1
|
Morajkar RV, Fatrekar AP, Mohanty A, Vernekar AA. A review on the role of transition metals in selenylation reactions. Curr Org Synth 2021; 19:366-392. [PMID: 34544346 DOI: 10.2174/1570179418666210920150142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has emerged as a distinctive area of research with tremendous utility in the synthesis of biologically and pharmaceutically active molecules. Significant synthetic approaches have been made for the construction of C-Se bonds which find use in other organic transformations. This review focuses on the versatility of transition metal-mediated selenylation reactions, providing insights into various synthetic pathways and mechanistic details. Further, this review aims to offer a broad perspective for designing efficient and novel catalysts to incorporate organoselenium moiety into the inert C-H bonds.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Abhijeet Mohanty
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| |
Collapse
|
2
|
Rathore V, Jose C, Kumar S. Organoselenium small molecules as catalysts for the oxidative functionalization of organic molecules. NEW J CHEM 2019. [DOI: 10.1039/c9nj00964g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This perspective highlights the critical analysis of the challenges, in the past decade, which led to the development of organoselenium compounds and their use as versatile catalysts in organic synthesis towards the oxidation of olefins and C–H bonds. Furthermore, the emphasis here differs from previous reviews of the field by classifying the various types of catalyses and the diverse strategies.
Collapse
Affiliation(s)
- Vandana Rathore
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Cavya Jose
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Sangit Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| |
Collapse
|
3
|
da Silva RB, Lange Coelho F, Rodembusch FS, Schwab RS, Schneider JMFM, da Silveira Rampon D, Schneider PH. Straightforward synthesis of photoactive chalcogen functionalized benzimidazo[1,2-a]quinolines. NEW J CHEM 2019. [DOI: 10.1039/c9nj01948k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of new organochalcogen derivatives of benzimidazo[1,2-a]quinolines were synthesized. Both sulfur and selenium derivatives presented similar photophysical properties with absorption in the UV region and fluorescence emission in the violet-blue.
Collapse
Affiliation(s)
- Rodrigo Borges da Silva
- Instituto de Química
- Departamento de Química Orgânica
- Universidade Federal do Rio Grande do Sul
- UFRGS, Av. Bento Gonçalves
- Porto Alegre
| | - Felipe Lange Coelho
- Instituto de Química
- Departamento de Química Orgânica
- Universidade Federal do Rio Grande do Sul
- UFRGS, Av. Bento Gonçalves
- Porto Alegre
| | - Fabiano Severo Rodembusch
- Instituto de Química
- Departamento de Química Orgânica
- Universidade Federal do Rio Grande do Sul
- UFRGS, Av. Bento Gonçalves
- Porto Alegre
| | - Ricardo Samuel Schwab
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- Rodovia Washington Luís
- São Carlos
- Brazil
| | | | - Daniel da Silveira Rampon
- Laboratory of Polymers and Molecular Catalysis (LAPOCA)
- Department of Chemistry
- Federal University of Paraná – UFPR
- Curitiba
- Brazil
| | - Paulo Henrique Schneider
- Instituto de Química
- Departamento de Química Orgânica
- Universidade Federal do Rio Grande do Sul
- UFRGS, Av. Bento Gonçalves
- Porto Alegre
| |
Collapse
|
4
|
Sousa FSS, Birmann PT, Balaguez R, Alves D, Brüning CA, Savegnago L. α-(phenylselanyl) acetophenone abolishes acute restraint stress induced-comorbid pain, depression and anxiety-related behaviors in mice. Neurochem Int 2018; 120:112-120. [DOI: 10.1016/j.neuint.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022]
|
5
|
Nam Y, Min YS, Sohn UD. Recent advances in pharmacological research on the management of irritable bowel syndrome. Arch Pharm Res 2018; 41:955-966. [PMID: 30132170 DOI: 10.1007/s12272-018-1068-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS), a common gastrointestinal (GI) disorder, is associated with various factors, including lifestyle, infection, stress, intestinal flora, and related diseases. The pharmacotherapeutic stimulation of receptors and downstream signaling pathways is effective in reducing IBS symptoms; however, it is still associated with adverse effects. Various receptors related to GI motility and visceral hypersensitivity should be considered to enhance the benefit/risk ratio of IBS treatments. This review discusses recent pharmacological advances in IBS management. Several receptors related to GI motility and abdominal pain are investigated in various angles. 5-Hydroxytryptamine (5-HT) is an important neurotransmitter that activates the colonic mucosal 5-HT4 receptor without causing severe cardiovascular adverse effects. The clinical potential of ramosetron for diarrhea-predominant IBS has been suggested because of a lower risk of ischemic colitis than conventional 5-HT3 receptor antagonists. Toll-like receptors (TLRs), especially TLR2 and TLR4, show a significant effect on the post-infection symptoms and lipopolysaccharide-mediated regulation of GI motility. Histamine is a well-known nitrogenous compound that regulates inflammatory responses and visceral hypersensitivity. Histamine 1 receptor-mediated sensitization of the transient receptor potential vanilloid 1 is associated with IBS. Pharmacological approaches based on these signaling pathways could be useful in the development of novel IBS treatments.
Collapse
Affiliation(s)
- Yoonjin Nam
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-RO, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Young Sil Min
- Department of Medical Plant Science, Jung Won University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, 84 Heukseok-RO, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
6
|
Anversa RG, Sousa FSS, Birmann PT, Lima DB, Lenardão EJ, Bruning CA, Savegnago L. Antinociceptive and anti-inflammatory effects of 1,2-bis-(4 methoxyphenylselanyl) styrene in mice: involvement of the serotonergic system. J Pharm Pharmacol 2018; 70:901-909. [PMID: 29582424 DOI: 10.1111/jphp.12907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pain is one of the most prevalent, costly and disabling conditions that reduces quality of life. Although there are many analgesics available, there is some concern regarding their efficacy, safety and side effects. Organic selenium compounds are attractive targets of various research groups due to their pharmacological properties. OBJECTIVES The aim of this study was to evaluate the antinociceptive and anti-inflammatory activity of 1,2-bis-(4-methoxyphenylselanyl) styrene (BMOSE) in mice, as well as to investigate the mechanism involved in the antinociceptive effect. METHODS The animals were submitted to the formalin and glutamate tests. The assessment of the possible involvement of the serotonergic system in BMOSE antinociceptive activity was performed using the glutamate test. Also, we investigated the possible toxicity of the compound. KEY FINDINGS 1,2-bis-(4-methoxyphenylselanyl) styrene (0.1-50 mg/kg, i.g.) was efficient in avoiding nociception induced by glutamate and formalin and also reduced paw oedema. The possible involvement of 5-HT3 serotoninergic receptor antagonist ondansetron blocked the antinociceptive effect of BMOSE. The acute toxicity assays did not show any toxicity related to the administration of BMOSE (200 mg/kg). CONCLUSIONS It is possible to conclude that BMOSE has both antinociceptive and anti-inflammatory activity, and the serotoninergic system, more specifically, the 5-HT3 receptor, is involved in the effect.
Collapse
Affiliation(s)
- Roberta Gonçalves Anversa
- Grupo de Pesquisa em Neurobiotecnologia - GPN- Centro de Desenvolvimento Tecnológico, CDTec, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Fernanda Severo Sabedra Sousa
- Grupo de Pesquisa em Neurobiotecnologia - GPN-Programa de Pós Graduação em Bioquímica e Bioprospecção, PPGBBio, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Paloma Taborda Birmann
- Grupo de Pesquisa em Neurobiotecnologia - GPN-Programa de Pós Graduação em Bioquímica e Bioprospecção, PPGBBio, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - David Borba Lima
- Laboratório de Síntese Orgânica Limpa- LASOL, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Laboratório de Síntese Orgânica Limpa- LASOL, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - César Augusto Bruning
- Grupo de Pesquisa em Neurobiotecnologia - GPN-Programa de Pós Graduação em Bioquímica e Bioprospecção, PPGBBio, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia - GPN- Centro de Desenvolvimento Tecnológico, CDTec, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| |
Collapse
|
7
|
Silva VDG, Reis AS, Pinz MP, da Fonseca CAR, Duarte LFB, Roehrs JA, Alves D, Luchese C, Wilhelm EA. Further analysis of acute antinociceptive and anti-inflammatory actions of 4-phenylselenyl-7-chloroquinoline in mice. Fundam Clin Pharmacol 2017; 31:513-525. [PMID: 28543930 DOI: 10.1111/fcp.12295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/24/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
Abstract
A new quinoline containing selenium, 4-phenylselenyl-7-chloroquinoline (4-PSQ), was described and synthetized by our research group. Recently, we demonstrated the potential antinociceptive and anti-inflammatory of 4-PSQ. For this reason, the first objective of this study was to expand our previous findings by investigating the contribution of glutamatergic, serotonergic, and nitrergic systems to the acute antinociceptive action of this compound. Pretreatment with 4-PSQ (0.01-25 mg/kg, p.o.) reduced the nociception induced by glutamate. MK-801 (an uncompetitive antagonist of the N-Methyl-d-aspartate (NMDA) receptor) blocked the antinociceptive effect exerted by 4-PSQ (25 mg/kg, p.o.) in the acetic acid-induced abdominal writhing test. The pretreatment with WAY100635 (a selective antagonist of 5-HT1A receptor), ketanserin (a selective antagonist of 5-HT2A/2C receptor), and pindolol (a nonselective antagonist of 5-HT1A/1B receptors) partially blocked the antinociceptive effect caused by 4-PSQ (25 mg/kg, per oral, p.o.) in the acetic acid-induced abdominal writhing test. Nitric oxide precursor, l-arginine hydrochloride, partially reversed antinociception caused by 4-PSQ or ω-nitro-l-arginine (l-NOARG). Treatments did not modify the locomotor and exploratory activities of mice. Additionally, the acute anti-inflammatory effect of 4-PSQ in a model of pleurisy induced by carrageenan in mice was investigated. 4-PSQ reduced the cellular migration, pleural exudate accumulation, and myeloperoxidase activity induced by carrageenan exposure. 4-PSQ protected against the increase in reactive species levels and reduction of nonprotein thiol levels induced by carrageenan. Data presented here showed that the modulation of serotonergic, nitrergic, and glutamatergic systems contributed to the antinociceptive effect of 4-PSQ and it reinforced the therapeutic potential of this quinolinic compound for acute inflammation.
Collapse
Affiliation(s)
- Vanessa D G Silva
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angélica S Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Mikaela P Pinz
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Caren A R da Fonseca
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Luis Fernando B Duarte
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Juliano A Roehrs
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio - Grupo de Pesquisa em Neurobiotecnologia, CCQFA - Universidade Federal de Pelotas, UFPel - P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
8
|
Donato F, Pavin NF, Goes ATR, Souza LC, Soares LC, Rodrigues OED, Jesse CR, Savegnago L. Antinociceptive and anti-hyperalgesic effects of bis(4-methylbenzoyl) diselenide in mice: evidence for the mechanism of action. PHARMACEUTICAL BIOLOGY 2015; 53:395-403. [PMID: 25489627 DOI: 10.3109/13880209.2014.922590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT The organoselenium compounds have been described to demonstrate several biological activities, including pain management. OBJECTIVE This study investigated the antinociceptive, hyperalgesic, and toxic effects of oral administration of bis(4-methylbenzoyl) diselenide (BMD) in mice. MATERIALS AND METHODS The antinociceptive and anti-hyperalgesic effects of BMD (1, 5, 10, 25, and 50 mg/kg, p.o.) were evaluated using models of nociception: formalin, capsaicin, bradykinin (BK), cinnamaldehyde, phorbol myristate acetate (PMA), 8-bromo-cAM, and glutamate-induced nociception; and mechanical hyperalgesia induced by carrageenan (Cg) or complete Freund's adjuvant (CFA). The acute toxicity was evaluated by biochemical markers for hepatic and renal damages. RESULTS BMD significantly inhibited the licking time of the injected paw in the early and late phases of a formalin test with ED50 values of 14.2 and 10.8 mg/kg, respectively. This compound reduced nociception produced by capsaicin (ED50 of 32.5 mg/kg), BK (ED50 of 24.6 mg/kg), glutamate (ED50 of 28.7 mg/kg), cinnamaldehyde (ED50 of 18.9 mg/kg), PMA (ED50 of 9.6 mg/kg), and 8-bromo-cAMP (ED50 of 24.8 mg/kg). In the glutamate test, the pretreatment with nitric oxide (NO) precursor, L-arginine, reversed antinociception caused by BMD or N(ω)-nitro-L-arginine (L-NOARG), but the effect of BMD was not abolished by naloxone. Mechanical hyperalgesia induced by Cg and CFA was attenuated by BMD, 70 ± 4% and 65 ± 4%, respectively. Furthermore, a single oral dose of BMD did not change plasma aspartate (AST) and alanine aminotransferase (ALT) activities or urea and creatinine levels. CONCLUSION BMD demonstrated as a promising compound because of the antinociceptive and anti-hyperalgesic properties in mice.
Collapse
Affiliation(s)
- Franciele Donato
- Departamento de Bioquímica, Universidade Federal do Pampa (UNIPAMPA), Campus Uruguaiana , Uruguaiana, RS , Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zamberlan DC, Arantes LP, Machado ML, Golombieski R, Soares FAA. Diphenyl-diselenide suppresses amyloid-β peptide in Caenorhabditis elegans model of Alzheimer's disease. Neuroscience 2014; 278:40-50. [PMID: 25130558 DOI: 10.1016/j.neuroscience.2014.07.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common and devastating neurodegenerative disease. The etiology of AD has yet to be fully understood, and common treatments remain largely non-efficacious. The amyloid hypothesis posits that extracellular amyloid-β (Aβ) deposits are the fundamental etiological factor of the disease. The present study tested the organoselenium compound diphenyl-diselenide (PhSe)2, which is characterized by its antioxidant and antiinflammatory properties and has shown efficacy in several neurodegenerative disease models. We employed a transgenic Caenorhabditis elegans AD model to analyze the effects of (PhSe)2 treatment on Aβ peptide-induced toxicity. Chronic exposure to (PhSe)2 attenuated oxidative stress induced by Aβ1-42, with concomitant recovery of associative learning memory in C. elegans. Additionally, (PhSe)2 decreased Aβ1-42 transgene expression, suppressed Aβ1-42 peptide, and downregulated hsp-16.2 by reducing the need for this chaperone under Aβ1-42-induced toxicity. These observations suggest that (PhSe)2 plays an important role in protecting against oxidative stress-induced toxicity, thus representing a promising pharmaceutical modality that attenuates Aβ1-42 expression.
Collapse
Affiliation(s)
- D C Zamberlan
- Centro de Ciências Naturais e Exatas, Departamento de Química, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - L P Arantes
- Centro de Ciências Naturais e Exatas, Departamento de Química, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - M L Machado
- Centro de Ciências Naturais e Exatas, Departamento de Química, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - R Golombieski
- Centro de Ciências Naturais e exatas, Ciência Viva, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - F A A Soares
- Centro de Ciências Naturais e Exatas, Departamento de Química, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
10
|
Wollenhaupt SGN, Soares AT, Salgueiro WG, Noremberg S, Reis G, Viana C, Gubert P, Soares FA, Affeldt RF, Lüdtke DS, Santos FW, Denardin CC, Aschner M, Avila DS. Seleno- and telluro-xylofuranosides attenuate Mn-induced toxicity in C. elegans via the DAF-16/FOXO pathway. Food Chem Toxicol 2013; 64:192-9. [PMID: 24296137 DOI: 10.1016/j.fct.2013.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 01/12/2023]
Abstract
Organochalcogens are promising pharmacological agents that possess significant biological activities. Nevertheless, because of the complexity of mammalian models, it has been difficult to determine the molecular pathways and specific proteins that are modulated in response to treatments with these compounds. The nematode worm Caenorhabditis elegans is an alternative experimental model that affords easy genetic manipulations, green fluorescent protein tagging and in vivo live analysis of toxicity. Abundant evidence points to oxidative stress in mediating manganese (Mn)-induced toxicity. In this study we challenged worms with Mn, and investigated the efficacy of inedited selenium- and tellurium-xylofuranosides in reversing and/or protecting the worms from Mn-induced toxicity. In addition, we investigated their putative mechanism of action. First, we determined the lethal dose 50% (LD50) and the effects of the xylofuranosides on various toxic parameters. This was followed by studies on the ability of xylofuranosides to afford protection against Mn-induced toxicity. Both Se- and Te-xylofuranosides increased the expression of superoxide dismutase (SOD-3). Furthermore, we observed that the xylofuranosides induced nuclear translocation of the transcription factor DAF-16/FOXO, which in the worm is known to regulate stress responsiveness, aging and metabolism. These findings suggest that xylofuranosides attenuate toxicity Mn-induced, by regulating the DAF-16/FOXO signaling pathway.
Collapse
Affiliation(s)
- Suzi G N Wollenhaupt
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Ana Thalita Soares
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Willian G Salgueiro
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Simone Noremberg
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Gabriel Reis
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Carine Viana
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Priscila Gubert
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Felix A Soares
- Departamento de Química, Universidade Federal de Santa Maria - UFSM, CEP 97105-900, Santa Maria, RS, Brazil
| | - Ricardo F Affeldt
- Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Francielli W Santos
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Cristiane C Denardin
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Michael Aschner
- Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Daiana S Avila
- Laboraterio do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil.
| |
Collapse
|
11
|
Victoria FN, Martinez DM, Castro M, Casaril AM, Alves D, Lenardão EJ, Salles HD, Schneider PH, Savegnago L. Antioxidant properties of (R)-Se-aryl thiazolidine-4-carboselenoate. Chem Biol Interact 2013; 205:100-7. [DOI: 10.1016/j.cbi.2013.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/23/2013] [Accepted: 06/17/2013] [Indexed: 12/19/2022]
|
12
|
Bortolatto CF, Guerra Souza AC, Wilhelm EA, Nogueira CW. Acute treatment with bis selenide, an organic compound containing the trace element selenium, prevents memory deficits induced by reserpine in rats. Biol Trace Elem Res 2013; 151:92-9. [PMID: 23132249 DOI: 10.1007/s12011-012-9540-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/24/2012] [Indexed: 01/05/2023]
Abstract
Taking into account the promising pharmacological actions of (Z)-2,3-bis(4-chlorophenylselanyl) prop-2-en-1-ol) (bis selenide), an organic compound containing the trace element selenium, and the constant search for drugs that improve the cognitive performance, the objective of the present study was to investigate whether bis selenide treatment ameliorates memory deficits induced by reserpine in rats. For this aim, male adult rats received a single subcutaneous injection of reserpine (1 mg/kg), a biogenic amine-depleting agent used to induce memory deficit. After 24 h, bis selenide at doses of 25 and 50 mg/kg was administered to rats by intragastric route, and 1 h later, the animals were submitted to behavior tasks. The effects of acute administration of bis selenide on memory were evaluated by social recognition, step-down passive avoidance, and object recognition paradigms. Exploratory and locomotor activities of rats were determined using the open-field test. Analysis of data revealed that the social memory disruption caused by reserpine was reversed by bis selenide at both doses. In addition, bis selenide, at the highest dose, prevented the memory deficit resulting from reserpine administration to rats in step-down passive avoidance and object recognition tasks. No significant alterations in locomotor and exploratory behaviors were found in animals treated with reserpine and/or bis selenide. Results obtained from distinct memory behavioral paradigms revealed that an acute treatment with bis selenide attenuated memory deficits induced by reserpine in rats.
Collapse
Affiliation(s)
- Cristiani Folharini Bortolatto
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | |
Collapse
|
13
|
Sartori G, Neto JSS, Pesarico AP, Back DF, Nogueira CW, Zeni G. Bis-vinyl selenides obtained via iron(iii) catalyzed addition of PhSeSePh to alkynes: synthesis and antinociceptive activity. Org Biomol Chem 2013; 11:1199-208. [DOI: 10.1039/c2ob27064a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Organoselenium Bis Selenide Attenuates 3-Nitropropionic Acid-Induced Neurotoxicity in Rats. Neurotox Res 2012; 23:214-24. [DOI: 10.1007/s12640-012-9336-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 05/25/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
15
|
Avila DS, Benedetto A, Au C, Manarin F, Erikson K, Soares FA, Rocha JBT, Aschner M. Organotellurium and organoselenium compounds attenuate Mn-induced toxicity in Caenorhabditis elegans by preventing oxidative stress. Free Radic Biol Med 2012; 52:1903-10. [PMID: 22406322 PMCID: PMC3341511 DOI: 10.1016/j.freeradbiomed.2012.02.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 01/14/2023]
Abstract
Organochalcogens have been widely studied given their antioxidant activity, which confers neuroprotection, antiulcer, and antidiabetic properties. Given the complexity of mammalian models, understanding the cellular and molecular effects of organochalcogens has been hampered. The nematode worm Caenorhabditis elegans is an alternative experimental model that affords easy genetic manipulations, green fluorescent protein tagging, and in vivo live analysis of toxicity. We previously showed that manganese (Mn)-exposed worms exhibit oxidative-stress-induced neurodegeneration and life-span reduction. Here we use Mn-exposed worms as a model for an oxidatively challenged organism to investigate the underlying mechanisms of organochalcogen antioxidant properties. First, we recapitulate in C. elegans the effects of organochalcogens formerly observed in mice, including their antioxidant activity. This is followed by studies on the ability of these compounds to afford protection against Mn-induced toxicity. Diethyl-2-phenyl-2-tellurophenyl vinyl phosphonate (DPTVP) was the most efficacious compound, fully reversing the Mn-induced reduction in survival and life span. Ebselen was also effective, reversing the Mn-induced reduction in survival and life span, but to a lesser extent compared with DPTVP. DPTVP also lowered Mn-induced increases in oxidant levels, indicating that the increased survival associated with exposure to this compound is secondary to a decrease in oxidative stress. Furthermore, DPTVP induced nuclear translocation of the transcriptional factor DAF-16/FOXO, which regulates stress responsiveness and aging in worms. Our findings establish that the organochalcogens DPTVP and ebselen act as antiaging agents in a model of Mn-induced toxicity and aging by regulating DAF-16/FOXO signaling and attenuating oxidative stress.
Collapse
|
16
|
Pavin NF, Donato F, Cibin FW, Jesse CR, Schneider PH, de Salles HD, Soares LDA, Alves D, Savegnago L. Antinociceptive and anti-hypernociceptive effects of Se-phenyl thiazolidine-4-carboselenoate in mice. Eur J Pharmacol 2011; 668:169-76. [PMID: 21756899 DOI: 10.1016/j.ejphar.2011.06.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 11/20/2022]
Abstract
In this study, the antinociceptive, anti-hypernociceptive and toxic effects of orally administered (R)-Se-phenyl thiazolidine-4-carboselenoate (Se-PTC, 1-50 mg/kg) were evaluated in mice. Se-PTC did not change plasma aspartate (AST) and alanine aminotransferase (ALT) activities or urea and creatinine levels. Furthermore, in an open field test, Se-PTC did not alter the number of crossings and rearing. Se-PTC significantly reduced the amount of writhing when assessed by acetic acid-induced visceral nociception and attenuated the licking time of the injected paw in the early and late phases of a formalin test. In addition, Se-PTC reduced nociception produced by intra-plantar (i.pl.) injection of glutamate, capsaicin, cinnalmaldehyde, bradykinin, phorbol myristate acetate and 8-Bromo-cAMP. Se-PTC caused a significant increase in hot plate and tail-immersion response latencies, but the antinociceptive effect of Se-PTC in the tail immersion was not abolished by pretreatment with the non-selective opioid receptor antagonist, naloxone. Se-PTC (25 mg/kg) significantly inhibited nociceptive behavior induced by intrathecal (i.t.) injection of glutamate, N-methyl-D-aspartate (NMDA) and (±)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD), but failed to affect nociception induced by kainate and α-amino-3-hydroxy-5-mehtyl-4-isoxazolepropionic acid (AMPA). Mechanical hypernociception induced by carrageenan and Complete Freund's Adjuvant was attenuated by Se-PTC administration. These results indicate that Se-PTC produces antinociception in several models of nociception.
Collapse
Affiliation(s)
- Natasha Frasson Pavin
- Universidade Federal do Pampa, BR 472, KM 582, Uruguaiana, CEP 97500-970, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jesse CR, Wilhelm EA, Nogueira CW. Depression-like behavior and mechanical allodynia are reduced by bis selenide treatment in mice with chronic constriction injury: a comparison with fluoxetine, amitriptyline, and bupropion. Psychopharmacology (Berl) 2010; 212:513-22. [PMID: 20689938 DOI: 10.1007/s00213-010-1977-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 07/25/2010] [Indexed: 01/12/2023]
Abstract
RATIONALE Neuropathic pain is associated with significant co-morbidities, including depression, which impact considerably on the overall patient experience. Pain co-morbidity symptoms are rarely assessed in animal models of neuropathic pain. Neuropathic pain is characterized by hyperexcitability within nociceptive pathways and remains difficult to treat with standard analgesics. OBJECTIVES The present study determined the effect of bis selenide and conventional antidepressants (fluoxetine, amitriptyline, and bupropion) on neuropathic pain using mechanical allodynic and on depressive-like behavior. METHODS Male mice were subjected to chronic constriction injury (CCI) or sham surgery and were assessed on day 14 after operation. Mice received oral treatment with bis selenide (1-5 mg/kg), fluoxetine, amitriptyline, or bupropion (10-30 mg/kg). The response frequency to mechanical allodynia in mice was measured with von Frey hairs. Mice were evaluated in the forced swimming test (FST) test for depression-like behavior. RESULTS The CCI procedure produced mechanical allodynia and increased depressive-like behavior in the FST. All of the drugs produced antiallodynic effects in CCI mice and produced antidepressant effects in control mice without altering locomotor activity. In CCI animals, however, only the amitriptyline and bis selenide treatments significantly reduced immobility in the FST. CONCLUSION These data demonstrate an important dissociation between the antiallodynic and antidepressant effects in mice when tested in a model of neuropathic pain. Depressive behavior in CCI mice was reversed by bis selenide and amitriptyline but not by the conventional antidepressants fluoxetine and buproprion. Bis selenide was more potent than the other drugs tested for antidepressant-like and antiallodynic effects in mice.
Collapse
Affiliation(s)
- Cristiano R Jesse
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | | | | |
Collapse
|