1
|
Diaz MM, Custodio N, Montesinos R, Lira D, Herrera-Perez E, Pintado-Caipa M, Cuenca-Alfaro J, Gamboa C, Lanata S. Thyroid Dysfunction, Vitamin B12, and Folic Acid Deficiencies Are Not Associated With Cognitive Impairment in Older Adults in Lima, Peru. Front Public Health 2021; 9:676518. [PMID: 34552900 PMCID: PMC8450418 DOI: 10.3389/fpubh.2021.676518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/12/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Reversible etiologies of cognitive impairment are common and treatable, yet the majority of mild cognitive impairment (MCI) and dementia research in Latin America has focused on irreversible, neurodegenerative etiologies. Objective: We sought to determine if thyroid dysfunction and vitamin B12 and folate deficiencies are associated with cognitive disorders among older adults with memory complaints in Lima, Peru. Methods: This was a retrospective review of patients who presented for cognitive evaluations to a multidisciplinary neurology clinic in Lima, Peru from January 2014 to February 2020. We included individuals aged ≥60 years, native Spanish-speakers, with at least a primary school educational level and a complete clinical assessment. Patients had either subjective cognitive decline (SCD), MCI, or dementia. One-way ANOVA and multiple logistic regression analyses were performed. Results: We included 720 patients (330 SCD, 154 MCI, and 236 dementia); the dementia group was significantly older [mean age SCD 69.7 ± 4.1, dementia 72.4 ± 3.7 (p = 0.000)] and had lower folate levels than SCD patients. The MCI group had higher free T3 levels compared with SCD patients. Those with lower TSH had greater dementia risk (OR = 2.91, 95%CI: 1.15-6.86) but not MCI risk in unadjusted models. B12 deficiency or borderline B12 deficiency was present in 34% of the dementia group, yet no clear correlation was seen between neuropsychological test results and B12 levels in our study. There was no association between MCI or dementia and thyroid hormone, B12 nor folate levels in adjusted models. Conclusion: Our findings do not support an association between metabolic and endocrine disorders and cognitive impairment in older Peruvians from Lima despite a high prevalence of B12 deficiency. Future work may determine if cognitive decline is associated with metabolic or endocrine changes in Latin America.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nilton Custodio
- Servicio de Neurología, Instituto Peruano de Neurociencias, Lima, Peru
- Unidad de Diagnóstico de Deterioro Cognitivo y Prevención de Demencia, Instituto Peruano de Neurociencias, Lima, Peru
- Unidad de Investigación, Instituto Peruano de Neurociencias, Lima, Peru
| | - Rosa Montesinos
- Unidad de Diagnóstico de Deterioro Cognitivo y Prevención de Demencia, Instituto Peruano de Neurociencias, Lima, Peru
- Unidad de Investigación, Instituto Peruano de Neurociencias, Lima, Peru
- Servicio de Rehabilitación, Instituto Peruano de Neurociencias, Lima, Peru
| | - David Lira
- Servicio de Neurología, Instituto Peruano de Neurociencias, Lima, Peru
- Unidad de Diagnóstico de Deterioro Cognitivo y Prevención de Demencia, Instituto Peruano de Neurociencias, Lima, Peru
- Unidad de Investigación, Instituto Peruano de Neurociencias, Lima, Peru
| | - Eder Herrera-Perez
- Unidad de Investigación, Instituto Peruano de Neurociencias, Lima, Peru
- Grupo de investigación Molident, Universidad San Ignacio de Loyola, Lima, Peru
| | - Maritza Pintado-Caipa
- Servicio de Neurología, Instituto Peruano de Neurociencias, Lima, Peru
- Unidad de Diagnóstico de Deterioro Cognitivo y Prevención de Demencia, Instituto Peruano de Neurociencias, Lima, Peru
- Unidad de Investigación, Instituto Peruano de Neurociencias, Lima, Peru
- Atlantic Fellow, Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Jose Cuenca-Alfaro
- Unidad de Diagnóstico de Deterioro Cognitivo y Prevención de Demencia, Instituto Peruano de Neurociencias, Lima, Peru
- Unidad de Investigación, Instituto Peruano de Neurociencias, Lima, Peru
- Servicio de Neuropsicología, Instituto Peruano de Neurociencias, Lima, Peru
- Carrera de Psicología, Facultad de Ciencias de la Salud, Universidad Privada del Norte, Lima, Peru
| | - Carlos Gamboa
- Unidad de Diagnóstico de Deterioro Cognitivo y Prevención de Demencia, Instituto Peruano de Neurociencias, Lima, Peru
- Unidad de Investigación, Instituto Peruano de Neurociencias, Lima, Peru
- Servicio de Neuropsicología, Instituto Peruano de Neurociencias, Lima, Peru
| | - Serggio Lanata
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|