seizures. Sato and Woolley therefore set out to test a two-part hypothesis: that seizures stimulate the production of estrogen in the brain, and that inhibiting this production process just as seizures begin would make seizures less severe. Sato and Woolley studied male and female rats and found that in both sexes, seizures stimulate the production of estrogens in the hippocampus – a part of the brain that is often involved in seizures. Because estrogens are known to increase the activity of cells in the hippocampus, this suggested that estrogens that are produced in the brain during seizures could make seizures worse. Sato and Woolley tested this by injecting rats with a drug that inhibits estrogen production, called an aromatase inhibitor, shortly after seizures began. The drug strongly suppressed seizures, whereas control rats that did not receive the injection continued to have seizures. Overall, Sato and Woolley show that the production of estrogen in the brain escalates seizure activity, and suggest that aromatase inhibitors may be useful for controlling seizures. Several questions remain that require further study. How does seizure activity lead to estrogen being made in the brain? How do estrogen levels go back down after a seizure? What circumstances other than seizures stimulate brain estrogen production, and what roles does this production process play in activity that is not related to seizures? DOI:http://dx.doi.org/10.7554/eLife.12917.002
Collapse
Affiliation(s)
- Satoru M Sato
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Catherine S Woolley
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
12
|
Robarge JD, Duarte DB, Shariati B, Wang R, Flockhart DA, Vasko MR. Aromatase inhibitors augment nociceptive behaviors in rats and enhance the excitability of sensory neurons. Exp Neurol 2016; 281:53-65. [PMID: 27072527 DOI: 10.1016/j.expneurol.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Although aromatase inhibitors (AIs) are commonly used therapies for breast cancer, their use is limited because they produce arthralgia in a large number of patients. To determine whether AIs produce hypersensitivity in animal models of pain, we examined the effects of the AI, letrozole, on mechanical, thermal, and chemical sensitivity in rats. In ovariectomized (OVX) rats, administering a single dose of 1 or 5mg/kg letrozole significantly reduced mechanical paw withdrawal thresholds, without altering thermal sensitivity. Repeated injection of 5mg/kg letrozole in male rats produced mechanical, but not thermal, hypersensitivity that extinguished when drug dosing was stopped. A single dose of 5mg/kg letrozole or daily dosing of letrozole or exemestane in male rats also augmented flinching behavior induced by intraplantar injection of 1000nmol of adenosine 5'-triphosphate (ATP). To determine whether sensitization of sensory neurons contributed to AI-induced hypersensitivity, we evaluated the excitability of neurons isolated from dorsal root ganglia of male rats chronically treated with letrozole. Both small and medium-diameter sensory neurons isolated from letrozole-treated rats were more excitable, as reflected by increased action potential firing in response to a ramp of depolarizing current, a lower resting membrane potential, and a lower rheobase. However, systemic letrozole treatment did not augment the stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP) from spinal cord slices, suggesting that the enhanced nociceptive responses were not secondary to an increase in peptide release from sensory endings in the spinal cord. These results provide the first evidence that AIs modulate the excitability of sensory neurons, which may be a primary mechanism for the effect of these drugs to augment pain behaviors in rats.
Collapse
Affiliation(s)
- Jason D Robarge
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Djane B Duarte
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Laboratório de Farmacologia Molecular, Faculdade de Ciências da Saúde, Universidade de Brasília, Brazil.
| | - Behzad Shariati
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Ruizhong Wang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - David A Flockhart
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
13
|
Staelens D, Liang S, Appeltans B, Van de Wouwer M, Van den Mooter G, Van Assche G, Himmelreich U, Vande Velde G. Visualization of delayed release of compounds from pH-sensitive capsules in vitro and in vivo in a hamster model. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:24-31. [PMID: 26190202 DOI: 10.1002/cmmi.1654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/30/2015] [Accepted: 05/20/2015] [Indexed: 12/23/2022]
Abstract
Delayed controlled release is an innovative strategy to locally administer therapeutic compounds (e.g. chemotherapeutics, antibodies etc.). This would improve efficiency and reduce side effects compared with systemic administration. To enable the evaluation of the efficacy of controlled release strategies both in vitro and in vivo, we investigated the release of contrast agents ((19)F-FDG and BaSO4) to the intestinal tract from capsules coated with pH-sensitive polymers (EUDRAGIT L-100) by using two complementary techniques, i.e. (19)F magnetic resonance imaging (MRI) and computed tomography (CT). Using in vitro (19)F-MRI, we were able to non-destructively and dynamically establish a time window of 2 h during which the capsules are resistant to low pH. With (19)F-MRI, we could establish the exact time point when the capsules became water permeable, before physical degradation of the capsule. This was complemented by CT imaging, which provided longitudinal information on physical degradation of the capsule at low pH that was only seen after 230 min. After oral administration to hamsters, (19)F-MRI visualized the early event whereby the capsule becomes water permeable after 2 h. Additionally, using CT, the integrity and location (stomach and small intestines) of the capsule after administration could be monitored. In conclusion, we propose combined (19)F-MRI and CT to non-invasively visualize the different temporal and spatial events regarding the release of compounds, both in an in vitro setting and in the gastrointestinal tract of small animal models. This multimodal imaging approach will enable the in vitro and in vivo evaluation of further technical improvements to controlled release strategies.
Collapse
Affiliation(s)
- Dominiek Staelens
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Sayuan Liang
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Bernard Appeltans
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Marlies Van de Wouwer
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,PharmAbs, KU Leuven, Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Wempe MF, Lightner JW, Miller B, Iwen TJ, Rice PJ, Wakui S, Anzai N, Jutabha P, Endou H. Potent human uric acid transporter 1 inhibitors: in vitro and in vivo metabolism and pharmacokinetic studies. DRUG DESIGN DEVELOPMENT AND THERAPY 2012; 6:323-39. [PMID: 23152669 PMCID: PMC3496402 DOI: 10.2147/dddt.s35805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human uric acid transporter 1 (hURAT1; SLC22A12) is a very important urate anion exchanger. Elevated urate levels are known to play a pivotal role in cardiovascular diseases, chronic renal disease, diabetes, and hypertension. Therefore, the development of potent uric acid transport inhibitors may lead to novel therapeutic agents to combat these human diseases. The current study investigates small molecular weight compounds and their ability to inhibit 14C-urate uptake in oocytes expressing hURAT1. Using the most promising drug candidates generated from our structure-activity relationship findings, we subsequently conducted in vitro hepatic metabolism and pharmacokinetic (PK) studies in male Sprague-Dawley rats. Compounds were incubated with rat liver microsomes containing cofactors nicotinamide adenine dinucleotide phosphate and uridine 5'-diphosphoglucuronic acid. In vitro metabolism and PK samples were analyzed using liquid chromatography/mass spectrometry-mass spectrometry methods. Independently, six different inhibitors were orally (capsule dosing) or intravenously (orbital sinus) administered to fasting male Sprague-Dawley rats. Blood samples were collected and analyzed; these data were used to compare in vitro and in vivo metabolism and to compute noncompartmental model PK values. Mono-oxidation (Phase I) and glucuronidation (Phase II) pathways were observed in vitro and in vivo. The in vitro data were used to compute hepatic intrinsic clearance, and the in vivo data were used to compute peak blood concentration, time after administration to achieve peak blood concentration, area under the curve, and orally absorbed fraction. The experimental data provide additional insight into the hURAT1 inhibitor structure-activity relationship and in vitro-in vivo correlation. Furthermore, the results illustrate that one may successfully prepare potent inhibitors that exhibit moderate to good oral bioavailability.
Collapse
Affiliation(s)
- Michael F Wempe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Acharjya SK, Bhattamisra SK, Muddana BRE, Bera RVV, Panda P, Panda BP, Mishra G. Development of a high-performance liquid chromatographic method for determination of letrozole in wistar rat serum and its application in pharmacokinetic studies. Sci Pharm 2012; 80:941-53. [PMID: 23264941 PMCID: PMC3528055 DOI: 10.3797/scipharm.1206-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/31/2012] [Indexed: 11/25/2022] Open
Abstract
A fast, sensitive, and specific reversed-phase high-performance liquid chromatographic (RP–HPLC) method for the determination of letrozole in Wistar rat serum was developed. In this method, liquid–liquid extraction of letrozole was achieved using diethyl ether as the extracting solvent. The analysis was carried out on a reversed-phase C18 (250 mm × 4.6 mm, 5 μm) column with an isocratic mobile phase of methanol–water (70:30,v/v), at a flow rate of 1.0 mL min−1. Detection was carried out at 239 nm with a UV–visible spectrophoto-metric detector. The method was shown to be selective and linear over the concentration range of 0.15–100 μg mL−1. The intra-day and inter-day precision studies showed good reproducibility with coefficients of variation less than 11% for the analyte. The relative errors of intra– and inter–day accuracy were within −11.52 to −2.26%. The limit of quantification was evaluated to be 0.15 μg mL−1. The method was successfully applied for the pharmacokinetic study of letrozole after oral administration of 10 mg kg−1 of letrozole in six healthy Wistar rats.
Collapse
Affiliation(s)
- Sasmita Kumari Acharjya
- Department of Pharmaceutical Analysis and Quality Assurance, Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, 760010, India
| | | | | | | | | | | | | |
Collapse
|
16
|
Optimizing the Formulation of Poorly Water-Soluble Drugs. FORMULATING POORLY WATER SOLUBLE DRUGS 2012. [DOI: 10.1007/978-1-4614-1144-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Klein S, Wempe MF, Zoeller T, Buchanan NL, Lambert JL, Ramsey MG, Edgar KJ, Buchanan CM. Improving glyburide solubility and dissolution by complexation with hydroxybutenyl-β-cyclodextrin. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.01.0004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
Glyburide, an important drug for type 2 diabetes, has extremely poor aqueous solubility and resulting low bioavailability. This study describes the ability of hydroxybutenyl-β-cyclodextrin (HBenBCD) to form complexes with glyburide, with enhanced solubility and dissolution rate in vitro.
Method
Glyburide and glyburide-HBenBCD were evaluated in various test media known to simulate human gastrointestinal conditions in the fasted and fed states, respectively.
Key findings
At ∼14 wt% drug load, in the presence of HBenBCD, an almost 400-fold increase in glyburide aqueous solubility was observed. In the presence of HBenBCD, glyburide solubility was also significantly improved in all physiologically relevant test media. Subsequent dissolution experiments confirmed the solubility study results; the dissolution rate and total amount of drug released were significantly increased.
Conclusions
Complexation with HBenBCD may be an effective way to increase the bioavailability of glyburide.
Collapse
Affiliation(s)
- Sandra Klein
- Goethe University, Institute of Pharmaceutical Technology, Frankfurt/Main, Germany
| | - Michael F Wempe
- Eastman Chemical Company, Research Laboratories, Kingsport, TN, US
- Department of Pharmacology, East Tennessee State University, Johnson City, TN, US
| | - Thomas Zoeller
- Goethe University, Institute of Pharmaceutical Technology, Frankfurt/Main, Germany
| | - Norma L Buchanan
- Eastman Chemical Company, Research Laboratories, Kingsport, TN, US
| | | | - Michael G Ramsey
- Eastman Chemical Company, Research Laboratories, Kingsport, TN, US
| | - Kevin J Edgar
- Virginia Tech Department of Wood Science and Forest Products, Blacksburg, VA, US
| | | |
Collapse
|
18
|
Lu Y, Zhang T, Tao J, Ji G, Wang S. Preparation, characterization, and pharmacokinetics of the inclusion complex of genipin-beta-cyclodextrin. Drug Dev Ind Pharm 2009; 35:1452-1459. [PMID: 19929204 DOI: 10.3109/03639040903002151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to prepare the inclusion complex of genipin (GP) and beta-cyclodextrin (beta-CD) with improved stability, solubility, and bioavailability and to study the pharmacokinetics of beta-CD inclusion complex in mice. METHODS Lyophilization was employed in the preparation of the inclusion complex of GP-beta-CD, whose formation was confirmed by infrared, ultraviolet, differential scanning calorimetry, X-ray diffraction, and phase solubility method. Comparative studies on the in vitro solubility and stability and in vivo evaluation of GP in mice were investigated. Liquid-liquid extraction was used for the isolation of GP in the assay of its concentration. After injection in the caudal vein at equal doses of the inclusion complex of free GP, the drug concentration in mice plasma at fixed time after administration was determined by high-performance liquid chromatography method. RESULTS The results demonstrated that GP-beta-CD solid powders showed improved stability and solubility in aqueous solution, when comparing with free GP. The results of the in vivo study showed that the inclusion complex of GP-beta-CD exhibited the dissimilar pharmacokinetics from that of free GP after intravenous administration. The inclusion complex of GP-beta-CD displayed longer MRT(0-infinity) and higher AUC(0-infinity) than free GP did. CONCLUSIONS The relative bioavailability of the inclusion complex of GP-beta-CD to free GP was 305.3%, which demonstrated that GP formulations containing beta-CD significantly increased the bioavailability.
Collapse
Affiliation(s)
- Yi Lu
- College of Chinese Material Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | | | | | | | | |
Collapse
|