1
|
Cheng KC, Cheung CHA, Chiang HC. Early Aβ42 Exposure Causes Learning Impairment in Later Life. Aging Dis 2022; 13:868-883. [PMID: 35656119 PMCID: PMC9116909 DOI: 10.14336/ad.2021.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
Amyloid cascade hypothesis proposes that amyloid β (Aβ) accumulation is the initiator and major contributor to the development of Alzheimer’s disease (AD). However, this hypothesis has recently been challenged by clinical studies showing that reduction of Aβ accumulation in the brain does not accompany with cognitive improvement, suggesting that therapeutically targeting Aβ in the brain may not be sufficient for restoring cognitive function. Since the molecular mechanism underlying the progressive development of cognitive impairment after Aβ clearance is largely unknown, the reason of why there is no behavioral improvement after Aβ clearance remains elusive. In the current study, we demonstrated that transient Aβ expression caused learning deficit in later life, despite the accumulated Aβ was soon being removed after the expression. Early Aβ exposure decreased the cellular expression of XBP1 and both the antioxidants, catalase, and dPrx5, which made cells more vulnerable to oxidative stress in later life. Early induction of XBP1, catalase, and dPrx5 prevented the overproduction of ROS, improved the learning performance, and preserved the viability of cells in the later life with the early Aβ induction. Treating the early Aβ exposed flies with antioxidants such as vitamin E, melatonin and lipoic acid, after the removal of Aβ also preserved the learning ability in later life. Taken together, we demonstrated that early and transient Aβ exposure can have a profound impact on animal behavior in later life and also revealed the cellular and molecular mechanism underlying the development of learning impairment by the early and transient Aβ exposure.
Collapse
Affiliation(s)
- Kuan-Chung Cheng
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chun Hei Antonio Cheung
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Hsueh-Cheng Chiang
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Correspondence should be addressed to: Dr. Hsueh-Cheng Chiang, Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan. E-mail: .
| |
Collapse
|
2
|
Eijlers AJC, Wink AM, Meijer KA, Douw L, Geurts JJG, Schoonheim MM. Reduced Network Dynamics on Functional MRI Signals Cognitive Impairment in Multiple Sclerosis. Radiology 2019; 292:449-457. [PMID: 31237498 DOI: 10.1148/radiol.2019182623] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Previous studies have demonstrated extensive functional network disturbances in patients with multiple sclerosis (MS), showing a less efficient brain network. Recent studies indicate that the dynamic properties of the brain network show a strong correlation with cognitive function. Purpose To investigate network dynamics on functional MRI in cognitively impaired patients with MS. Materials and Methods In secondary analysis of prospectively acquired data, with imaging performed between 2008 and 2012, differences in regional functional network dynamics (ie, eigenvector centrality dynamics) between cognitively impaired and cognitively preserved participants with MS were investigated. Functional network dynamics were computed on images from functional MRI (3 T) by using a sliding-window approach. Cognitively impaired and preserved groups were compared by using a clusterwise permutation-based method. Results The study included 96 healthy control subjects and 332 participants with MS (including 226 women and 106 men; median age, 48.1 years ± 11.0). Among the 332 participants with MS, 87 were cognitively impaired and 180 had preserved cognitive function; mildly impaired patients (n = 65) were excluded. The cognitively impaired group included a higher proportion of men compared with the cognitively preserved group (35 of 87 [40%] vs 48 of 180 [27%], respectively; P = .02) and had a higher mean age (51.1 years vs 46.3 years, respectively; P < .01). The clusterwise permutation-based comparison at P less than .05 showed reduced centrality dynamics in default-mode, frontoparietal, and visual network regions on functional MRI in cognitively impaired participants versus cognitively preserved participants. A subsequent correlation and hierarchical clustering analysis revealed that the default-mode and visual networks normally demonstrate negatively correlated fluctuations in functional importance (r = -0.23 in healthy control subjects), with an almost complete loss of this negative correlation in cognitively impaired participants compared with cognitively preserved participants (r = -0.04 vs r = -0.14; corrected P = .02). Conclusion As shown on functional MRI, cognitively impaired patients with multiple sclerosis not only demonstrate reduced dynamics in default-mode, frontoparietal, and visual networks, but also show a loss of interplay between default-mode and visual networks. © RSNA, 2019 Online supplemental material is available for this article. See also the article by Eijlers et al and the editorial by Zivadinov and Dwyer in this issue.
Collapse
Affiliation(s)
- Anand J C Eijlers
- From the Departments of Anatomy and Neurosciences (A.J.C.E., K.A.M., L.D., J.J.G.G., M.M.S.) and Radiology and Nuclear Medicine (A.M.W.), MS Center Amsterdam, Amsterdam UMC, Locatie VUmc, Amsterdam Neuroscience, De Boelelaan 1117, PO Box 7057, 1007 MB, Amsterdam, the Netherlands
| | - Alle Meije Wink
- From the Departments of Anatomy and Neurosciences (A.J.C.E., K.A.M., L.D., J.J.G.G., M.M.S.) and Radiology and Nuclear Medicine (A.M.W.), MS Center Amsterdam, Amsterdam UMC, Locatie VUmc, Amsterdam Neuroscience, De Boelelaan 1117, PO Box 7057, 1007 MB, Amsterdam, the Netherlands
| | - Kim A Meijer
- From the Departments of Anatomy and Neurosciences (A.J.C.E., K.A.M., L.D., J.J.G.G., M.M.S.) and Radiology and Nuclear Medicine (A.M.W.), MS Center Amsterdam, Amsterdam UMC, Locatie VUmc, Amsterdam Neuroscience, De Boelelaan 1117, PO Box 7057, 1007 MB, Amsterdam, the Netherlands
| | - Linda Douw
- From the Departments of Anatomy and Neurosciences (A.J.C.E., K.A.M., L.D., J.J.G.G., M.M.S.) and Radiology and Nuclear Medicine (A.M.W.), MS Center Amsterdam, Amsterdam UMC, Locatie VUmc, Amsterdam Neuroscience, De Boelelaan 1117, PO Box 7057, 1007 MB, Amsterdam, the Netherlands
| | - Jeroen J G Geurts
- From the Departments of Anatomy and Neurosciences (A.J.C.E., K.A.M., L.D., J.J.G.G., M.M.S.) and Radiology and Nuclear Medicine (A.M.W.), MS Center Amsterdam, Amsterdam UMC, Locatie VUmc, Amsterdam Neuroscience, De Boelelaan 1117, PO Box 7057, 1007 MB, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- From the Departments of Anatomy and Neurosciences (A.J.C.E., K.A.M., L.D., J.J.G.G., M.M.S.) and Radiology and Nuclear Medicine (A.M.W.), MS Center Amsterdam, Amsterdam UMC, Locatie VUmc, Amsterdam Neuroscience, De Boelelaan 1117, PO Box 7057, 1007 MB, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Wolf JA, Koch PF. Disruption of Network Synchrony and Cognitive Dysfunction After Traumatic Brain Injury. Front Syst Neurosci 2016; 10:43. [PMID: 27242454 PMCID: PMC4868948 DOI: 10.3389/fnsys.2016.00043] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/26/2016] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disorder with many factors contributing to a spectrum of severity, leading to cognitive dysfunction that may last for many years after injury. Injury to axons in the white matter, which are preferentially vulnerable to biomechanical forces, is prevalent in many TBIs. Unlike focal injury to a discrete brain region, axonal injury is fundamentally an injury to the substrate by which networks of the brain communicate with one another. The brain is envisioned as a series of dynamic, interconnected networks that communicate via long axonal conduits termed the "connectome". Ensembles of neurons communicate via these pathways and encode information within and between brain regions in ways that are timing dependent. Our central hypothesis is that traumatic injury to axons may disrupt the exquisite timing of neuronal communication within and between brain networks, and that this may underlie aspects of post-TBI cognitive dysfunction. With a better understanding of how highly interconnected networks of neurons communicate with one another in important cognitive regions such as the limbic system, and how disruption of this communication occurs during injury, we can identify new therapeutic targets to restore lost function. This requires the tools of systems neuroscience, including electrophysiological analysis of ensemble neuronal activity and circuitry changes in awake animals after TBI, as well as computational modeling of the effects of TBI on these networks. As more is revealed about how inter-regional neuronal interactions are disrupted, treatments directly targeting these dysfunctional pathways using neuromodulation can be developed.
Collapse
Affiliation(s)
- John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of PennsylvaniaPhiladelphia, PA, USA; Corporal Michael J. Crescenz VA Medical CenterPhiladelphia, PA, USA
| | - Paul F Koch
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
4
|
Graner J, Oakes TR, French LM, Riedy G. Functional MRI in the investigation of blast-related traumatic brain injury. Front Neurol 2013; 4:16. [PMID: 23460082 PMCID: PMC3586697 DOI: 10.3389/fneur.2013.00016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/09/2013] [Indexed: 01/12/2023] Open
Abstract
This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries.
Collapse
Affiliation(s)
- John Graner
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center Bethesda, MD, USA ; National Capital Neuroimaging Consortium, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | | | | | | |
Collapse
|
5
|
Snyder AZ, Raichle ME. A brief history of the resting state: the Washington University perspective. Neuroimage 2012; 62:902-10. [PMID: 22266172 PMCID: PMC3342417 DOI: 10.1016/j.neuroimage.2012.01.044] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 11/30/2022] Open
Abstract
We present a history of the concepts and developments that have led us to focus on the resting state as an object of study. We then discuss resting state research performed in our laboratory since 2005 with an emphasis on papers of particular interest.
Collapse
Affiliation(s)
- Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
6
|
Abstract
Diffuse axonal injury is a common pathological consequence of Traumatic Brain Injury (TBI). Diffusion Tensor Imaging is an ideal technique to study white matter integrity using the Fractional Anisotropy (FA) index which is a measure of axonal integrity and coherence. There have been several reports showing reduced FA in individuals with TBI, which suggest demyelination or reduced fiber density in white matter tracts secondary to injury. Individuals with TBI are usually diagnosed with cognitive deficits such as reduced attention span, memory and executive function. In this study we sought to investigate correlations between brain functional networks, white matter integrity, and TBI severity in individuals with TBI ranging from mild to severe. A resting state functional magnetic resonance imaging protocol was used to study the default mode network in subjects at rest. FA values were decreased throughout all white matter tracts in the mild to severe TBI subjects. FA values were also negatively correlated with TBI injury severity ratings. The default mode network showed several brain regions in which connectivity measures were higher among individuals with TBI relative to control subjects. These findings suggest that, subsequent to TBI, the brain may undergo adaptation responses at the cellular level to compensate for functional impairment due to axonal injury.
Collapse
|
7
|
Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc Natl Acad Sci U S A 2011; 108:19066-71. [PMID: 22065778 DOI: 10.1073/pnas.1110024108] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Correlations in spontaneous brain activity provide powerful access to large-scale organizational principles of the CNS. However, making inferences about cognitive processes requires a detailed understanding of the link between these couplings and the structural integrity of the CNS. We studied the impact of multiple sclerosis, which leads to the severe disintegration of the central white matter, on functional connectivity patterns in spontaneous cortical activity. Using a data driven approach based on the strength of a salient pattern of cognitive pathology, we identified distinct networks that exhibit increases in functional connectivity despite the presence of strong and diffuse reductions of the central white-matter integrity. The default mode network emerged as a core target of these connectivity modulations, showing enhanced functional coupling in bilateral inferior parietal cortex, posterior cingulate, and medial prefrontal cortex. These findings imply a complex and diverging relation of anatomical and functional connectivity in early multiple sclerosis and, thus, add an important observation for understanding how cognitive abilities and CNS integrity may be reflected in the intrinsic covariance of functional signals.
Collapse
|
8
|
Marquez de la Plata CD, Garces J, Shokri Kojori E, Grinnan J, Krishnan K, Pidikiti R, Spence J, Devous MD, Moore C, McColl R, Madden C, Diaz-Arrastia R. Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. ACTA ACUST UNITED AC 2011; 68:74-84. [PMID: 21220676 DOI: 10.1001/archneurol.2010.342] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To examine the functional connectivity of hippocampal and selected frontal lobe circuits in patients with traumatic axonal injury (TAI). DESIGN Observational study. SETTING An inpatient traumatic brain injury unit. Imaging and neurocognitive assessments were conducted in an outpatient research facility. PARTICIPANTS Twenty-five consecutive patients with brain injuries consistent with TAI and acute subcortical white matter abnormalities were studied as well as 16 healthy volunteers of similar age and sex. INTERVENTIONS Echo-planar and high-resolution T1-weighted images were acquired using 3-T scanners. Regions of interest (ROI) were drawn bilaterally for the hippocampus, anterior cingulate cortex (ACC), and dorsolateral prefrontal cortex and were used to extract time series data. Blood oxygenation level-dependent data from each ROI were used as reference functions for correlating with all other brain voxels. Interhemispheric functional connectivity was assessed for each participant by correlating homologous regions using a Pearson correlation coefficient. Patient functional and neurocognitive outcomes were assessed approximately 6 months after injury. MAIN OUTCOME MEASURES Interhemispheric functional connectivity, spatial patterns of functional connectivity, and associations of connectivity measures with functional and neurocognitive outcomes. RESULTS Patients showed significantly lower interhemispheric functional connectivity for the hippocampus and ACC. Controls demonstrated stronger and more focused functional connectivity for the hippocampi and ACC, and a more focused recruitment of the default mode network for the dorsolateral prefrontal cortex ROI. The interhemispheric functional connectivity for the hippocampus was correlated with delayed recall of verbal information. CONCLUSIONS Traumatic axonal injury may affect interhemispheric neural activity, as patients with TAI show disrupted interhemispheric functional connectivity. More careful investigation of interhemispheric connectivity is warranted, as it demonstrated a modest association with outcome in chronic TBI.
Collapse
|
9
|
Corbetta M. Functional connectivity and neurological recovery. Dev Psychobiol 2010; 54:239-53. [PMID: 22415913 DOI: 10.1002/dev.20507] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 11/05/2022]
Abstract
Modern theories of brain function emphasize the importance of distributed functional networks and synchronized activity within and between networks in mediating cognitive functions. This view highlights the importance of considering brain-behavior relationships after focsal lesions not only as the result of local structural damage but also as a more widespread alteration of the physiological state of networks connected to the lesion. Recent findings demonstrate coherent activity in large-scale brain networks not only during task performance, but also, surprisingly, at rest in the absence of stimuli, tasks, or overt responses. Moreover, breakdown of coherent activity at rest, even in regions that are structurally intact, correlates with behavioral deficits and with their recovery after injury. This network perspective is fundamental to understand not only healthy brain function, but also the pathophysiology of brain injuries, mechanisms of functional recovery, and the basis for novel interventions for therapy.
Collapse
Affiliation(s)
- Maurizio Corbetta
- Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
10
|
Yallampalli R, Wilde EA, Bigler ED, McCauley SR, Hanten G, Troyanskaya M, Hunter JV, Chu Z, Li X, Levin HS. Acute white matter differences in the fornix following mild traumatic brain injury using diffusion tensor imaging. J Neuroimaging 2010; 23:224-7. [PMID: 21988147 DOI: 10.1111/j.1552-6569.2010.00537.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The integrity of the fornix using diffusion tensor imaging (DTI) in adolescent participants with acute mild traumatic brain injury (mTBI) compared to a demographically matched control group was examined. Fractional anisotropy (FA) in the fornix was elevated in the mild traumatic brain injured group. Performance on the Automated Neuropsychological Assessment Metrics (ANAM) was lower in the group with mTBI. A relation was found between lower performance on cognitive tasks and higher FA. The potential role of fornix injury as a basis of memory and processing speed deficits in mTBI is discussed.
Collapse
Affiliation(s)
- Ragini Yallampalli
- Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Wilde EA, Ramos MA, Yallampalli R, Bigler ED, McCauley SR, Chu Z, Wu TC, Hanten G, Scheibel RS, Li X, Vásquez AC, Hunter JV, Levin HS. Diffusion tensor imaging of the cingulum bundle in children after traumatic brain injury. Dev Neuropsychol 2010; 35:333-51. [PMID: 20446136 DOI: 10.1080/87565641003696940] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Structural damage to the prefrontal-cingulate network has been implicated in cognitive and neurobehavioral deficits associated with traumatic brain injury (TBI). Forty-six children who had sustained moderate-to-severe TBI and 43 children with extracranial injury were imaged using diffusion tensor imaging (DTI). Decreased fractional anisotropy (FA) and increased apparent diffusion coefficient (ADC) values were found in the cingulum bundles bilaterally in the TBI group. Cingulum ADC was related to frontal lesion volume, injury severity, and injury mechanism. Finally, cingulum DTI parameters were related to cognitive control measures. DTI detects TBI-related injury to the cingulum, which may facilitate advances in assessment and treatment.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fink F, Eling P, Rischkau E, Beyer N, Tomandl B, Klein J, Hildebrandt H. The association between California Verbal Learning Test performance and fibre impairment in multiple sclerosis: evidence from diffusion tensor imaging. Mult Scler 2010; 16:332-41. [PMID: 20150400 DOI: 10.1177/1352458509356367] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The California Verbal Learning Test (CVLT) is recognized as a standard clinical tool for assessing episodic memory difficulties in multiple sclerosis (MS), but its neural correlates have not yet been examined in detail in this patient population. We combined neuropsychological examination and diffusion tensor imaging (DTI) analysis in a group of MS patients (N = 50) and demographically matched healthy participants (N = 20). We investigated the degree of impairment of the uncinate fascicle (UF), the superior longitudinal fascicle (SLF), the fornix (FX) and the cingulum (CG). The patients were impaired on all CVLT parameters and the DTI parameters correlated moderately with disease-related variables. Regression analyses in the complete study sample showed that CVLT learning scores correlated with impairment of the right UF. This association reached marginal significance in the patient sample. In contrast to other studies claiming retrieval deficits, our results suggest that encoding and consolidation deficits may play a major role in verbal memory impairments in MS. The findings also provide evidence for an association between degree of myelination of prefrontal fibre pathways and encoding efficiency. Finally, DTI-derived measurements appear to reflect disease progression in MS. The results are discussed in light of functional MRI studies investigating compensatory brain activity during cognitive processing in MS.
Collapse
Affiliation(s)
- Frauke Fink
- Klinikum Bremen-Ost, Department of Neurology, Züricher Strasse 40, 28325 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Memory dysfunction after brain traumatic injury depends on the Marshall score but not on the duration of sedation: preliminary findings. Crit Care 2009. [PMCID: PMC4084299 DOI: 10.1186/cc7577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|