1
|
Estraneo A, Magliacano A, De Bellis F, Amantini A, Lavezzi S, Grippo A. Care pathways for individuals with post-anoxic disorder of consciousness (CaPIADoC): an inter-society Consensus Conference. Neurol Sci 2025; 46:1751-1764. [PMID: 39589455 DOI: 10.1007/s10072-024-07875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Accurate recognition of consciousness level and detection of neurological complications since the intensive care unit are crucial for an appropriate prognostication and tailored treatment in patients with post-anoxic disorder of consciousness (DoC). OBJECTIVE The present inter-society Consensus Conference aimed at addressing current debates on diagnostic and prognostic procedures. METHODS Twelve working groups involving 22 multidisciplinary professionals (membership of 9 Scientific Societies and 2 patients' family Associations) conducted a systematic literature review focused on 12 questions addressing diagnosis (n = 5) and prognosis (n = 7). The quality of evidence of the included studies was evaluated using the Oxford Centre for Evidence-Based Medicine Levels of Evidence. A Jury involving Scientific Societies and patients' family Associations provided recommendations based on the evidence levels and expert opinion. RESULTS An overall number of 1,219 papers was screened, and 21 were included in the review. Working groups produced a report on strengths and limits of evidence for each question. The overall suggestion was to use a multimodal assessment combining validated clinical scales, neurophysiological exams, and neuroimaging in diagnostic and prognostic procedure, to guide personalized treatment. A strong recommendation was to use standardized terminologies and diagnostic criteria for ensuring homogeneity and appropriateness in patients management. CONCLUSION This multidisciplinary Consensus Conference provided the first operational recommendations for a good clinical practice procedure for patients with post-anoxic DoC. A periodic review will be necessary based on future evidence from the literature and implementation of the present recommendations.
Collapse
Affiliation(s)
- Anna Estraneo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, 80143, Florence, Italy.
| | - Alfonso Magliacano
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, 80143, Florence, Italy
| | - Francesco De Bellis
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, 80143, Florence, Italy
| | - Aldo Amantini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, 80143, Florence, Italy
| | - Susanna Lavezzi
- Unit of Severe Brain Injury Rehabilitation, Department of Neuroscience and Rehabilitation, S. Anna University Hospital, Ferrara, Italy
| | - Antonello Grippo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Di Scandicci 269, 80143, Florence, Italy
- Neurophysiology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
2
|
Koek AY, Darpel KA, Mihaylova T, Kerr WT. Myoclonus After Cardiac Arrest did not Correlate with Cortical Response on Somatosensory Evoked Potentials. J Intensive Care Med 2025; 40:331-340. [PMID: 39344464 DOI: 10.1177/08850666241287154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
PurposeMyoclonus after anoxic brain injury is a marker of significant cerebral injury. Absent cortical signal (N20) on somatosensory evoked potentials (SSEPs) after cardiac arrest is a reliable predictor of poor neurological recovery when combined with an overall clinical picture consistent with severe widespread neurological injury. We evaluated a clinical question of if SSEP result could be predicted from other clinical and neurodiagnostic testing results in patients with post-anoxic myoclonus.MethodsRetrospective chart review of all adult patients with post-cardiac arrest myoclonus who underwent both electroencephalographic (EEG) monitoring and SSEPs for neuroprognostication. Myoclonus was categorized as "non-myoclonic movements," "myoclonus not captured on EEG," "myoclonus without EEG correlate," "myoclonus with EEG correlate," and "status myoclonus." SSEP results were categorized as all absent, all present, N18 and N20 absent bilaterally, and N20 only absent bilaterally. Cox proportional hazards with censoring was used to evaluate the association of myoclonus category, SSEP results, and confounding factors with survival.ResultsIn 56 patients, median time from arrest to either confirmed death or last follow up was 9 days. The category of myoclonus was not associated with SSEP result or length of survival. Absence of N20 s or N18 s was associated with shorter survival (N20 hazard ratio [HR] 4.4, p = 0.0014; N18 HR 5.5, p < 0.00001).ConclusionsCategory of myoclonus did not reliably predict SSEP result. SSEP result was correlated with outcome consistently, but goals of care transitioned to comfort measures only in all patients with present peripheral potentials and either absent N20 s only or absence of N18 s and N20 s. Our results suggest that SSEPs may retain prognostic value in patients with post-anoxic myoclonus.
Collapse
Affiliation(s)
- Adriana Y Koek
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Kyle A Darpel
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Temenuzhka Mihaylova
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wesley T Kerr
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Neurology & Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
De Stefano P, Leitinger M, Misirocchi F, Quintard H, Degano G, Trinka E. Myoclonus After Cardiac Arrest: Need for Standardization-A Systematic Review and Research Proposal on Terminology. Crit Care Med 2025; 53:e410-e423. [PMID: 39773812 PMCID: PMC11801442 DOI: 10.1097/ccm.0000000000006521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVES Although myoclonus less than or equal to 72 hours after cardiac arrest (CA) is often viewed as a single entity, there is considerable heterogeneity in its clinical and electrophysiology characteristics, and its strength of association with outcome. We reviewed definitions, electroencephalogram, and outcome of myoclonus post-CA to assess the need for consensus and the potential role of electroencephalogram for further research. DATA SOURCES PubMed, Embase, and Cochrane databases. STUDY SELECTION English-language adult (≥ 18 yr) studies from 1966 to May 31, 2024, reporting myoclonus, myoclonic status/status myoclonus (MyS/SM), myoclonic status epilepticus (MSE), and/or early Lance-Adams Syndrome (eLAS) less than or equal to 72 hours post-CA. All study designs were independently screened by two authors. DATA EXTRACTION Data on patients presenting myoclonus, MyS/SM, MSE, and eLAS less than or equal to 72 hours post-CA, along with their definitions, electroencephalogram, and outcomes were extracted. The Newcastle-Ottawa Scale and Cochrane-Risk-of-Bias Assessment tool were used to evaluate study quality (PROSPERO n.CRD42023438107). DATA SYNTHESIS Of 585 identified articles, 119 met the inclusion criteria, revealing substantial heterogeneity in definitions, electroencephalogram, and outcomes. Among 3881 patients, myoclonus was reported in 2659, MyS/SM in 883, MSE in 569, and eLAS in 40. Among patients with a defined outcome, a Cerebral Performance Category (CPC) scale of 1-2 was reported in 9.8% of patients with myoclonus, 5.8% with MyS/SM, 5.7% with MSE, and 82.0% with eLAS. Electroencephalogram was recorded in 2714 patients (69.9%). CPC of 1-2 was observed in 1.6% of patients with suppression/suppression burst (SB)/unreactive (U) electroencephalogram, 11.3% with non-SB/U electroencephalogram and status epilepticus (SE), and 22.3% with non-SB/U electroencephalogram without SE. CONCLUSIONS Heterogeneity in definitions resulted in weak associations with outcomes. We propose to investigate myoclonus by including related electroencephalogram patterns: myoclonus associated with suppression/SB background electroencephalogram, myoclonus with nonsuppression/SB background but SE-electroencephalogram, and myoclonus with nonsuppression/SB background without SE-electroencephalogram. This pragmatic research approach should be validated in future studies.
Collapse
Affiliation(s)
- Pia De Stefano
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Markus Leitinger
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
| | - Francesco Misirocchi
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Hervé Quintard
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Giulio Degano
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Eugen Trinka
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Salzburg, Austria
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT—University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| |
Collapse
|
4
|
Rossetti AO, Benghanem S. Epileptiform Electrographic Patterns After Cardiac Arrest: Give Up or Treat? JAMA Neurol 2025; 82:119-120. [PMID: 39527053 DOI: 10.1001/jamaneurol.2024.3831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This Viewpoint challenges conventional clinical practice that eschews pharmacological intervention for comatose patients with epileptiform abnormalities after cardiac arrest using evidence from the Treatment of Electroencephalographic Status Epilepticus after Cardiopulmonary Resuscitation (TELSTAR) trial.
Collapse
Affiliation(s)
- Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sarah Benghanem
- Medical Intensive Care Unit, APHP Paris Centre, Cochin Hospital, University Paris Cité Medical School, Paris, France
- INSERM 1266, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| |
Collapse
|
5
|
Rossetti AO. Refractory and Super-Refractory Status Epilepticus: Therapeutic Options and Prognosis. Neurol Clin 2025; 43:15-30. [PMID: 39547738 DOI: 10.1016/j.ncl.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
In patients with status epilepticus (SE), the underlying biologic background represents the main prognostic variable. A swift application of a treatment protocol is recommended, including adequate doses of a benzodiazepine followed by an intravenous anti-seizure medicine. If refractory SE arises, general anesthetics should be used in generalized convulsive and non-convulsive SE in coma, while further non-sedating anti-seizure medications attempts are warranted in patients with focal forms. Ketogenic diet and/or ketamine in patients with super-refractory SE, and immunologic treatments for those with new-onset refractory SE/febrile-induced refractory epilepsy syndrome should be considered early. Pharmacologic treatment of SE after cardiac arrest should be oriented by the results of multimodal prognostication.
Collapse
Affiliation(s)
- Andrea O Rossetti
- Department of Neurology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Diamanti S, Pasini F, Capraro C, Patassini M, Bianchi E, Pozzi M, Normanno M, Coppo A, Remida P, Avalli L, Ferrarese C, Foti G, Beretta S. Prognostic Value of Signal Abnormalities on Brain MRI in Post-Anoxic Super-Refractory Status Epilepticus: A Single-Center Retrospective Study. Eur J Neurol 2025; 32:e70045. [PMID: 39817609 PMCID: PMC11736634 DOI: 10.1111/ene.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/23/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Epileptiform activity, including status epilepticus (SE), occurs in up to one-third of comatose survivors of cardiac arrest and may predict poor outcome. The relationship between SE and hypoxic-ischemic brain injury (HIBI) is not established. METHODS This is a single-center retrospective study on consecutive patients with post-anoxic super-refractory SE. HIBI was graded as non-widespread (group 1) or widespread (group 2) by qualitative analysis of DWI/ADC and T2w-FLAIR. Between-group differences in the rate of poor neurological outcome at 6 months (primary outcome), SE resolution and consciousness recovery before discharge, and mortality at 6 months (secondary outcomes) were investigated. RESULTS From January 2011 to February 2023, 40 patients were included. HIBI was widespread in 45% of patients and non-widespread in 55%. The rate of poor neurological outcome at 6 months was 27% in group 1 and 83% in group 2 (OR 12.8, CI 95% [2.5-64.3], p = 0.002). The rate of consciousness recovery before discharge was 73% in group 1 versus 22% in group 2 (OR 8.8, CI 95% [1.9-40.3], p = 0.005). SE resolved in 95% of patients in group 1 versus 67% in group 2 (OR 10.5, CI 95% [1.1-97.9], p = 0.039). Mortality rate at 6 months was 27% in group 1 versus 50% in group 2 (OR 0.4, CI 95% [0.1-1.9], p = 0.303). CONCLUSION Patients with widespread HIBI had higher odds of poor outcome at 6 months, lower probability of SE resolution and of consciousness recovery before discharge compared to those with non-widespread HIBI. Mortality at 6 months did not differ significantly between the two groups.
Collapse
Affiliation(s)
- Susanna Diamanti
- Epilepsy Center, Department of NeurologyFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
| | - Francesco Pasini
- Epilepsy Center, Department of NeurologyFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanoItaly
| | - Cristina Capraro
- Neuroradiology UnitFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
| | - Mirko Patassini
- Neuroradiology UnitFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
| | - Elisa Bianchi
- IRCCS Mario Negri Institute for Pharmacological ResearchMilanoItaly
| | - Matteo Pozzi
- Department of Intensive CareFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
| | - Marco Normanno
- Department of Intensive CareFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
| | - Anna Coppo
- Department of Intensive CareFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
| | - Paolo Remida
- Neuroradiology UnitFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
| | - Leonello Avalli
- Department of Intensive CareFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
| | - Carlo Ferrarese
- Epilepsy Center, Department of NeurologyFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanoItaly
- Milan Center for NeuroscienceMilanoItaly
| | - Giuseppe Foti
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanoItaly
- Department of Intensive CareFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
| | - Simone Beretta
- Epilepsy Center, Department of NeurologyFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanoItaly
- Milan Center for NeuroscienceMilanoItaly
| |
Collapse
|
7
|
Meletti S, Giovannini G, Lattanzi S, Zaboli A, Orlandi N, Turcato G, Brigo F. Progression to refractory status epilepticus: A machine learning analysis by means of classification and regression tree analysis. Epilepsy Behav 2024; 161:110005. [PMID: 39306981 DOI: 10.1016/j.yebeh.2024.110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND OBJECTIVES to identify predictors of progression to refractory status epilepticus (RSE) using a machine learning technique. METHODS Consecutive patients aged ≥ 14 years with SE registered in a 9-years period at Modena Academic Hospital were included in the analysis. We evaluated the risk of progression to RSE using logistic regression and a machine learning analysis by means of classification and regression tree analysis (CART) to develop a predictive model of progression to RSE. RESULTS 705 patients with SE were included in the study; of those, 33 % (233/705) evolved to RSE. The progression to RSE was an independent risk factor for 30-day mortality, with an OR adjusted for previously identified possible univariate confounders of 4.086 (CI 95 % 2.390-6.985; p < 0.001). According to CART the most important variable predicting evolution to RSE was the impaired consciousness before treatment, followed by acute symptomatic hypoxic etiology and periodic EEG patterns. The decision tree identified 14 nodes with a risk of evolution to RSE ranging from 1.5 % to 90.8 %. The overall percentage of success in classifying patients of the decision tree was 79.4 %; the percentage of accurate prediction was high, 94.1 %, for those patients not progressing to RSE and moderate, 49.8 %, for patients evolving to RSE. CONCLUSIONS Decision-tree analysis provided a meaningful risk stratification based on few variables that are easily obtained at SE first evaluation: consciousness before treatment, etiology, and severe EEG patterns. CART models must be viewed as potential new method for the stratification RSE at single subject level deserving further exploration and validation.
Collapse
Affiliation(s)
- Stefano Meletti
- Neurophysiology Unit and Epilepsy Centre, Azienda Ospedaliera-Universitaria di Modena, Italy; Dept of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio-Emilia, Italy.
| | - Giada Giovannini
- Neurophysiology Unit and Epilepsy Centre, Azienda Ospedaliera-Universitaria di Modena, Italy; University of Modena and Reggio-Emilia, PhD Programm in Clinical and Experimental Medicine, Modena, Italy
| | - Simona Lattanzi
- Marche Polytechnic University, Neurological Clinic, Department of Experimental and Clinical Medicine, Ancona, Italy
| | - Arian Zaboli
- Hospital of Merano-Meran (SABES-ASDAA), Department of Emergency Medicine, Merano-Meran, Italy
| | - Niccolò Orlandi
- Neurophysiology Unit and Epilepsy Centre, Azienda Ospedaliera-Universitaria di Modena, Italy; Dept of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio-Emilia, Italy
| | - Gianni Turcato
- Hospital of Santorso (AULSS-7), Department of Internal Medicine, Santorso, Italy
| | - Francesco Brigo
- Hospital of Merano-Meran (SABES-ASDAA), Department of Emergency Medicine, Merano-Meran, Italy
| |
Collapse
|
8
|
Ulvin LB, Nilsen KB, Taubøll E, Etholm L, Heuser K. Sensitivity and specificity of the Salzburg EEG criteria for nonconvulsive status epilepticus. Ann Clin Transl Neurol 2024; 11:2685-2695. [PMID: 39186316 PMCID: PMC11514898 DOI: 10.1002/acn3.52184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE The Salzburg EEG criteria for nonconvulsive status epilepticus (NCSE) have been proposed as consensus criteria for NCSE. We aimed to perform an independent study of their diagnostic accuracy. METHODS A prospective study was carried out at Oslo University Hospital, including all consecutive patients ≥15 years old who were referred for an EEG with an explicit or implicit question of NCSE from February 2020 to February 2022. Two independent EEG readers scored the included EEGs according to the Salzburg criteria and blinded to the clinical data. The reference standard was defined as the clinical diagnosis the patient received based on all available clinical and paraclinical data. Diagnostic accuracy in identifying "certain/possible NCSE" was assessed by calculating sensitivity, specificity, positive predictive value, and negative predictive value with their 95% confidence intervals. RESULTS In total, 469 patients/EEGs were included in the study. The prevalence of NCSE according to the reference standard was 11% (n = 53). The criteria showed a sensitivity of 94% (95% CI: 92-96%), a specificity of 77% (95% CI: 73-81%), a positive predictive value of 34% (95% CI: 30-39%), and a negative predictive value of 99% (95% CI: 98-100%). False positives for "certain NCSE" (n = 16) included many serial seizures and stimulus-induced rhythmic and periodic discharges (SIRPIDs), as well as a focal cortical dysplasia. False positives for "possible NCSE" (n = 79) were mainly represented by different encephalopathies and postictality. INTERPRETATION The low specificity of the Salzburg criteria calls for refinement before implementation into daily clinical practice.
Collapse
Affiliation(s)
- Line B. Ulvin
- Section for Clinical Neurophysiology, Department of NeurologyOslo University HospitalOsloNorway
- Institute of Clinical Medicine, University of OsloOsloNorway
| | - Kristian B. Nilsen
- Section for Clinical Neurophysiology, Department of NeurologyOslo University HospitalOsloNorway
| | - Erik Taubøll
- Institute of Clinical Medicine, University of OsloOsloNorway
- Department of NeurologyOslo University HospitalOsloNorway
| | - Lars Etholm
- Section for Clinical Neurophysiology, Department of NeurosurgeryOslo University HospitalOsloNorway
| | - Kjell Heuser
- Department of NeurologyOslo University HospitalOsloNorway
| |
Collapse
|
9
|
van Putten MJAM, Ruijter BJ, Horn J, van Rootselaar AF, Tromp SC, van Kranen-Mastenbroek V, Gaspard N, Hofmeijer J. Quantitative Characterization of Rhythmic and Periodic EEG Patterns in Patients in a Coma After Cardiac Arrest and Association With Outcome. Neurology 2024; 103:e209608. [PMID: 38991197 DOI: 10.1212/wnl.0000000000209608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVES Rhythmic and periodic patterns (RPPs) on EEG in patients in a coma after cardiac arrest are associated with a poor neurologic outcome. We characterize RPPs using qEEG in relation to outcomes. METHODS Post hoc analysis was conducted on 172 patients in a coma after cardiac arrest from the TELSTAR trial, all with RPPs. Quantitative EEG included corrected background continuity index (BCI*), relative discharge power (RDP), discharge frequency, and shape similarity. Neurologic outcomes at 3 months after arrest were categorized as poor (CPC = 3-5) or good (CPC = 1-2). RESULTS A total of 16 patients (9.3%) had a good outcome. Patients with good outcomes showed later RPP onset (28.5 vs 20.1 hours after arrest, p < 0.05) and higher background continuity at RPP onset (BCI* = 0.83 vs BCI* = 0.59, p < 0.05). BCI* <0.45 at RPP onset, maximum BCI* <0.76, RDP >0.47, or shape similarity >0.75 were consistently associated with poor outcomes, identifying 36%, 22%, 40%, or 24% of patients with poor outcomes, respectively. In patients meeting both BCI* >0.44 at RPP onset and BCI* >0.75 within 72 hours, the probability of good outcomes doubled to 18%. DISCUSSION Sufficient EEG background continuity before and during RPPs is crucial for meaningful recovery. Background continuity, discharge power, and shape similarity can help select patients with relevant chances of recovery and may guide treatment. TRIAL REGISTRATION INFORMATION February 4, 2014, ClinicalTrial.gov, NCT02056236.
Collapse
Affiliation(s)
- Michel J A M van Putten
- From the Clinical Neurophysiology Group and Department of Clinical Neurophysiology (M.J.A.M.v.P.), University of Twente and Medisch Spectrum Twente; Department of Neurology (B.J.R.), OLVG, Amsterdam; Department of Intensive Care (Janneke Horn); Department of Neurology and Clinical Neurophysiology (A.-F.v.R.), Amsterdam Neuroscience, Amsterdam UMC, the Netherlands; Department of Clinical Neurophysiology (S.C.T.), St Antonius Hospital, Nieuwegein and Department of Neurology, LUMC, Leiden; Department of Neurology (V.v.K.-M.), Maastricht UMC+, the Netherlands; Department of Neurology (N.G.), Hôpital Universitaire de Bruxelles - Hôpital Erasme, Brussels, Belgium and Department of Neurology, Yale University School of Medicine, New Haven, CT; and Department of Neurology (Jeannette Hofmeijer), Rijnstate Hospital and Clinical Neurophysiology Group, University of Twente, the Netherlands
| | - Barry J Ruijter
- From the Clinical Neurophysiology Group and Department of Clinical Neurophysiology (M.J.A.M.v.P.), University of Twente and Medisch Spectrum Twente; Department of Neurology (B.J.R.), OLVG, Amsterdam; Department of Intensive Care (Janneke Horn); Department of Neurology and Clinical Neurophysiology (A.-F.v.R.), Amsterdam Neuroscience, Amsterdam UMC, the Netherlands; Department of Clinical Neurophysiology (S.C.T.), St Antonius Hospital, Nieuwegein and Department of Neurology, LUMC, Leiden; Department of Neurology (V.v.K.-M.), Maastricht UMC+, the Netherlands; Department of Neurology (N.G.), Hôpital Universitaire de Bruxelles - Hôpital Erasme, Brussels, Belgium and Department of Neurology, Yale University School of Medicine, New Haven, CT; and Department of Neurology (Jeannette Hofmeijer), Rijnstate Hospital and Clinical Neurophysiology Group, University of Twente, the Netherlands
| | - Janneke Horn
- From the Clinical Neurophysiology Group and Department of Clinical Neurophysiology (M.J.A.M.v.P.), University of Twente and Medisch Spectrum Twente; Department of Neurology (B.J.R.), OLVG, Amsterdam; Department of Intensive Care (Janneke Horn); Department of Neurology and Clinical Neurophysiology (A.-F.v.R.), Amsterdam Neuroscience, Amsterdam UMC, the Netherlands; Department of Clinical Neurophysiology (S.C.T.), St Antonius Hospital, Nieuwegein and Department of Neurology, LUMC, Leiden; Department of Neurology (V.v.K.-M.), Maastricht UMC+, the Netherlands; Department of Neurology (N.G.), Hôpital Universitaire de Bruxelles - Hôpital Erasme, Brussels, Belgium and Department of Neurology, Yale University School of Medicine, New Haven, CT; and Department of Neurology (Jeannette Hofmeijer), Rijnstate Hospital and Clinical Neurophysiology Group, University of Twente, the Netherlands
| | - Anne-Fleur van Rootselaar
- From the Clinical Neurophysiology Group and Department of Clinical Neurophysiology (M.J.A.M.v.P.), University of Twente and Medisch Spectrum Twente; Department of Neurology (B.J.R.), OLVG, Amsterdam; Department of Intensive Care (Janneke Horn); Department of Neurology and Clinical Neurophysiology (A.-F.v.R.), Amsterdam Neuroscience, Amsterdam UMC, the Netherlands; Department of Clinical Neurophysiology (S.C.T.), St Antonius Hospital, Nieuwegein and Department of Neurology, LUMC, Leiden; Department of Neurology (V.v.K.-M.), Maastricht UMC+, the Netherlands; Department of Neurology (N.G.), Hôpital Universitaire de Bruxelles - Hôpital Erasme, Brussels, Belgium and Department of Neurology, Yale University School of Medicine, New Haven, CT; and Department of Neurology (Jeannette Hofmeijer), Rijnstate Hospital and Clinical Neurophysiology Group, University of Twente, the Netherlands
| | - Selma C Tromp
- From the Clinical Neurophysiology Group and Department of Clinical Neurophysiology (M.J.A.M.v.P.), University of Twente and Medisch Spectrum Twente; Department of Neurology (B.J.R.), OLVG, Amsterdam; Department of Intensive Care (Janneke Horn); Department of Neurology and Clinical Neurophysiology (A.-F.v.R.), Amsterdam Neuroscience, Amsterdam UMC, the Netherlands; Department of Clinical Neurophysiology (S.C.T.), St Antonius Hospital, Nieuwegein and Department of Neurology, LUMC, Leiden; Department of Neurology (V.v.K.-M.), Maastricht UMC+, the Netherlands; Department of Neurology (N.G.), Hôpital Universitaire de Bruxelles - Hôpital Erasme, Brussels, Belgium and Department of Neurology, Yale University School of Medicine, New Haven, CT; and Department of Neurology (Jeannette Hofmeijer), Rijnstate Hospital and Clinical Neurophysiology Group, University of Twente, the Netherlands
| | - Vivianne van Kranen-Mastenbroek
- From the Clinical Neurophysiology Group and Department of Clinical Neurophysiology (M.J.A.M.v.P.), University of Twente and Medisch Spectrum Twente; Department of Neurology (B.J.R.), OLVG, Amsterdam; Department of Intensive Care (Janneke Horn); Department of Neurology and Clinical Neurophysiology (A.-F.v.R.), Amsterdam Neuroscience, Amsterdam UMC, the Netherlands; Department of Clinical Neurophysiology (S.C.T.), St Antonius Hospital, Nieuwegein and Department of Neurology, LUMC, Leiden; Department of Neurology (V.v.K.-M.), Maastricht UMC+, the Netherlands; Department of Neurology (N.G.), Hôpital Universitaire de Bruxelles - Hôpital Erasme, Brussels, Belgium and Department of Neurology, Yale University School of Medicine, New Haven, CT; and Department of Neurology (Jeannette Hofmeijer), Rijnstate Hospital and Clinical Neurophysiology Group, University of Twente, the Netherlands
| | - Nicolas Gaspard
- From the Clinical Neurophysiology Group and Department of Clinical Neurophysiology (M.J.A.M.v.P.), University of Twente and Medisch Spectrum Twente; Department of Neurology (B.J.R.), OLVG, Amsterdam; Department of Intensive Care (Janneke Horn); Department of Neurology and Clinical Neurophysiology (A.-F.v.R.), Amsterdam Neuroscience, Amsterdam UMC, the Netherlands; Department of Clinical Neurophysiology (S.C.T.), St Antonius Hospital, Nieuwegein and Department of Neurology, LUMC, Leiden; Department of Neurology (V.v.K.-M.), Maastricht UMC+, the Netherlands; Department of Neurology (N.G.), Hôpital Universitaire de Bruxelles - Hôpital Erasme, Brussels, Belgium and Department of Neurology, Yale University School of Medicine, New Haven, CT; and Department of Neurology (Jeannette Hofmeijer), Rijnstate Hospital and Clinical Neurophysiology Group, University of Twente, the Netherlands
| | - Jeannette Hofmeijer
- From the Clinical Neurophysiology Group and Department of Clinical Neurophysiology (M.J.A.M.v.P.), University of Twente and Medisch Spectrum Twente; Department of Neurology (B.J.R.), OLVG, Amsterdam; Department of Intensive Care (Janneke Horn); Department of Neurology and Clinical Neurophysiology (A.-F.v.R.), Amsterdam Neuroscience, Amsterdam UMC, the Netherlands; Department of Clinical Neurophysiology (S.C.T.), St Antonius Hospital, Nieuwegein and Department of Neurology, LUMC, Leiden; Department of Neurology (V.v.K.-M.), Maastricht UMC+, the Netherlands; Department of Neurology (N.G.), Hôpital Universitaire de Bruxelles - Hôpital Erasme, Brussels, Belgium and Department of Neurology, Yale University School of Medicine, New Haven, CT; and Department of Neurology (Jeannette Hofmeijer), Rijnstate Hospital and Clinical Neurophysiology Group, University of Twente, the Netherlands
| |
Collapse
|
10
|
Annoni F, Gouvea Bogossian E, Peluso L, Su F, Moreau A, Nobile L, Casu SG, Sterchele ED, Calabro L, Salvagno M, Oddo M, Taccone FS. Ketone Bodies after Cardiac Arrest: A Narrative Review and the Rationale for Use. Cells 2024; 13:784. [PMID: 38727320 PMCID: PMC11083685 DOI: 10.3390/cells13090784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiac arrest survivors suffer the repercussions of anoxic brain injury, a critical factor influencing long-term prognosis. This injury is characterised by profound and enduring metabolic impairment. Ketone bodies, an alternative energetic resource in physiological states such as exercise, fasting, and extended starvation, are avidly taken up and used by the brain. Both the ketogenic diet and exogenous ketone supplementation have been associated with neuroprotective effects across a spectrum of conditions. These include refractory epilepsy, neurodegenerative disorders, cognitive impairment, focal cerebral ischemia, and traumatic brain injuries. Beyond this, ketone bodies possess a plethora of attributes that appear to be particularly favourable after cardiac arrest. These encompass anti-inflammatory effects, the attenuation of oxidative stress, the improvement of mitochondrial function, a glucose-sparing effect, and the enhancement of cardiac function. The aim of this manuscript is to appraise pertinent scientific literature on the topic through a narrative review. We aim to encapsulate the existing evidence and underscore the potential therapeutic value of ketone bodies in the context of cardiac arrest to provide a rationale for their use in forthcoming translational research efforts.
Collapse
Affiliation(s)
- Filippo Annoni
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, Humanitas Gavazzeni Hospital, 24125 Bergamo, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Fuhong Su
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Anthony Moreau
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Leda Nobile
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Stefano Giuseppe Casu
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Lorenzo Calabro
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Michele Salvagno
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
| | - Mauro Oddo
- Medical Directorate for Research, Education and Innovation, Direction Médicale, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
| | - Fabio Silvio Taccone
- Department of Intensive Care, University Hospital of Brussels (HUB), 1070 Brussels, Belgium
- Experimental Laboratory of Intensive Care, Department of Intensive Care, Free University of Brussels (ULB), 1070 Brussels, Belgium
| |
Collapse
|
11
|
Bencsik C, Josephson C, Soo A, Ainsworth C, Savard M, van Diepen S, Kramer A, Kromm J. The Evolving Role of Electroencephalography in Postarrest Care. Can J Neurol Sci 2024:1-13. [PMID: 38572611 DOI: 10.1017/cjn.2024.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Electroencephalography is an accessible, portable, noninvasive and safe means of evaluating a patient's brain activity. It can aid in diagnosis and management decisions for post-cardiac arrest patients with seizures, myoclonus and other non-epileptic movements. It also plays an important role in a multimodal approach to neuroprognostication predicting both poor and favorable outcomes. Individuals ordering, performing and interpreting these tests, regardless of the indication, should understand the supporting evidence, logistical considerations, limitations and impact the results may have on postarrest patients and their families as outlined herein.
Collapse
Affiliation(s)
- Caralyn Bencsik
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Colin Josephson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrea Soo
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Craig Ainsworth
- Division of Cardiology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Savard
- Département de Médecine, Université Laval, Quebec City, QC, Canada
| | - Sean van Diepen
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Andreas Kramer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Julie Kromm
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement from the American Heart Association and Neurocritical Care Society. Neurocrit Care 2024; 40:1-37. [PMID: 38040992 PMCID: PMC10861627 DOI: 10.1007/s12028-023-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 12/03/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
Affiliation(s)
| | | | - Edilberto Amorim
- San Francisco-Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Mary Kay Bader
- Providence Mission Hospital Nursing Center of Excellence/Critical Care Services, Mission Viejo, USA
| | | | | | | | | | | | | | - Karl B Kern
- Sarver Heart Center, University of Arizona, Tucson, USA
| | | | | | | | - Jerry P Nolan
- Warwick Medical School, University of Warwick, Coventry, UK
- Royal United Hospital, Bath, UK
| | - Mauro Oddo
- CHUV-Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | | | - Anezi Uzendu
- St. Luke's Mid America Heart Institute, Kansas City, USA
| | - Brian Walsh
- University of Texas Medical Branch School of Health Sciences, Galveston, USA
| | | | | |
Collapse
|
13
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement From the American Heart Association and Neurocritical Care Society. Circulation 2024; 149:e168-e200. [PMID: 38014539 PMCID: PMC10775969 DOI: 10.1161/cir.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
|
14
|
Rossetti AO, Claassen J, Gaspard N. Status epilepticus in the ICU. Intensive Care Med 2024; 50:1-16. [PMID: 38117319 DOI: 10.1007/s00134-023-07263-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
Status epilepticus (SE) is a common medical emergency associated with significant morbidity and mortality. Management that follows published guidelines is best suited to improve outcomes, with the most severe cases frequently being managed in the intensive care unit (ICU). Diagnosis of convulsive SE can be made without electroencephalography (EEG), but EEG is required to reliably diagnose nonconvulsive SE. Rapidly narrowing down underlying causes for SE is crucial, as this may guide additional management steps. Causes may range from underlying epilepsy to acute brain injuries such as trauma, cardiac arrest, stroke, and infections. Initial management consists of rapid administration of benzodiazepines and one of the following non-sedating intravenous antiseizure medications (ASM): (fos-)phenytoin, levetiracetam, or valproate; other ASM are increasingly used, such as lacosamide or brivaracetam. SE that continues despite these medications is called refractory, and most commonly treated with continuous infusions of midazolam or propofol. Alternatives include further non-sedating ASM and non-pharmacologic approaches. SE that reemerges after weaning or continues despite management with propofol or midazolam is labeled super-refractory SE. At this step, management may include non-sedating or sedating compounds including ketamine and barbiturates. Continuous video EEG is necessary for the management of refractory and super-refractory SE, as these are almost always nonconvulsive. If possible, management of the underlying cause of seizures is crucial particularly for patients with autoimmune encephalitis. Short-term mortality ranges from 10 to 15% after SE and is primarily related to increasing age, underlying etiology, and medical comorbidities. Refractoriness of treatment is clearly related to outcome with mortality rising from 10% in responsive cases, to 25% in refractory, and nearly 40% in super-refractory SE.
Collapse
Affiliation(s)
- Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jan Claassen
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicolas Gaspard
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Orav K, Bosque Varela P, Prüwasser T, Machegger L, Leitinger M, Trinka E, Kuchukhidze G. Post-hypoxic status epilepticus - A distinct subtype of status epilepticus with poor prognosis. Epileptic Disord 2023; 25:823-832. [PMID: 37776308 PMCID: PMC10947449 DOI: 10.1002/epd2.20164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVE To evaluate the clinical outcome of patients with possible and definitive post-hypoxic status epilepticus (SE) and to describe the SE types in patients with definitive post-hypoxic SE. METHODS Patients with definitive or possible SE resulting from hypoxic brain injury after cardiac arrest (CA) were prospectively recruited. Intermittent EEG was used for the diagnosis of SE according to clinical practice. Two raters blinded to outcome analyzed EEGs retrospectively for possible and definitive SE patterns and background features (frequency, continuity, reactivity, and voltage). Definitive SE was classified according to semiology (ILAE). Mortality and Cerebral Performance Categories (CPC) score were evaluated 1 month after CA. RESULTS We included 64 patients of whom 92% died. Among the survivors, only one patient had a good neurological outcome (CPC 1). No patient survived with a burst suppression pattern, low voltage, or electro-cerebral silence in any EEG. Possible or definitive SE was diagnosed in a median of 47 h (IQR 39-72 h) after CA. EEG criteria for definitive electrographic SE were fulfilled in 39% of patients; in 38% - for electroclinical SE and in 23% - for ictal-interictal continuum (IIC). The outcome did not differ significantly between the three groups. The only patient with good functional outcome belonged to the IIC group. Comatose non-convulsive SE (NCSE) without subtle motor phenomenon occurred in 20% of patients with definitive electrographic SE and outcome was similar to other types of SE. SIGNIFICANCE Possible or definitive SE due to hypoxic brain injury is associated with poor prognosis. The outcome of patients with electrographic SE, electroclinical SE, and IIC did not differ significantly. Outcome was similar in patients with definitive electrographic SE with and without prominent motor features.
Collapse
Affiliation(s)
- Kateriine Orav
- Department of Neurology, Member of the European Reference Network EpiCARE, Centre for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical University of SalzburgSalzburgAustria
- Department of NeurologyNorth Estonia Medical CentreTallinnEstonia
| | - Pilar Bosque Varela
- Department of Neurology, Member of the European Reference Network EpiCARE, Centre for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical University of SalzburgSalzburgAustria
| | - Tanja Prüwasser
- Department of Neurology, Member of the European Reference Network EpiCARE, Centre for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical University of SalzburgSalzburgAustria
- Department of MathematicsParis‐Lodron UniversitySalzburgAustria
| | - Lukas Machegger
- Department of Neuroradiology, Christian Doppler University HospitalParacelsus Medical University of SalzburgSalzburgAustria
| | - Markus Leitinger
- Department of Neurology, Member of the European Reference Network EpiCARE, Centre for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical University of SalzburgSalzburgAustria
| | - Eugen Trinka
- Department of Neurology, Member of the European Reference Network EpiCARE, Centre for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical University of SalzburgSalzburgAustria
- Neuroscience InstituteChristian Doppler University HospitalSalzburgAustria
- Karl Landsteiner Institute for Neurorehabilitation and Space NeurologySalzburgAustria
| | - Giorgi Kuchukhidze
- Department of Neurology, Member of the European Reference Network EpiCARE, Centre for Cognitive Neuroscience, Christian Doppler University HospitalParacelsus Medical University of SalzburgSalzburgAustria
- Neuroscience InstituteChristian Doppler University HospitalSalzburgAustria
| |
Collapse
|
16
|
Horn J, Admiraal M, Hofmeijer J. Diagnosis and management of seizures and myoclonus after cardiac arrest. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2023; 12:525-531. [PMID: 37486703 DOI: 10.1093/ehjacc/zuad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Affiliation(s)
- Janneke Horn
- Department of Intensive care Medicine, AmsterdamUMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Neurosciences Institute, AmsterdamUMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marjolein Admiraal
- Neurosciences Institute, AmsterdamUMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Neurology and Clinical Neurophysiology, AmsterdamUMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Technical Medical Center, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
- Department of Neurology, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, The Netherlands
| |
Collapse
|
17
|
Hoedemaekers C, Hofmeijer J, Horn J. Value of EEG in outcome prediction of hypoxic-ischemic brain injury in the ICU: A narrative review. Resuscitation 2023; 189:109900. [PMID: 37419237 DOI: 10.1016/j.resuscitation.2023.109900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Prognostication of comatose patients after cardiac arrest aims to identify patients with a large probability of favourable or unfavouble outcome, usually within the first week after the event. Electroencephalography (EEG) is a technique that is increasingly used for this purpose and has many advantages, such as its non-invasive nature and the possibility to monitor the evolution of brain function over time. At the same time, use of EEG in a critical care environment faces a number of challenges. This narrative review describes the current role and future applications of EEG for outcome prediction of comatose patients with postanoxic encephalopathy.
Collapse
Affiliation(s)
- Cornelia Hoedemaekers
- Department of Critical Care, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Technical Medical Center, University of Twente, Enschede, the Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Janneke Horn
- Department of Critical Care, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Rajajee V, Muehlschlegel S, Wartenberg KE, Alexander SA, Busl KM, Chou SHY, Creutzfeldt CJ, Fontaine GV, Fried H, Hocker SE, Hwang DY, Kim KS, Madzar D, Mahanes D, Mainali S, Meixensberger J, Montellano F, Sakowitz OW, Weimar C, Westermaier T, Varelas PN. Guidelines for Neuroprognostication in Comatose Adult Survivors of Cardiac Arrest. Neurocrit Care 2023; 38:533-563. [PMID: 36949360 PMCID: PMC10241762 DOI: 10.1007/s12028-023-01688-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Among cardiac arrest survivors, about half remain comatose 72 h following return of spontaneous circulation (ROSC). Prognostication of poor neurological outcome in this population may result in withdrawal of life-sustaining therapy and death. The objective of this article is to provide recommendations on the reliability of select clinical predictors that serve as the basis of neuroprognostication and provide guidance to clinicians counseling surrogates of comatose cardiac arrest survivors. METHODS A narrative systematic review was completed using Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. Candidate predictors, which included clinical variables and prediction models, were selected based on clinical relevance and the presence of an appropriate body of evidence. The Population, Intervention, Comparator, Outcome, Timing, Setting (PICOTS) question was framed as follows: "When counseling surrogates of comatose adult survivors of cardiac arrest, should [predictor, with time of assessment if appropriate] be considered a reliable predictor of poor functional outcome assessed at 3 months or later?" Additional full-text screening criteria were used to exclude small and lower-quality studies. Following construction of the evidence profile and summary of findings, recommendations were based on four GRADE criteria: quality of evidence, balance of desirable and undesirable consequences, values and preferences, and resource use. In addition, good practice recommendations addressed essential principles of neuroprognostication that could not be framed in PICOTS format. RESULTS Eleven candidate clinical variables and three prediction models were selected based on clinical relevance and the presence of an appropriate body of literature. A total of 72 articles met our eligibility criteria to guide recommendations. Good practice recommendations include waiting 72 h following ROSC/rewarming prior to neuroprognostication, avoiding sedation or other confounders, the use of multimodal assessment, and an extended period of observation for awakening in patients with an indeterminate prognosis, if consistent with goals of care. The bilateral absence of pupillary light response > 72 h from ROSC and the bilateral absence of N20 response on somatosensory evoked potential testing were identified as reliable predictors. Computed tomography or magnetic resonance imaging of the brain > 48 h from ROSC and electroencephalography > 72 h from ROSC were identified as moderately reliable predictors. CONCLUSIONS These guidelines provide recommendations on the reliability of predictors of poor outcome in the context of counseling surrogates of comatose survivors of cardiac arrest and suggest broad principles of neuroprognostication. Few predictors were considered reliable or moderately reliable based on the available body of evidence.
Collapse
Affiliation(s)
- Venkatakrishna Rajajee
- Departments of Neurology and Neurosurgery, 3552 Taubman Health Care Center, SPC 5338, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5338, USA.
| | - Susanne Muehlschlegel
- Departments of Neurology, Anesthesiology, and Surgery, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | - Katharina M Busl
- Departments of Neurology and Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sherry H Y Chou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Gabriel V Fontaine
- Departments of Pharmacy and Neurosciences, Intermountain Healthcare, Salt Lake City, UT, USA
| | - Herbert Fried
- Department of Neurosurgery, Denver Health Medical Center, Denver, CO, USA
| | - Sara E Hocker
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - David Y Hwang
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keri S Kim
- Pharmacy Practice, University of Illinois, Chicago, IL, USA
| | - Dominik Madzar
- Department of Neurology, University of Erlangen, Erlangen, Germany
| | - Dea Mahanes
- Departments of Neurology and Neurosurgery, University of Virginia Health, Charlottesville, VA, USA
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Oliver W Sakowitz
- Department of Neurosurgery, Neurosurgery Center Ludwigsburg-Heilbronn, Ludwigsburg, Germany
| | - Christian Weimar
- Institute of Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
- BDH-Clinic Elzach, Elzach, Germany
| | | | | |
Collapse
|
19
|
Fordyce CB, Kramer AH, Ainsworth C, Christenson J, Hunter G, Kromm J, Lopez Soto C, Scales DC, Sekhon M, van Diepen S, Dragoi L, Josephson C, Kutsogiannis J, Le May MR, Overgaard CB, Savard M, Schnell G, Wong GC, Belley-Côté E, Fantaneanu TA, Granger CB, Luk A, Mathew R, McCredie V, Murphy L, Teitelbaum J. Neuroprognostication in the Post Cardiac Arrest Patient: A Canadian Cardiovascular Society Position Statement. Can J Cardiol 2023; 39:366-380. [PMID: 37028905 DOI: 10.1016/j.cjca.2022.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 04/08/2023] Open
Abstract
Cardiac arrest (CA) is associated with a low rate of survival with favourable neurologic recovery. The most common mechanism of death after successful resuscitation from CA is withdrawal of life-sustaining measures on the basis of perceived poor neurologic prognosis due to underlying hypoxic-ischemic brain injury. Neuroprognostication is an important component of the care pathway for CA patients admitted to hospital but is complex, challenging, and often guided by limited evidence. Using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to evaluate the evidence underlying factors or diagnostic modalities available to determine prognosis, recommendations were generated in the following domains: (1) circumstances immediately after CA; (2) focused neurologic exam; (3) myoclonus and seizures; (4) serum biomarkers; (5) neuroimaging; (6) neurophysiologic testing; and (7) multimodal neuroprognostication. This position statement aims to serve as a practical guide to enhance in-hospital care of CA patients and emphasizes the adoption of a systematic, multimodal approach to neuroprognostication. It also highlights evidence gaps.
Collapse
Affiliation(s)
- Christopher B Fordyce
- Division of Cardiology, Department of Medicine, Vancouver General Hospital, and the Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia.
| | - Andreas H Kramer
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta; Department of Critical Care, University of Calgary, Alberta
| | - Craig Ainsworth
- Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jim Christenson
- Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia
| | - Gary Hunter
- Division of Neurology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Julie Kromm
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta; Department of Critical Care, University of Calgary, Alberta
| | - Carmen Lopez Soto
- Department of Critical Care, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Damon C Scales
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mypinder Sekhon
- Division of Critical Care, Department of Medicine, Vancouver General Hospital, Djavad Mowafaghian Centre for Brain Health, International Centre for Repair Discoveries, University of British Columbia, Vancouver, British Columbia
| | - Sean van Diepen
- Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta
| | - Laura Dragoi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Colin Josephson
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta; Department of Critical Care, University of Calgary, Alberta
| | - Jim Kutsogiannis
- Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta
| | - Michel R Le May
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Christopher B Overgaard
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Martin Savard
- Department of Neurological Sciences CHU de Québec - Hôpital de l'Enfant-Jésus Quebec City, Quebec, Canada
| | - Gregory Schnell
- Division of Cardiology, Department of Medicine, University of Calgary, Calgary, Alberta
| | - Graham C Wong
- Division of Cardiology, Department of Medicine, Vancouver General Hospital, and the Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia
| | - Emilie Belley-Côté
- Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Tadeu A Fantaneanu
- Division of Neurology, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Adriana Luk
- Division of Cardiology, Department of Medicine, University of Toronto and the Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Rebecca Mathew
- CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, and the Faculty of Medicine, Division of Critical Care, University of Ottawa, Ottawa, Ontario, Canada
| | - Victoria McCredie
- Interdepartmental Division of Critical Care Medicine, University of Toronto, the Krembil Research Institute, Toronto Western Hospital, University Health Network, and Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Laurel Murphy
- Departments of Emergency Medicine and Critical Care, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeanne Teitelbaum
- Neurological Intensive Care Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Neurophysiological and Clinical Correlates of Acute Posthypoxic Myoclonus. J Clin Neurophysiol 2023; 40:117-122. [PMID: 36521068 DOI: 10.1097/wnp.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SUMMARY Prognostication following cardiorespiratory arrest relies on the neurological examination, which is supported by neuroimaging and neurophysiological testing. Acute posthypoxic myoclonus (PHM) is a clinical entity that has prognostic significance and historically has been considered an indicator of poor outcome, but this is not invariably the case. "Malignant" and more "benign" forms of acute PHM have been described and differentiating them is key in understanding their meaning in prognosis. Neurophysiological tests, electroencephalogram in particular, and clinical phenotyping are crucial in defining subtypes of acute PHM. This review describes the neurophysiological and phenotypic markers of malignant and benign forms of acute PHM, a clinical approach to evaluating acute PHM following cardiorespiratory arrest in determining prognosis, and gaps in our understanding of acute PHM that require further study.
Collapse
|
21
|
Misirocchi F, Bernabè G, Zinno L, Spallazzi M, Zilioli A, Mannini E, Lazzari S, Tontini V, Mutti C, Parrino L, Picetti E, Florindo I. Epileptiform patterns predicting unfavorable outcome in postanoxic patients: A matter of time? Neurophysiol Clin 2023; 53:102860. [PMID: 37011480 DOI: 10.1016/j.neucli.2023.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE Historically, epileptiform malignant EEG patterns (EMPs) have been considered to anticipate an unfavorable outcome, but an increasing amount of evidence suggests that they are not always or invariably associated with poor prognosis. We evaluated the prognostic significance of an EMP onset in two different timeframes in comatose patients after cardiac arrest (CA): early-EMPs and late-EMPs, respectively. METHODS We included all comatose post-CA survivors admitted to our intensive care unit (ICU) between 2016 and 2018 who underwent at least two 30-minute EEGs, collected at T0 (12-36 h after CA) and T1 (36-72 h after CA). All EEGs recordings were re-analyzed following the 2021 ACNS terminology by two senior EEG specialists, blinded to outcome. Malignant EEGs with abundant sporadic spikes/sharp waves, rhythmic and periodic patterns, or electrographic seizure/status epilepticus, were included in the EMP definition. The primary outcome was the cerebral performance category (CPC) score at 6 months, dichotomized as good (CPC 1-2) or poor (CPC 3-5) outcome. RESULTS A total of 58 patients and 116 EEG recording were included in the study. Poor outcome was seen in 28 (48%) patients. In contrast to late-EMPs, early-EMPs were associated with a poor outcome (p = 0.037), persisting after multiple regression analysis. Moreover, a multivariate binomial model coupling the timing of EMP onset with other EEG predictors such as T1 reactivity and T1 normal voltage background can predict outcome in the presence of an otherwise non-specific malignant EEG pattern with quite high specificity (82%) and moderate sensitivity (77%). CONCLUSIONS The prognostic significance of EMPs seems strongly time-dependent and only their early-onset may be associated with an unfavorable outcome. The time of onset of EMP combined with other EEG features could aid in defining prognosis in patients with intermediate EEG patterns.
Collapse
|
22
|
Nonconvulsive status epilepticus following cardiac arrest: overlooked, untreated and misjudged. J Neurol 2023; 270:130-138. [PMID: 36076090 DOI: 10.1007/s00415-022-11368-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023]
Abstract
AIMS Seizures and status epilepticus (SE) are detected in almost a third of the comatose cardiac arrest survivors. As the literature is quite exhaustive regarding SE with motor symptoms in those patients, little is known about nonconvulsive SE (NCSE). Our aim was to compile the evidence from the literature of the frequency and outcome of NCSE in adult patients remaining in coma after resuscitation. METHODS The medical search PubMed was screened for most relevant articles reporting the emergence and outcome of NCSE in comatose post-resuscitated adult patients. RESULTS We identified 11 cohort studies (four prospective observational, seven retrospective) including 1092 patients with SE in 29-96% and NCSE reported in 1-20%. EEG evaluation started at a median of 9.5 h (range 7.5-14.8) after cardiac arrest, during sedation and targeted temperature management (TTM). Favorable outcome after NCSE occurred in 24.5%. We found no study reporting EEG to detect or exclude NCSE in patients remaining in coma prior to the initiation of TTM and without sedation withing the first hours after ROSC. DISCUSSION Studies on NCSE after ROSC are scarce and unsystematic, reporting favorable outcome in every fourth patient experiencing NCSE after ROSC. This suggests that NCSE is often overlooked and outcome after NCSE is not always poor. The low data quality does not allow firm conclusions regarding the effects of NCSE on outcome calling for further investigation. In the meantime, clinicians should avoid equating NCSE after ROSC with poor prognosis.
Collapse
|
23
|
Benghanem S, Pruvost-Robieux E, Bouchereau E, Gavaret M, Cariou A. Prognostication after cardiac arrest: how EEG and evoked potentials may improve the challenge. Ann Intensive Care 2022; 12:111. [PMID: 36480063 PMCID: PMC9732180 DOI: 10.1186/s13613-022-01083-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
About 80% of patients resuscitated from CA are comatose at ICU admission and nearly 50% of survivors are still unawake at 72 h. Predicting neurological outcome of these patients is important to provide correct information to patient's relatives, avoid disproportionate care in patients with irreversible hypoxic-ischemic brain injury (HIBI) and inappropriate withdrawal of care in patients with a possible favorable neurological recovery. ERC/ESICM 2021 algorithm allows a classification as "poor outcome likely" in 32%, the outcome remaining "indeterminate" in 68%. The crucial question is to know how we could improve the assessment of both unfavorable but also favorable outcome prediction. Neurophysiological tests, i.e., electroencephalography (EEG) and evoked-potentials (EPs) are a non-invasive bedside investigations. The EEG is the record of brain electrical fields, characterized by a high temporal resolution but a low spatial resolution. EEG is largely available, and represented the most widely tool use in recent survey examining current neuro-prognostication practices. The severity of HIBI is correlated with the predominant frequency and background continuity of EEG leading to "highly malignant" patterns as suppression or burst suppression in the most severe HIBI. EPs differ from EEG signals as they are stimulus induced and represent the summated activities of large populations of neurons firing in synchrony, requiring the average of numerous stimulations. Different EPs (i.e., somato sensory EPs (SSEPs), brainstem auditory EPs (BAEPs), middle latency auditory EPs (MLAEPs) and long latency event-related potentials (ERPs) with mismatch negativity (MMN) and P300 responses) can be assessed in ICU, with different brain generators and prognostic values. In the present review, we summarize EEG and EPs signal generators, recording modalities, interpretation and prognostic values of these different neurophysiological tools. Finally, we assess the perspective for futures neurophysiological investigations, aiming to reduce prognostic uncertainty in comatose and disorders of consciousness (DoC) patients after CA.
Collapse
Affiliation(s)
- Sarah Benghanem
- grid.411784.f0000 0001 0274 3893Medical ICU, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ,grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,After ROSC Network, Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Estelle Pruvost-Robieux
- grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,Neurophysiology and Epileptology Department, GHU Psychiatry and Neurosciences, Sainte Anne, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Eléonore Bouchereau
- Department of Neurocritical Care, G.H.U Paris Psychiatry and Neurosciences, 1, Rue Cabanis, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Martine Gavaret
- grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,Neurophysiology and Epileptology Department, GHU Psychiatry and Neurosciences, Sainte Anne, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Alain Cariou
- grid.411784.f0000 0001 0274 3893Medical ICU, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ,grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,After ROSC Network, Paris, France ,grid.462416.30000 0004 0495 1460Paris-Cardiovascular-Research-Center (Sudden-Death-Expertise-Center), INSERM U970, Paris, France
| |
Collapse
|
24
|
Nonconvulsive status epilepticus following cardiac arrest—are we missing the beginning? ZEITSCHRIFT FÜR EPILEPTOLOGIE 2022. [DOI: 10.1007/s10309-022-00532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background
Status epilepticus (SE) is a common complication in patients surviving a cardiac arrest, but little is known about the frequency of nonconvulsive status epilepticus (NCSE).
Objectives
To compile the first the evidence from the literature of the overall frequency of NCSE in adults with persistent coma following cardiac arrest. Secondarily, to assess the emergence of NCSE in comatose resuscitated patients within the first hours of the return of spontaneous circulation (ROSC) and before inducing target temperature management.
Material and methods
The medical search engine PubMed was screened to identify prospective and retrospective studies in English reporting on the frequency of NCSE in comatose post-resuscitated patients. Study design, time of EEG performance, detection of SE and NCSE, outcomes, and targeted temperature management were assessed.
Results
Only three cohort studies (one prospective and two retrospective) reported on the EEG evaluation describing NCSE during ongoing sedation and target temperature management. Overall, we identified 213 patients with SE in 18–38% and NCSE in 5–12%. Our review found no study reporting NCSE in resuscitated adult patients remaining in coma within the first hours of ROSC and prior to targeted temperature management and sedation.
Conclusion
Studies of NCSE after ROSC in adults are rare and mostly nonsystematic. This and the low proportion of patients reported having NCSE following ROSC suggest that NCSE before target temperature management and sedation is often overlooked. The limited quality of the data does not allow firm conclusions to be drawn regarding the effects of NCSE on outcome calling for further investigations. Clinicians should suspect NCSE in patients with persistent coma before starting sedation and targeted temperature management.
Collapse
|
25
|
De Stefano P, Kaplan PW, Sutter R. Not all rhythmicities and periodicities in coma EEG are fatal - when simplification becomes dangerous. Epilepsia 2022; 63:2164-2167. [PMID: 35665924 PMCID: PMC9544942 DOI: 10.1111/epi.17319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Pia De Stefano
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland.,EEG and Epilepsy Unit, Neurology Unit, Department of Clinical Neurosciences and Faculty of Medicine of Geneva, University Hospital of Geneva, Geneva, Switzerland
| | - Peter W Kaplan
- Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Raoul Sutter
- Department of Intensive Care, University Hospital Basel, Basel, Switzerland.,Division of Neurophysiology, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Medical faculty, University of Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Curley WH, Comanducci A, Fecchio M. Conventional and Investigational Approaches Leveraging Clinical EEG for Prognosis in Acute Disorders of Consciousness. Semin Neurol 2022; 42:309-324. [PMID: 36100227 DOI: 10.1055/s-0042-1755220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Prediction of recovery of consciousness after severe brain injury is difficult and limited by a lack of reliable, standardized biomarkers. Multiple approaches for analysis of clinical electroencephalography (EEG) that shed light on prognosis in acute severe brain injury have emerged in recent years. These approaches fall into two major categories: conventional characterization of EEG background and quantitative measurement of resting state or stimulus-induced EEG activity. Additionally, a small number of studies have associated the presence of electrophysiologic sleep features with prognosis in the acute phase of severe brain injury. In this review, we focus on approaches for the analysis of clinical EEG that have prognostic significance and that could be readily implemented with minimal additional equipment in clinical settings, such as intensive care and intensive rehabilitation units, for patients with acute disorders of consciousness.
Collapse
Affiliation(s)
- William H Curley
- Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts
| | - Angela Comanducci
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Università Campus Bio-Medico di Roma, Rome, Italy
| | - Matteo Fecchio
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
27
|
Nadjar Y, Levy P, Nguyen-Michel VH, Luyt CE, Puybasset L, Navarro V. Prognostic value of electroencephalographic paroxysms in post-anoxic coma: A new regularity EEG-based score. Neurophysiol Clin 2022; 52:223-231. [PMID: 35490145 DOI: 10.1016/j.neucli.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Several electroencephalographic (EEG) features -mainly the reactivity of background activity-have been suggested as reliable predictors of outcome for patients with post-anoxic coma (PAC). However, EEG in PAC often contains abundant EEG paroxysms (EP) that may hinder the detection of background EEG activity. We aimed to identify the features, among the different paroxysmal and non-paroxysmal EEG patterns, that may predict the outcome of patients with PAC. METHODS We retrospectively reviewed the clinical and EEG characteristics of 67 patients with PAC and selected those with abundant EP. We classified EP according to several features and assessed their prognostic value for survival at 15 days. We calculated a global regularity score, as the sum of the value (1 if regular, 0 if not) attributed to each of 4 features of EP (duration, morphology, amplitude, and frequency). RESULTS The 35 patient-group with abundant EP showed a higher mortality than the group without abundant EP. Among 12 features of EP, four regularity features (regularity of EP duration, morphology, amplitude, and global regularity score) had a poor prognostic value. A global regularity score ≥ 3 showed a positive predictive value of 100 % for a poor outcome and a negative predictive value of 54 %, with good interrater consistency (Cohen's kappa = .63). CONCLUSIONS The presence of EP and their regularity features in PAC patients are strongly associated with poor outcome. We propose a global regularity score, easily derived from visual EEG inspection, that may be a reliable prognostic tool for these patients. Prospective and larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Yann Nadjar
- AP-HP, Epileptology Unit and Clinical Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neuroscience, Paris 75013, France
| | - Pierre Levy
- AP-HP, Public Health Departement and Clinical Neurophysiology Unit, Tenon Hospital, Paris, France
| | - Vi-Huong Nguyen-Michel
- AP-HP, Epileptology Unit and Clinical Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neuroscience, Paris 75013, France
| | - Charles-Edouard Luyt
- AP-HP, Medical Intensive Care Department, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris, France
| | - Louis Puybasset
- AP-HP, Neurosurgical Intensive Care Department, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris, France
| | - Vincent Navarro
- AP-HP, Epileptology Unit and Clinical Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neuroscience, Paris 75013, France; Sorbonne Université, Paris, France; Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Paris Brain Institute, ICM, INSERM, CNRS, sorbonne Université, Paris, France.
| |
Collapse
|
28
|
|
29
|
Ruijter BJ, Keijzer HM, Tjepkema-Cloostermans MC, Blans MJ, Beishuizen A, Tromp SC, Scholten E, Horn J, van Rootselaar AF, Admiraal MM, van den Bergh WM, Elting JWJ, Foudraine NA, Kornips FHM, van Kranen-Mastenbroek VHJM, Rouhl RPW, Thomeer EC, Moudrous W, Nijhuis FAP, Booij SJ, Hoedemaekers CWE, Doorduin J, Taccone FS, van der Palen J, van Putten MJAM, Hofmeijer J. Treating Rhythmic and Periodic EEG Patterns in Comatose Survivors of Cardiac Arrest. N Engl J Med 2022; 386:724-734. [PMID: 35196426 DOI: 10.1056/nejmoa2115998] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Whether the treatment of rhythmic and periodic electroencephalographic (EEG) patterns in comatose survivors of cardiac arrest improves outcomes is uncertain. METHODS We conducted an open-label trial of suppressing rhythmic and periodic EEG patterns detected on continuous EEG monitoring in comatose survivors of cardiac arrest. Patients were randomly assigned in a 1:1 ratio to a stepwise strategy of antiseizure medications to suppress this activity for at least 48 consecutive hours plus standard care (antiseizure-treatment group) or to standard care alone (control group); standard care included targeted temperature management in both groups. The primary outcome was neurologic outcome according to the score on the Cerebral Performance Category (CPC) scale at 3 months, dichotomized as a good outcome (CPC score indicating no, mild, or moderate disability) or a poor outcome (CPC score indicating severe disability, coma, or death). Secondary outcomes were mortality, length of stay in the intensive care unit (ICU), and duration of mechanical ventilation. RESULTS We enrolled 172 patients, with 88 assigned to the antiseizure-treatment group and 84 to the control group. Rhythmic or periodic EEG activity was detected a median of 35 hours after cardiac arrest; 98 of 157 patients (62%) with available data had myoclonus. Complete suppression of rhythmic and periodic EEG activity for 48 consecutive hours occurred in 49 of 88 patients (56%) in the antiseizure-treatment group and in 2 of 83 patients (2%) in the control group. At 3 months, 79 of 88 patients (90%) in the antiseizure-treatment group and 77 of 84 patients (92%) in the control group had a poor outcome (difference, 2 percentage points; 95% confidence interval, -7 to 11; P = 0.68). Mortality at 3 months was 80% in the antiseizure-treatment group and 82% in the control group. The mean length of stay in the ICU and mean duration of mechanical ventilation were slightly longer in the antiseizure-treatment group than in the control group. CONCLUSIONS In comatose survivors of cardiac arrest, the incidence of a poor neurologic outcome at 3 months did not differ significantly between a strategy of suppressing rhythmic and periodic EEG activity with the use of antiseizure medication for at least 48 hours plus standard care and standard care alone. (Funded by the Dutch Epilepsy Foundation; TELSTAR ClinicalTrials.gov number, NCT02056236.).
Collapse
Affiliation(s)
- Barry J Ruijter
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Hanneke M Keijzer
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Marleen C Tjepkema-Cloostermans
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Michiel J Blans
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Albertus Beishuizen
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Selma C Tromp
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Erik Scholten
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Janneke Horn
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Anne-Fleur van Rootselaar
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Marjolein M Admiraal
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Walter M van den Bergh
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Jan-Willem J Elting
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Norbert A Foudraine
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Francois H M Kornips
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Vivianne H J M van Kranen-Mastenbroek
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Rob P W Rouhl
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Elsbeth C Thomeer
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Walid Moudrous
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Frouke A P Nijhuis
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Suzanne J Booij
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Cornelia W E Hoedemaekers
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Jonne Doorduin
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Fabio S Taccone
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Job van der Palen
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Michel J A M van Putten
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| | - Jeannette Hofmeijer
- From the Department of Clinical Neurophysiology, Technical Medical Center (B.J.R., M.C.T.-C., M.J.A.M.P., J. Hofmeijer), and the Section of Cognition, Data, and Education (J.P.), University of Twente, and the Departments of Neurology and Clinical Neurophysiology (M.C.T.-C., M.J.A.M.P.), the Intensive Care Center (A.B.), and the Department of Epidemiology (J.P.), Medisch Spectrum Twente, Enschede, the Departments of Neurology (H.M.K., J. Hofmeijer) and Intensive Care (M.J.B.), Rijnstate Hospital, Arnhem, the Departments of Intensive Care Medicine (H.M.K., C.W.E.H.) and Neurology (H.M.K., J.D.) and the Donders Institute for Brain, Cognition, and Behavior (H.M.K.), Radboud University Medical Center, and the Department of Neurology, Canisius Wilhelmina Hospital (F.A.P.N., S.J.B.), Nijmegen, the Departments of Neurology and Clinical Neurophysiology (S.C.T.) and Intensive Care (E.S.), St. Antonius Hospital, Nieuwegein, the Department of Neurology, Leiden University Medical Center, Leiden (S.C.T.), the Amsterdam Coma Group (J. Horn, A.-F.R., M.M.A.), the Department of Intensive Care (J. Horn), and the Department of Neurology and Clinical Neurophysiology (A.-F.R., M.M.A.), Amsterdam University Medical Center, Amsterdam, the Departments of Critical Care (W.M.B.) and Neurology and Clinical Neurophysiology (J.W.J.E.), University Medical Center Groningen, University of Groningen, Groningen, the Departments of Intensive Care (N.A.F.) and Neurology (F.H.M.K.), VieCuri Medical Center, Venlo, the Departments of Clinical Neurophysiology (V.H.J.M.K.-M.) and Neurology (R.P.W.R.), Maastricht University Medical Center, and the Academic Center for Epileptology Kempenhaeghe and Maastricht UMC+ (V.H.J.M.K.-M., R.P.W.R.), Maastricht, and the Department of Neurology, Maasstad Hospital, Rotterdam (E.C.T., W.M.) - all in the Netherlands; and the Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels (F.S.T.)
| |
Collapse
|
30
|
Critical care EEG standardized nomenclature in clinical practice: Strengths, limitations, and outlook on the example of prognostication after cardiac arrest. Clin Neurophysiol Pract 2022; 6:149-154. [PMID: 35112033 PMCID: PMC8790140 DOI: 10.1016/j.cnp.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
Optimal use of the ACNS nomenclature implies integration of clinical information. Knowledge of pathophysiological mechanisms of EEG patterns may help interpretation. Standardized therapeutic procedures for critical care patients are needed.
We discuss the achievements of the ACNS critical care EEG nomenclature proposed in 2013 and, from a clinical angle, outline some limitations regarding translation into treatment implications. While the recently proposed updated 2021 version of the nomenclature will probable improve some uncertainty areas, a refined understanding of the mechanisms at the origin of the EEG patterns, and a multimodal integration of the nomenclature to the clinical context may help improving the rationale supporting therapeutic procedures. We illustrate these aspects on prognostication after cardiac arrest.
Collapse
Key Words
- ACNS, American Clinical Neurophysiology Society
- American Clinical Neurophysiology Society (ACNS) Standardized Terminology
- BIRD, Brief potentially ictal rhythmic discharge
- BS, Burst suppression
- Burst suppression
- CA, Cardiac arrest
- Cardiac arrest (CA)
- DWI, diffusion-weighted MRI
- ESI, electric source imaging
- GPD
- GPD, generalized periodic discharge
- GRDA, generalized rhythmic delta activity
- ICU, Intensive care unit
- ICU-EEG, intensive care unit-electroencephalography
- IIC, Ictal-Interictal Continuum
- Ictal-Interictal Continuum
- LPD, Lateralized periodic discharge
- MEG, Magneto-electroencephalography
- NCSE, Non-Convulsive Status Epilepticus
- NSE, Serum neuron-specific enolase
- PET, Positron emission tomography
- Prognostication assessment
- SE, Status epilepticus
- SPECT, Single Photon Emission Computed Tomography
- SSEP, Somatosensory evoked potentials
- WLST, Withdraw of life sustaining treatment
- fMRI, functional MRI
Collapse
|
31
|
Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med 2021; 47:1393-1414. [PMID: 34705079 PMCID: PMC8548866 DOI: 10.1007/s00134-021-06548-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
Post-cardiac arrest brain injury (PCABI) is caused by initial ischaemia and subsequent reperfusion of the brain following resuscitation. In those who are admitted to intensive care unit after cardiac arrest, PCABI manifests as coma, and is the main cause of mortality and long-term disability. This review describes the mechanisms of PCABI, its treatment options, its outcomes, and the suggested strategies for outcome prediction.
Collapse
Affiliation(s)
- Claudio Sandroni
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy. .,Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Status Myoclonus with Post-cardiac-arrest Syndrome: Implications for Prognostication. Neurocrit Care 2021; 36:387-394. [PMID: 34595685 DOI: 10.1007/s12028-021-01344-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Status myoclonus (SM) after cardiac arrest (CA) may signify devastating brain injury. We hypothesized that SM correlates with severe neurologic and systemic post-cardiac-arrest syndrome (PCAS). METHODS Charts of patients admitted with CA to Mayo Clinic Saint Marys Hospital between 2005 and 2019 were retrospectively reviewed. Data included the neurologic examination, ancillary neurologic tests, and systemic markers of PCAS. Nonsustained myoclonus was clinically differentiated from SM. The cerebral performance category score at discharge was assessed; poor outcome was a cerebral performance category score > 2 prior to withdrawal of life-sustaining therapies or death. RESULTS Of 296 patients included, 276 (93.2%) had out-of-hospital arrest and 202 (68.5%) had a shockable rhythm; the mean time to return of spontaneous circulation was 32 ± 19 min. One hundred seventy-six (59.5%) patients had a poor outcome. One hundred one (34.1%) patients had myoclonus, and 74 (73.2%) had SM. Neurologic predictors of poor outcome were extensor or absent motor response to noxious stimulus (p = 0.02, odds ratio [OR] 3.8, confidence interval [CI] 1.2-12.4), SM (p = 0.01, OR 10.3, CI 1.5-205.4), and burst suppression on EEG (p = 0.01, OR 4.6, CI 1.4-17.4). Of 74 patients with SM, 73 (98.6%) had a poor outcome. A nonshockable rhythm (p < 0.001, OR 4.5, CI 2.6-7.9), respiratory arrest (p < 0.001, OR 3.5, CI 1.7-7.2), chronic kidney disease (p < 0.001, OR 3.1, CI 1.6-6.0), and a pressor requirement (p < 0.001, OR 4.4, CI 1.8-10.6) were associated with SM. No patients with SM, anoxic-ischemic magnetic resonance imaging findings, and absent electroencephalographic reactivity had a good outcome. CONCLUSIONS Sustained status myoclonus after CPR is observed in patients with other reliable indicators of severe acute brain injury and systemic PCAS. These clinical determinants should be incorporated as part of a comprehensive approach to prognostication after CA.
Collapse
|
33
|
Ascoli M, Ferlazzo E, Gasparini S, Mastroianni G, Citraro R, Roberti R, Russo E. Epidemiology and Outcomes of Status Epilepticus. Int J Gen Med 2021; 14:2965-2973. [PMID: 34234526 PMCID: PMC8254099 DOI: 10.2147/ijgm.s295855] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Status epilepticus (SE) is a neurological and medical emergency, defined as a condition resulting either from the failure of the mechanisms responsible of seizure self-limitation or from the initiation of mechanisms which lead to atypically prolonged seizures. Further than death, SE can have long-term consequences, including neuronal injury, depending on the type, cause and duration of seizures with severe associated disabilities. In Europe, SE shows an incidence rate ranging about 9 to 40/100,000/y. In adults, mortality of patients with SE is ~30%, and even higher (up to 40%) in refractory status epilepticus. To date, etiology, duration, presence of comorbidity, level of consciousness, semiology and age are the main clinical predictors of SE outcome.
Collapse
Affiliation(s)
- Michele Ascoli
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio, Calabria, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio, Calabria, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio, Calabria, Italy
| | | | - Rita Citraro
- Science of Health Department, Magna Græcia University, Catanzaro, Italy
| | - Roberta Roberti
- Science of Health Department, Magna Græcia University, Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
34
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. Postreanimationsbehandlung. Notf Rett Med 2021. [DOI: 10.1007/s10049-021-00892-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Peluso L, Gaspard N. Electroencephalography in post-cardiac arrest patients: a matter of timing? Minerva Anestesiol 2021; 87:637-639. [PMID: 33938681 DOI: 10.23736/s0375-9393.21.15715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lorenzo Peluso
- Department of Intensive Care, Cliniques Universitaires de Bruxelles - Erasme Hospital, Brussels, Belgium -
| | - Nicolas Gaspard
- Department of Neurology, Cliniques Universitaires de Bruxelles - Erasme Hospital, Brussels, Belgium.,Department of Neurology, Yale University Medical School, New Haven, CT, USA
| |
Collapse
|
36
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021; 47:369-421. [PMID: 33765189 PMCID: PMC7993077 DOI: 10.1007/s00134-021-06368-4] [Citation(s) in RCA: 564] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation and organ donation.
Collapse
Affiliation(s)
- Jerry P. Nolan
- University of Warwick, Warwick Medical School, Coventry, CV4 7AL UK
- Royal United Hospital, Bath, BA1 3NG UK
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W. Böttiger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Division of Health Sciences, Warwick Medical School, University of Warwick, Room A108, Coventry, CV4 7AL UK
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Véronique R. M. Moulaert
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Markus B. Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB UK
| |
Collapse
|
37
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Mariero Olasveengen T, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation 2021; 161:220-269. [PMID: 33773827 DOI: 10.1016/j.resuscitation.2021.02.012] [Citation(s) in RCA: 435] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation, and organ donation.
Collapse
Affiliation(s)
- Jerry P Nolan
- University of Warwick, Warwick Medical School, Coventry CV4 7AL, UK; Royal United Hospital, Bath, BA1 3NG, UK.
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy; Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W Böttiger
- University Hospital of Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC) Université Catholique de Louvain, Brussels, Belgium; Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Room A108, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Gisela Lilja
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Véronique R M Moulaert
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| |
Collapse
|
38
|
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol 2021; 17:135-156. [PMID: 33318675 PMCID: PMC7734616 DOI: 10.1038/s41582-020-00428-x] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Substantial progress has been made over the past two decades in detecting, predicting and promoting recovery of consciousness in patients with disorders of consciousness (DoC) caused by severe brain injuries. Advanced neuroimaging and electrophysiological techniques have revealed new insights into the biological mechanisms underlying recovery of consciousness and have enabled the identification of preserved brain networks in patients who seem unresponsive, thus raising hope for more accurate diagnosis and prognosis. Emerging evidence suggests that covert consciousness, or cognitive motor dissociation (CMD), is present in up to 15-20% of patients with DoC and that detection of CMD in the intensive care unit can predict functional recovery at 1 year post injury. Although fundamental questions remain about which patients with DoC have the potential for recovery, novel pharmacological and electrophysiological therapies have shown the potential to reactivate injured neural networks and promote re-emergence of consciousness. In this Review, we focus on mechanisms of recovery from DoC in the acute and subacute-to-chronic stages, and we discuss recent progress in detecting and predicting recovery of consciousness. We also describe the developments in pharmacological and electrophysiological therapies that are creating new opportunities to improve the lives of patients with DoC.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Randomized controlled trials investigating the initial pharmacological treatment of status epilepticus have been recently published. Furthermore, status epilepticus arising in comatose survivors after cardiac arrest has received increasing attention in the last years. This review offers an updated assessment of status epilepticus treatment in these different scenarios. RECENT FINDINGS Initial benzodiazepines underdosing is common and correlates with development of status epilepticus refractoriness. The recently published ESETT trial provides high-level evidence regarding the equivalence of fosphenytoin, valproate, and levetiracetam as a second-line option. Myoclonus or epileptiform transients on electroencephalography occur in up to 1/3 of patients surviving a cardiac arrest. Contrary to previous assumptions regarding an almost invariable association with death, at least 1/10 of them may awaken with reasonably good prognosis, if treated. Multimodal prognostication including clinical examination, EEG, somatosensory evoked potentials, biochemical markers, and neuroimaging help identifying patients with a chance to recover consciousness, in whom a trial with antimyoclonic compounds and at times general anesthetics is indicated. SUMMARY There is a continuous, albeit relatively slow progress in knowledge regarding different aspect of status epilepticus; recent findings refine some treatment strategies and help improving patients' outcomes. Further high-quality studies are clearly needed to further improve the management of these patients, especially those with severe, refractory status epilepticus forms.
Collapse
|
40
|
Electroclinical patterns in patients with nonconvulsive status epilepticus: Etiology, treatment, and outcome. Epilepsy Behav 2021; 114:107611. [PMID: 33272894 DOI: 10.1016/j.yebeh.2020.107611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION This study investigated the clinical and electroencephalography (EEG) features and prognostic factors of patients with nonconvulsive status epilepticus (NCSE). MATERIALS AND METHODS We retrospectively reviewed the clinical files and EEG data of 45 (28 females, mean age 54 ± 22.6 years) consecutive patients with NCSE over a five-year period. An EEG interpreter who was blinded to the clinical findings evaluated the EEGs according to the Salzburg Consensus Criteria (SCC) for NCSE. Patient demographics, etiology, neuroimaging and laboratory data, EEG features, treatment, and outcome measures were analyzed. RESULTS The most common etiology for NCSE was acute symptomatic etiologies (57.8%) and cerebrovascular disease (48.9%). The majority (68.9%) of the patients presented with new-onset status epilepticus (SE). NCSE was refractory to treatment in 31.1% of patients. The most common status pattern consisted of rhythmic delta/theta activity in 62.3% of EEGs. Twenty-five status patterns on the EEGs were classified as definite, 30 as possible, and six as no NCSE according to the SCC. The in-hospital mortality rate was high (33.3%) showing an association with potentially fatal etiology, refractory SE, treatment with continuous I.V. anesthetics and also the presence of multiple status patterns and nonreactivity in EEGs (p < 0.05). CONCLUSIONS The SCC for NCSE have high diagnostic accuracy but do not affect prognosis. Potentially fatal etiology, multiple status patterns on EEG and non-reactive EEGs may carry significantly greater risk for short-term mortality.
Collapse
|
41
|
Gonzalez-Martinez A, Quintas S, Redondo N, Casado-Fernández L, Vivancos J. Sporadic Creutzfeldt-Jakob disease with tau pathology mimicking new-onset refractory non-convulsive status epilepticus: Case report and review of the literature. Eur J Neurol 2020; 28:1385-1391. [PMID: 33135248 DOI: 10.1111/ene.14624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE The aim of our study is to review the relationship between NCSE and sCJD. Creutzfeldt-Jakob disease (CJD) is the most common form of human prion disease. Electroencephalography (EEG)-detected changes such as periodic sharp wave complexes, superimposable to those seen in non-convulsive epileptic status (NCSE), have only rarely been described at CJD onset, especially in sporadic CJD (sCJD) cases. METHODS We describe clinical, EEG, cerebrospinal fluid (CSF) and neuroimaging findings of a confirmed case of sCJD with tau pathology, initially diagnosed as NCSE. We performed a literature review in PubMed of previous publications on both sCJD and NCSE. RESULTS An 82-year-old woman with no medical history presented with a 2-week rapidly progressive neurological disorder, with motor aphasia, myoclonus, pyramidalism, and left posterior alien hand. EEG showed periodic sharp waves on right frontal regions, so anti-epileptic treatment was started. CSF results were normal. Brain magnetic resonance imaging demonstrated hyperintensity of the right cerebral cortex in diffusion sequences. Due to suspected new-onset refractory status epilepticus (NORSE), corticosteroid treatment was started, without clinical improvement. Necropsy results confirmed sCJD with tau pathology. The literature review identified 14 references including a total of 18 cases with NCSE as the presenting symptom of sCJD; the clinical and results in complementary tests were compiled into a table. CONCLUSIONS Sporadic CJD should be considered in the differential diagnosis of patients with rapid cognitive decline and EEG changes consistent with NCSE. The wide heterogeneity in the etiology of NCSE, including autoimmune disorders, especially NORSE, suggests immunotherapy should be initiated based on a good risk-benefit balance. Some cases of sCJD, such as the present case with tau pathology, may mimic this clinico-electrical course.
Collapse
Affiliation(s)
| | - Sonia Quintas
- Neurology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Nuria Redondo
- Neurology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | | | - José Vivancos
- Neurology Department, Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
42
|
Stabile A, Beretta S, Coppo A, Padovano G, Bogliun G, Ferrarese C, Avalli L. Double antiglutamatergic therapy in a case of postanoxic super-refractory status epilepticus. Neurol Clin Pract 2020; 10:e44-e46. [DOI: 10.1212/cpj.0000000000000740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/05/2019] [Indexed: 11/15/2022]
|
43
|
Sandroni C, D'Arrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M, Taccone FS, Di Rocco A, Meijer FJA, Westhall E, Antonelli M, Soar J, Nolan JP, Cronberg T. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2020; 46:1803-1851. [PMID: 32915254 PMCID: PMC7527362 DOI: 10.1007/s00134-020-06198-w] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Purpose To assess the ability of clinical examination, blood biomarkers, electrophysiology, or neuroimaging assessed within 7 days from return of spontaneous circulation (ROSC) to predict poor neurological outcome, defined as death, vegetative state, or severe disability (CPC 3–5) at hospital discharge/1 month or later, in comatose adult survivors from cardiac arrest (CA). Methods PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews (January 2013–April 2020) were searched. Sensitivity and false-positive rate (FPR) for each predictor were calculated. Due to heterogeneities in recording times, predictor thresholds, and definition of some predictors, meta-analysis was not performed. Results Ninety-four studies (30,200 patients) were included. Bilaterally absent pupillary or corneal reflexes after day 4 from ROSC, high blood values of neuron-specific enolase from 24 h after ROSC, absent N20 waves of short-latency somatosensory-evoked potentials (SSEPs) or unequivocal seizures on electroencephalogram (EEG) from the day of ROSC, EEG background suppression or burst-suppression from 24 h after ROSC, diffuse cerebral oedema on brain CT from 2 h after ROSC, or reduced diffusion on brain MRI at 2–5 days after ROSC had 0% FPR for poor outcome in most studies. Risk of bias assessed using the QUIPS tool was high for all predictors. Conclusion In comatose resuscitated patients, clinical, biochemical, neurophysiological, and radiological tests have a potential to predict poor neurological outcome with no false-positive predictions within the first week after CA. Guidelines should consider the methodological concerns and limited sensitivity for individual modalities. (PROSPERO CRD42019141169) Electronic supplementary material The online version of this article (10.1007/s00134-020-06198-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sonia D'Arrigo
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Sofia Cacciola
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy
| | | | - Marlijn J A Kamps
- Intensive Care Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mauro Oddo
- Department of Intensive Care Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Arianna Di Rocco
- Department of Public Health and Infectious Disease, Sapienza University, Rome, Italy
| | - Frederick J A Meijer
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erik Westhall
- Department of ClinicalSciences, Clinical Neurophysiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jasmeet Soar
- Critical Care Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Jerry P Nolan
- Department of Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
44
|
Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, Laureys S, Naccache L, Owen AM, Rosanova M, Rossetti AO, Schnakers C, Sitt JD, Schiff ND, Massimini M. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol 2020; 131:2736-2765. [PMID: 32917521 DOI: 10.1016/j.clinph.2020.07.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
The analysis of spontaneous EEG activity and evoked potentialsis a cornerstone of the instrumental evaluation of patients with disorders of consciousness (DoC). Thepast few years have witnessed an unprecedented surge in EEG-related research applied to the prediction and detection of recovery of consciousness after severe brain injury,opening up the prospect that new concepts and tools may be available at the bedside. This paper provides a comprehensive, critical overview of bothconsolidated and investigational electrophysiological techniquesfor the prognostic and diagnostic assessment of DoC.We describe conventional clinical EEG approaches, then focus on evoked and event-related potentials, and finally we analyze the potential of novel research findings. In doing so, we (i) draw a distinction between acute, prolonged and chronic phases of DoC, (ii) attempt to relate both clinical and research findings to the underlying neuronal processes and (iii) discuss technical and conceptual caveats.The primary aim of this narrative review is to bridge the gap between standard and emerging electrophysiological measures for the detection and prediction of recovery of consciousness. The ultimate scope is to provide a reference and common ground for academic researchers active in the field of neurophysiology and clinicians engaged in intensive care unit and rehabilitation.
Collapse
Affiliation(s)
- A Comanducci
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - M Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, USA; Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA
| | - J Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - M De Lucia
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - R M Gibson
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - E Juan
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA; Amsterdam Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - S Laureys
- Coma Science Group, Centre du Cerveau, GIGA-Consciousness, University and University Hospital of Liège, 4000 Liège, Belgium; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - L Naccache
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Sorbonne Université, UPMC Université Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - A M Owen
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - M Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - A O Rossetti
- Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - J D Sitt
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - N D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - M Massimini
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
45
|
Epileptiform Discharge and Electrographic Seizures during the Hypothermia Phase as Predictors of Rewarming Seizures in Children after Resuscitation. J Clin Med 2020; 9:jcm9072151. [PMID: 32650443 PMCID: PMC7408767 DOI: 10.3390/jcm9072151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine the frequency, timing, and predictors of rewarming seizures in a cohort of children undergoing therapeutic hypothermia after resuscitation. We retrospectively reviewed consecutive pediatric patients undergoing therapeutic hypothermia after resuscitation admitted to our pediatric intensive care unit between January 2000 and December 2019. Continuous electroencephalographic monitoring was performed during hypothermia (24 h for cardiac aetiologies and 72 h for asphyxial aetiologies), rewarming (72 h), and then an additional 12 h of normothermia. Thirty comatose children undergoing therapeutic hypothermia after resuscitation were enrolled, of whom 10 (33.3%) had rewarming seizures. Two (20%) of these patients had their first seizure during the rewarming phase. Four (40%) patients had electroclinical seizures, and six (60%) had nonconvulsive seizures. The median time from starting rewarming to the onset of rewarming seizures was 37.3 h (range 6 to 65 h). The patients with interictal epileptiform activity and electrographic seizures during the hypothermia phase were more likely to have rewarming seizures compared to those without interictal epileptiform activity or electrographic seizures (p = 0.019 and 0.019, respectively). Therefore, in high-risk patients, continuous electroencephalographic monitoring for a longer duration may help to detect rewarming seizures and guide clinical management.
Collapse
|
46
|
Keijzer HM, Klop M, van Putten MJ, Hofmeijer J. Delirium after cardiac arrest: Phenotype, prediction, and outcome. Resuscitation 2020; 151:43-49. [DOI: 10.1016/j.resuscitation.2020.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/26/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
|
47
|
Beretta S, Coppo A. Post-cardiac arrest patients with epileptiform EEG: Better selection for better treatment. Neurology 2020; 94:685-686. [PMID: 32213643 DOI: 10.1212/wnl.0000000000009282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Simone Beretta
- From the Epilepsy Center (S.B.), Department of Neurology, and Department of Intensive Care (A.C.), San Gerardo Hospital ASST Monza, University of Milano Bicocca, Monza, Italy.
| | - Anna Coppo
- From the Epilepsy Center (S.B.), Department of Neurology, and Department of Intensive Care (A.C.), San Gerardo Hospital ASST Monza, University of Milano Bicocca, Monza, Italy
| |
Collapse
|
48
|
Elmer J, Coppler PJ, Solanki P, Westover MB, Struck AF, Baldwin ME, Kurz MC, Callaway CW. Sensitivity of Continuous Electroencephalography to Detect Ictal Activity After Cardiac Arrest. JAMA Netw Open 2020; 3:e203751. [PMID: 32343353 PMCID: PMC7189220 DOI: 10.1001/jamanetworkopen.2020.3751] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE Epileptiform electroencephalographic (EEG) patterns are common after resuscitation from cardiac arrest, are associated with patient outcome, and may require treatment. It is unknown whether continuous EEG monitoring is needed to detect these patterns or if brief intermittent monitoring is sufficient. If continuous monitoring is required, the necessary duration of observation is unknown. OBJECTIVE To quantify the time-dependent sensitivity of continuous EEG for epileptiform event detection, and to compare continuous EEG to several alternative EEG-monitoring strategies for post-cardiac arrest outcome prediction. DESIGN, SETTING, AND PARTICIPANTS This observational cohort study was conducted in 2 academic medical centers between September 2010 and January 2018. Participants included 759 adults who were comatose after being resuscitated from cardiac arrest and who underwent 24 hours or more of EEG monitoring. MAIN OUTCOMES AND MEASURES Epileptiform EEG patterns associated with neurological outcome at hospital discharge, such as seizures likely to cause secondary injury. RESULTS Overall, 759 patients were included in the analysis; 281 (37.0%) were female, and the mean (SD) age was 58 (17) years. Epileptiform EEG activity was observed in 414 participants (54.5%), of whom only 26 (3.4%) developed potentially treatable seizures. Brief intermittent EEG had an estimated 66% (95% CI, 62%-69%) to 68% (95% CI, 66%-70%) sensitivity for detection of prognostic epileptiform events. Depending on initial continuity of the EEG background, 0 to 51 hours of monitoring were needed to achieve 95% sensitivity for the detection of prognostic epileptiform events. Brief intermittent EEG had a sensitivity of 7% (95% CI, 4%-12%) to 8% (95% CI, 4%-12%) for the detection of potentially treatable seizures, and 0 to 53 hours of continuous monitoring were needed to achieve 95% sensitivity for the detection of potentially treatable seizures. Brief intermittent EEG results yielded similar information compared with continuous EEG results when added to multivariable models predicting neurological outcome. CONCLUSIONS AND RELEVANCE Compared with continuous EEG monitoring, brief intermittent monitoring was insensitive for detection of epileptiform events. Monitoring EEG results significantly improved multimodality prediction of neurological outcome, but continuous monitoring appeared to add little additional information compared with brief intermittent monitoring.
Collapse
Affiliation(s)
- Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick J. Coppler
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pawan Solanki
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Maria E. Baldwin
- Department of Neurology, Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania
| | - Michael C. Kurz
- Department of Emergency Medicine, University of Alabama at Birmingham School of Medicine
| | - Clifton W. Callaway
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
49
|
Barbella G, Lee JW, Alvarez V, Novy J, Oddo M, Beers L, Rossetti AO. Prediction of regaining consciousness despite an early epileptiform EEG after cardiac arrest. Neurology 2020; 94:e1675-e1683. [DOI: 10.1212/wnl.0000000000009283] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/16/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveAfter cardiac arrest (CA), epileptiform EEG, occurring in about 1/3 of patients, often but not invariably heralds poor prognosis. We tested the hypothesis that a combination of specific EEG features identifies patients who may regain consciousness despite early epileptiform patterns.MethodsWe retrospectively analyzed a registry of comatose patients post-CA (2 Swiss centers), including those with epileptiform EEG. Background and epileptiform features in EEGs 12–36 hours or 36–72 hours from CA were scored according to the American Clinical Neurophysiology Society nomenclature. Best Cerebral Performance Category (CPC) score within 3 months (CPC 1–3 vs 4–5) was the primary outcome. Significant EEG variables were combined in a score assessed with receiver operating characteristic curves, and independently validated in a US cohort; its correlation with serum neuron-specific enolase (NSE) was also tested.ResultsOf 488 patients, 107 (21.9%) had epileptiform EEG <72 hours; 18 (17%) reached CPC 1–3. EEG 12–36 hours background continuity ≥50%, absence of epileptiform abnormalities (p< 0.00001 each), 12–36 and 36–72 hours reactivity (p< 0.0001 each), 36–72 hours normal background amplitude (p= 0.0004), and stimulus-induced discharges (p= 0.0001) correlated with favorable outcome. The combined 6-point score cutoff ≥2 was 100% sensitive (95% confidence interval [CI], 78%–100%) and 70% specific (95% CI, 59%–80%) for CPC 1–3 (area under the curve [AUC], 0.98; 95% CI, 0.94–1.00). Increasing score correlated with NSE (ρ = −0.46,p= 0.0001). In the validation cohort (41 patients), the score was 100% sensitive (95% CI, 60%–100%) and 88% specific (95% CI, 73%–97%) for CPC 1–3 (AUC, 0.96; 95% CI, 0.91–1.00).ConclusionPrognostic value of early epileptiform EEG after CA can be estimated combining timing, continuity, reactivity, and amplitude features in a score that correlates with neuronal damage.
Collapse
|
50
|
Postresuscitation Care after Out-of-hospital Cardiac Arrest: Clinical Update and Focus on Targeted Temperature Management. Anesthesiology 2020; 131:186-208. [PMID: 31021845 DOI: 10.1097/aln.0000000000002700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Out-of-hospital cardiac arrest is a major cause of mortality and morbidity worldwide. With the introduction of targeted temperature management more than a decade ago, postresuscitation care has attracted increased attention. In the present review, we discuss best practice hospital management of unconscious out-of-hospital cardiac arrest patients with a special focus on targeted temperature management. What is termed post-cardiac arrest syndrome strikes all organs and mandates access to specialized intensive care. All patients need a secured airway, and most patients need hemodynamic support with fluids and/or vasopressors. Furthermore, immediate coronary angiography and percutaneous coronary intervention, when indicated, has become an essential part of the postresuscitation treatment. Targeted temperature management with controlled sedation and mechanical ventilation is the most important neuroprotective strategy to take. Targeted temperature management should be initiated as quickly as possible, and according to international guidelines, it should be maintained at 32° to 36°C for at least 24 h, whereas rewarming should not increase more than 0.5°C per hour. However, uncertainty remains regarding targeted temperature management components, warranting further research into the optimal cooling rate, target temperature, duration of cooling, and the rewarming rate. Moreover, targeted temperature management is linked to some adverse effects. The risk of infection and bleeding is moderately increased, as is the risk of hypokalemia and magnesemia. Circulation needs to be monitored invasively and any deviances corrected in a timely fashion. Outcome prediction in the individual patient is challenging, and a self-fulfilling prophecy poses a real threat to early prognostication based on clinical assessment alone. Therefore, delayed and multimodal prognostication is now considered a key element of postresuscitation care. Finally, modern postresuscitation care can produce good outcomes in the majority of patients but requires major diagnostic and therapeutic resources and specific training. Hence, recent international guidelines strongly recommend the implementation of regional prehospital resuscitation systems with integrated and specialized cardiac arrest centers.
Collapse
|