1
|
Koek AY, Darpel KA, Mihaylova T, Kerr WT. Myoclonus After Cardiac Arrest did not Correlate with Cortical Response on Somatosensory Evoked Potentials. J Intensive Care Med 2025; 40:331-340. [PMID: 39344464 DOI: 10.1177/08850666241287154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
PurposeMyoclonus after anoxic brain injury is a marker of significant cerebral injury. Absent cortical signal (N20) on somatosensory evoked potentials (SSEPs) after cardiac arrest is a reliable predictor of poor neurological recovery when combined with an overall clinical picture consistent with severe widespread neurological injury. We evaluated a clinical question of if SSEP result could be predicted from other clinical and neurodiagnostic testing results in patients with post-anoxic myoclonus.MethodsRetrospective chart review of all adult patients with post-cardiac arrest myoclonus who underwent both electroencephalographic (EEG) monitoring and SSEPs for neuroprognostication. Myoclonus was categorized as "non-myoclonic movements," "myoclonus not captured on EEG," "myoclonus without EEG correlate," "myoclonus with EEG correlate," and "status myoclonus." SSEP results were categorized as all absent, all present, N18 and N20 absent bilaterally, and N20 only absent bilaterally. Cox proportional hazards with censoring was used to evaluate the association of myoclonus category, SSEP results, and confounding factors with survival.ResultsIn 56 patients, median time from arrest to either confirmed death or last follow up was 9 days. The category of myoclonus was not associated with SSEP result or length of survival. Absence of N20 s or N18 s was associated with shorter survival (N20 hazard ratio [HR] 4.4, p = 0.0014; N18 HR 5.5, p < 0.00001).ConclusionsCategory of myoclonus did not reliably predict SSEP result. SSEP result was correlated with outcome consistently, but goals of care transitioned to comfort measures only in all patients with present peripheral potentials and either absent N20 s only or absence of N18 s and N20 s. Our results suggest that SSEPs may retain prognostic value in patients with post-anoxic myoclonus.
Collapse
Affiliation(s)
- Adriana Y Koek
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Kyle A Darpel
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Temenuzhka Mihaylova
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wesley T Kerr
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Neurology & Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
De Stefano P, Leitinger M, Misirocchi F, Quintard H, Degano G, Trinka E. Myoclonus After Cardiac Arrest: Need for Standardization-A Systematic Review and Research Proposal on Terminology. Crit Care Med 2025; 53:e410-e423. [PMID: 39773812 PMCID: PMC11801442 DOI: 10.1097/ccm.0000000000006521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVES Although myoclonus less than or equal to 72 hours after cardiac arrest (CA) is often viewed as a single entity, there is considerable heterogeneity in its clinical and electrophysiology characteristics, and its strength of association with outcome. We reviewed definitions, electroencephalogram, and outcome of myoclonus post-CA to assess the need for consensus and the potential role of electroencephalogram for further research. DATA SOURCES PubMed, Embase, and Cochrane databases. STUDY SELECTION English-language adult (≥ 18 yr) studies from 1966 to May 31, 2024, reporting myoclonus, myoclonic status/status myoclonus (MyS/SM), myoclonic status epilepticus (MSE), and/or early Lance-Adams Syndrome (eLAS) less than or equal to 72 hours post-CA. All study designs were independently screened by two authors. DATA EXTRACTION Data on patients presenting myoclonus, MyS/SM, MSE, and eLAS less than or equal to 72 hours post-CA, along with their definitions, electroencephalogram, and outcomes were extracted. The Newcastle-Ottawa Scale and Cochrane-Risk-of-Bias Assessment tool were used to evaluate study quality (PROSPERO n.CRD42023438107). DATA SYNTHESIS Of 585 identified articles, 119 met the inclusion criteria, revealing substantial heterogeneity in definitions, electroencephalogram, and outcomes. Among 3881 patients, myoclonus was reported in 2659, MyS/SM in 883, MSE in 569, and eLAS in 40. Among patients with a defined outcome, a Cerebral Performance Category (CPC) scale of 1-2 was reported in 9.8% of patients with myoclonus, 5.8% with MyS/SM, 5.7% with MSE, and 82.0% with eLAS. Electroencephalogram was recorded in 2714 patients (69.9%). CPC of 1-2 was observed in 1.6% of patients with suppression/suppression burst (SB)/unreactive (U) electroencephalogram, 11.3% with non-SB/U electroencephalogram and status epilepticus (SE), and 22.3% with non-SB/U electroencephalogram without SE. CONCLUSIONS Heterogeneity in definitions resulted in weak associations with outcomes. We propose to investigate myoclonus by including related electroencephalogram patterns: myoclonus associated with suppression/SB background electroencephalogram, myoclonus with nonsuppression/SB background but SE-electroencephalogram, and myoclonus with nonsuppression/SB background without SE-electroencephalogram. This pragmatic research approach should be validated in future studies.
Collapse
Affiliation(s)
- Pia De Stefano
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Markus Leitinger
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
| | - Francesco Misirocchi
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Hervé Quintard
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Giulio Degano
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Eugen Trinka
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Salzburg, Austria
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT—University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| |
Collapse
|
3
|
Vos I, Lucassen F, Bens B, Dercksen B, Postma R, Jorna E, ter Maaten J, Struys M, ter Avest E. Pre-hospital care after return of spontaneous circulation: Are we achieving our targets? Resusc Plus 2024; 19:100691. [PMID: 39006133 PMCID: PMC11246053 DOI: 10.1016/j.resplu.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/16/2024] Open
Abstract
Background Early restoration of normal physiology when return of spontaneous circulation (ROSC) is obtained after an out-of-hospital cardiac arrest (OHCA) reduces the risk of developing post-cardiac arrest syndrome (PCAS). This study aims to investigate if (and to which extent) this can be achieved within the scope of practice of standard emergency medical services (EMS) crews. Methods A prospective mixed-methods quantitative and qualitative cohort study was performed including adult patients with a non-traumatic OHCA presented to a university hospital emergency department (ED) in the Netherlands after pre-hospital ROSC was obtained. Primary endpoint was the percentage of patients with deranged physiology post-ROSC in whom EMS crews were able to reach recommended treatment targets. Results During a 32-month period, 160 patients presenting with ROSC after OHCA were included. Median (IQR) pre-hospital treatment duration was 40 (34-51) minutes. When deranged physiology was present (n = 133), it could be restored by EMS crews in 29% of the patients. Although average etCO2 and SpO2 improved gradually over time during pre-hospital treatment, recommended treatment targets could not be achieved in respectively 55% (30/55) and 43% (20/46) of the patients. Similarly, airway problems (24/46, 52%), hypotension (20/23, 87%) and post-anoxic agitation (16/43, 37%) could often not be resolved by EMS crews. The ability to restore normal physiology by EMS could not be predicted based on patient characteristics or in-arrest variables. Conclusion Deranged physiology after an OHCA is commonly encountered, and often difficult to treat within the scope of practice of regular EMS crews. Involvement of advanced critical care teams with a wider scope of practice at an early stage may contribute to a better outcome for these patients.
Collapse
Affiliation(s)
- I.A. Vos
- Department of Acute Care, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - F.G. Lucassen
- Department of Acute Care, University Medical Centre Groningen, University of Groningen, The Netherlands
- Department of Emergency Medicine, Isala Medical Centre Zwolle, The Netherlands
| | - B.W.J. Bens
- Department of Acute Care, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - B. Dercksen
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, The Netherlands
- Lifeliner 4, Groningen Airport Eelde, University Medical Centre Groningen, The Netherlands
- UMCG Ambulancezorg, Tynaarlo, Drenthe, The Netherlands
| | - R. Postma
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, The Netherlands
- Ambulancezorg Groningen, Groningen, The Netherlands
| | - E.M.F. Jorna
- Kijlstra Ambulancezorg, Drachten, Friesland, The Netherlands
| | - J.C. ter Maaten
- Department of Acute Care, University Medical Centre Groningen, University of Groningen, The Netherlands
- Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - M.M.R.F. Struys
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - E. ter Avest
- Department of Acute Care, University Medical Centre Groningen, University of Groningen, The Netherlands
- London’s Air Ambulance Charity, London, United Kingdom
| |
Collapse
|
4
|
Bitar R, Khan UM, Rosenthal ES. Utility and rationale for continuous EEG monitoring: a primer for the general intensivist. Crit Care 2024; 28:244. [PMID: 39014421 PMCID: PMC11251356 DOI: 10.1186/s13054-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.
Collapse
Affiliation(s)
- Ribal Bitar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Usaamah M Khan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Bencsik C, Josephson C, Soo A, Ainsworth C, Savard M, van Diepen S, Kramer A, Kromm J. The Evolving Role of Electroencephalography in Postarrest Care. Can J Neurol Sci 2024:1-13. [PMID: 38572611 DOI: 10.1017/cjn.2024.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Electroencephalography is an accessible, portable, noninvasive and safe means of evaluating a patient's brain activity. It can aid in diagnosis and management decisions for post-cardiac arrest patients with seizures, myoclonus and other non-epileptic movements. It also plays an important role in a multimodal approach to neuroprognostication predicting both poor and favorable outcomes. Individuals ordering, performing and interpreting these tests, regardless of the indication, should understand the supporting evidence, logistical considerations, limitations and impact the results may have on postarrest patients and their families as outlined herein.
Collapse
Affiliation(s)
- Caralyn Bencsik
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Colin Josephson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrea Soo
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Craig Ainsworth
- Division of Cardiology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Savard
- Département de Médecine, Université Laval, Quebec City, QC, Canada
| | - Sean van Diepen
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Andreas Kramer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Julie Kromm
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement from the American Heart Association and Neurocritical Care Society. Neurocrit Care 2024; 40:1-37. [PMID: 38040992 PMCID: PMC10861627 DOI: 10.1007/s12028-023-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 12/03/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
Affiliation(s)
| | | | - Edilberto Amorim
- San Francisco-Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Mary Kay Bader
- Providence Mission Hospital Nursing Center of Excellence/Critical Care Services, Mission Viejo, USA
| | | | | | | | | | | | | | - Karl B Kern
- Sarver Heart Center, University of Arizona, Tucson, USA
| | | | | | | | - Jerry P Nolan
- Warwick Medical School, University of Warwick, Coventry, UK
- Royal United Hospital, Bath, UK
| | - Mauro Oddo
- CHUV-Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | | | - Anezi Uzendu
- St. Luke's Mid America Heart Institute, Kansas City, USA
| | - Brian Walsh
- University of Texas Medical Branch School of Health Sciences, Galveston, USA
| | | | | |
Collapse
|
7
|
Perman SM, Elmer J, Maciel CB, Uzendu A, May T, Mumma BE, Bartos JA, Rodriguez AJ, Kurz MC, Panchal AR, Rittenberger JC. 2023 American Heart Association Focused Update on Adult Advanced Cardiovascular Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2024; 149:e254-e273. [PMID: 38108133 DOI: 10.1161/cir.0000000000001194] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cardiac arrest is common and deadly, affecting up to 700 000 people in the United States annually. Advanced cardiac life support measures are commonly used to improve outcomes. This "2023 American Heart Association Focused Update on Adult Advanced Cardiovascular Life Support" summarizes the most recent published evidence for and recommendations on the use of medications, temperature management, percutaneous coronary angiography, extracorporeal cardiopulmonary resuscitation, and seizure management in this population. We discuss the lack of data in recent cardiac arrest literature that limits our ability to evaluate diversity, equity, and inclusion in this population. Last, we consider how the cardiac arrest population may make up an important pool of organ donors for those awaiting organ transplantation.
Collapse
|
8
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement From the American Heart Association and Neurocritical Care Society. Circulation 2024; 149:e168-e200. [PMID: 38014539 PMCID: PMC10775969 DOI: 10.1161/cir.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
|
9
|
Rajajee V, Muehlschlegel S, Wartenberg KE, Alexander SA, Busl KM, Chou SHY, Creutzfeldt CJ, Fontaine GV, Fried H, Hocker SE, Hwang DY, Kim KS, Madzar D, Mahanes D, Mainali S, Meixensberger J, Montellano F, Sakowitz OW, Weimar C, Westermaier T, Varelas PN. Guidelines for Neuroprognostication in Comatose Adult Survivors of Cardiac Arrest. Neurocrit Care 2023; 38:533-563. [PMID: 36949360 PMCID: PMC10241762 DOI: 10.1007/s12028-023-01688-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Among cardiac arrest survivors, about half remain comatose 72 h following return of spontaneous circulation (ROSC). Prognostication of poor neurological outcome in this population may result in withdrawal of life-sustaining therapy and death. The objective of this article is to provide recommendations on the reliability of select clinical predictors that serve as the basis of neuroprognostication and provide guidance to clinicians counseling surrogates of comatose cardiac arrest survivors. METHODS A narrative systematic review was completed using Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. Candidate predictors, which included clinical variables and prediction models, were selected based on clinical relevance and the presence of an appropriate body of evidence. The Population, Intervention, Comparator, Outcome, Timing, Setting (PICOTS) question was framed as follows: "When counseling surrogates of comatose adult survivors of cardiac arrest, should [predictor, with time of assessment if appropriate] be considered a reliable predictor of poor functional outcome assessed at 3 months or later?" Additional full-text screening criteria were used to exclude small and lower-quality studies. Following construction of the evidence profile and summary of findings, recommendations were based on four GRADE criteria: quality of evidence, balance of desirable and undesirable consequences, values and preferences, and resource use. In addition, good practice recommendations addressed essential principles of neuroprognostication that could not be framed in PICOTS format. RESULTS Eleven candidate clinical variables and three prediction models were selected based on clinical relevance and the presence of an appropriate body of literature. A total of 72 articles met our eligibility criteria to guide recommendations. Good practice recommendations include waiting 72 h following ROSC/rewarming prior to neuroprognostication, avoiding sedation or other confounders, the use of multimodal assessment, and an extended period of observation for awakening in patients with an indeterminate prognosis, if consistent with goals of care. The bilateral absence of pupillary light response > 72 h from ROSC and the bilateral absence of N20 response on somatosensory evoked potential testing were identified as reliable predictors. Computed tomography or magnetic resonance imaging of the brain > 48 h from ROSC and electroencephalography > 72 h from ROSC were identified as moderately reliable predictors. CONCLUSIONS These guidelines provide recommendations on the reliability of predictors of poor outcome in the context of counseling surrogates of comatose survivors of cardiac arrest and suggest broad principles of neuroprognostication. Few predictors were considered reliable or moderately reliable based on the available body of evidence.
Collapse
Affiliation(s)
- Venkatakrishna Rajajee
- Departments of Neurology and Neurosurgery, 3552 Taubman Health Care Center, SPC 5338, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5338, USA.
| | - Susanne Muehlschlegel
- Departments of Neurology, Anesthesiology, and Surgery, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | - Katharina M Busl
- Departments of Neurology and Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sherry H Y Chou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Gabriel V Fontaine
- Departments of Pharmacy and Neurosciences, Intermountain Healthcare, Salt Lake City, UT, USA
| | - Herbert Fried
- Department of Neurosurgery, Denver Health Medical Center, Denver, CO, USA
| | - Sara E Hocker
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - David Y Hwang
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keri S Kim
- Pharmacy Practice, University of Illinois, Chicago, IL, USA
| | - Dominik Madzar
- Department of Neurology, University of Erlangen, Erlangen, Germany
| | - Dea Mahanes
- Departments of Neurology and Neurosurgery, University of Virginia Health, Charlottesville, VA, USA
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Oliver W Sakowitz
- Department of Neurosurgery, Neurosurgery Center Ludwigsburg-Heilbronn, Ludwigsburg, Germany
| | - Christian Weimar
- Institute of Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
- BDH-Clinic Elzach, Elzach, Germany
| | | | | |
Collapse
|
10
|
Neurophysiological and Clinical Correlates of Acute Posthypoxic Myoclonus. J Clin Neurophysiol 2023; 40:117-122. [PMID: 36521068 DOI: 10.1097/wnp.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SUMMARY Prognostication following cardiorespiratory arrest relies on the neurological examination, which is supported by neuroimaging and neurophysiological testing. Acute posthypoxic myoclonus (PHM) is a clinical entity that has prognostic significance and historically has been considered an indicator of poor outcome, but this is not invariably the case. "Malignant" and more "benign" forms of acute PHM have been described and differentiating them is key in understanding their meaning in prognosis. Neurophysiological tests, electroencephalogram in particular, and clinical phenotyping are crucial in defining subtypes of acute PHM. This review describes the neurophysiological and phenotypic markers of malignant and benign forms of acute PHM, a clinical approach to evaluating acute PHM following cardiorespiratory arrest in determining prognosis, and gaps in our understanding of acute PHM that require further study.
Collapse
|
11
|
Kramer AH. Status Myoclonus: A Nuanced Predictor of Poor Outcome Post Cardiac Arrest. Neurocrit Care 2021; 36:346-349. [PMID: 34873671 DOI: 10.1007/s12028-021-01402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Andreas H Kramer
- Departments of Critical Care Medicine and Clinical Neurosciences, University of Calgary, 3134 Hospital Drive N.W., Calgary, AB, T2N 2T9, Canada.
| |
Collapse
|
12
|
Kim YM, Jeung KW, Kim WY, Park YS, Oh JS, You YH, Lee DH, Chae MK, Jeong YJ, Kim MC, Ha EJ, Hwang KJ, Kim WS, Lee JM, Cha KC, Chung SP, Park JD, Kim HS, Lee MJ, Na SH, Kim ARE, Hwang SO. 2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 5. Post-cardiac arrest care. Clin Exp Emerg Med 2021; 8:S41-S64. [PMID: 34034449 PMCID: PMC8171174 DOI: 10.15441/ceem.21.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Young-Min Kim
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Won Young Kim
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Yoo Seok Park
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Suk Oh
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Yeon Ho You
- Department of Emergency Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Dong Hoon Lee
- Department of Emergency Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Minjung Kathy Chae
- Department of Emergency Medicine, Ajou University College of Medicine, Suwon, Korea
| | - Yoo Jin Jeong
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Min Chul Kim
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Eun Jin Ha
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Jin Hwang
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae Myung Lee
- Department of General Surgery, Korea University College of Medicine, Seoul, Korea
| | - Kyoung-Chul Cha
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung Phil Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June Dong Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Suk Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Jin Lee
- Department of Emergency Medicine, Kyoungbook University College of Medicine, Daegu, Korea
| | - Sang-Hoon Na
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ai-Rhan Ellen Kim
- Department of Pediatrics, Ulsan University College of Medicine, Seoul, Korea
| | - Sung Oh Hwang
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - on behalf of the Steering Committee of 2020 Korean Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Emergency Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Ajou University College of Medicine, Suwon, Korea
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of General Surgery, Korea University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Kyoungbook University College of Medicine, Daegu, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Ulsan University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Khazanova D, Douglas VC, Amorim E. A matter of timing: EEG monitoring for neurological prognostication after cardiac arrest in the era of targeted temperature management. Minerva Anestesiol 2021; 87:704-713. [PMID: 33591136 DOI: 10.23736/s0375-9393.21.14793-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuromonitoring with electroencephalography (EEG) is an essential tool in neurological prognostication post-cardiac arrest. EEG allows reliable and real-time assessment of early changes in background patterns, development of seizures and epileptiform activity, as well as testing for background reactivity to stimuli despite use of sedation or targeted temperature management. Delayed emergence of consciousness post-cardiac arrest is common, therefore longitudinal monitoring of EEG allows the detection of trends indicative of neurological improvement before coma recovery can be observed clinically. In this review, we summarize essential recent literature in EEG monitoring for neurological prognostication post-cardiac arrest in the context of targeted temperature management, with a particular focus on the importance of the evolution of EEG patterns in the first few days following resuscitation.
Collapse
Affiliation(s)
- Darya Khazanova
- Department of Neurology, University of California, San Francisco, CA, USA.,Division of Neurology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Vanja C Douglas
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Edilberto Amorim
- Department of Neurology, University of California, San Francisco, CA, USA - .,Division of Neurology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| |
Collapse
|
14
|
Soar J, Berg KM, Andersen LW, Böttiger BW, Cacciola S, Callaway CW, Couper K, Cronberg T, D'Arrigo S, Deakin CD, Donnino MW, Drennan IR, Granfeldt A, Hoedemaekers CWE, Holmberg MJ, Hsu CH, Kamps M, Musiol S, Nation KJ, Neumar RW, Nicholson T, O'Neil BJ, Otto Q, de Paiva EF, Parr MJA, Reynolds JC, Sandroni C, Scholefield BR, Skrifvars MB, Wang TL, Wetsch WA, Yeung J, Morley PT, Morrison LJ, Welsford M, Hazinski MF, Nolan JP. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2020; 156:A80-A119. [PMID: 33099419 PMCID: PMC7576326 DOI: 10.1016/j.resuscitation.2020.09.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations for advanced life support includes updates on multiple advanced life support topics addressed with 3 different types of reviews. Topics were prioritized on the basis of both recent interest within the resuscitation community and the amount of new evidence available since any previous review. Systematic reviews addressed higher-priority topics, and included double-sequential defibrillation, intravenous versus intraosseous route for drug administration during cardiac arrest, point-of-care echocardiography for intra-arrest prognostication, cardiac arrest caused by pulmonary embolism, postresuscitation oxygenation and ventilation, prophylactic antibiotics after resuscitation, postresuscitation seizure prophylaxis and treatment, and neuroprognostication. New or updated treatment recommendations on these topics are presented. Scoping reviews were conducted for anticipatory charging and monitoring of physiological parameters during cardiopulmonary resuscitation. Topics for which systematic reviews and new Consensuses on Science With Treatment Recommendations were completed since 2015 are also summarized here. All remaining topics reviewed were addressed with evidence updates to identify any new evidence and to help determine which topics should be the highest priority for systematic reviews in the next 1 to 2 years.
Collapse
|
15
|
Berg KM, Soar J, Andersen LW, Böttiger BW, Cacciola S, Callaway CW, Couper K, Cronberg T, D’Arrigo S, Deakin CD, Donnino MW, Drennan IR, Granfeldt A, Hoedemaekers CW, Holmberg MJ, Hsu CH, Kamps M, Musiol S, Nation KJ, Neumar RW, Nicholson T, O’Neil BJ, Otto Q, de Paiva EF, Parr MJ, Reynolds JC, Sandroni C, Scholefield BR, Skrifvars MB, Wang TL, Wetsch WA, Yeung J, Morley PT, Morrison LJ, Welsford M, Hazinski MF, Nolan JP, Issa M, Kleinman ME, Ristagno G, Arafeh J, Benoit JL, Chase M, Fischberg BL, Flores GE, Link MS, Ornato JP, Perman SM, Sasson C, Zelop CM. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020; 142:S92-S139. [DOI: 10.1161/cir.0000000000000893] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This
2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations
for advanced life support includes updates on multiple advanced life support topics addressed with 3 different types of reviews. Topics were prioritized on the basis of both recent interest within the resuscitation community and the amount of new evidence available since any previous review. Systematic reviews addressed higher-priority topics, and included double-sequential defibrillation, intravenous versus intraosseous route for drug administration during cardiac arrest, point-of-care echocardiography for intra-arrest prognostication, cardiac arrest caused by pulmonary embolism, postresuscitation oxygenation and ventilation, prophylactic antibiotics after resuscitation, postresuscitation seizure prophylaxis and treatment, and neuroprognostication. New or updated treatment recommendations on these topics are presented. Scoping reviews were conducted for anticipatory charging and monitoring of physiological parameters during cardiopulmonary resuscitation. Topics for which systematic reviews and new Consensuses on Science With Treatment Recommendations were completed since 2015 are also summarized here. All remaining topics reviewed were addressed with evidence updates to identify any new evidence and to help determine which topics should be the highest priority for systematic reviews in the next 1 to 2 years.
Collapse
|
16
|
Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, O’Neil BJ, Peberdy MA, Rittenberger JC, Rodriguez AJ, Sawyer KN, Berg KM, Arafeh J, Benoit JL, Chase M, Fernandez A, de Paiva EF, Fischberg BL, Flores GE, Fromm P, Gazmuri R, Gibson BC, Hoadley T, Hsu CH, Issa M, Kessler A, Link MS, Magid DJ, Marrill K, Nicholson T, Ornato JP, Pacheco G, Parr M, Pawar R, Jaxton J, Perman SM, Pribble J, Robinett D, Rolston D, Sasson C, Satyapriya SV, Sharkey T, Soar J, Torman D, Von Schweinitz B, Uzendu A, Zelop CM, Magid DJ. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020; 142:S366-S468. [DOI: 10.1161/cir.0000000000000916] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Lupton JR, Kurz MC, Daya MR. Neurologic prognostication after resuscitation from cardiac arrest. J Am Coll Emerg Physicians Open 2020; 1:333-341. [PMID: 33000056 PMCID: PMC7493528 DOI: 10.1002/emp2.12109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Out-of-hospital cardiac arrest remains a leading cause of mortality in the United States, and the majority of patients who die after achieving return of spontaneous circulation die from withdrawal of care due to a perceived poor neurologic prognosis. Unfortunately, withdrawal of care often occurs during the first day of admission and research suggests this early withdrawal of care may be premature and result in unnecessary deaths for patients who would have made a full neurologic recovery. In this review, we explore the evidence for neurologic prognostication in the emergency department for patients who achieve return of spontaneous circulation after an out-of-hospital cardiac arrest.
Collapse
Affiliation(s)
| | | | - Mohamud R Daya
- Oregon Health and Science University Portland Oregon USA
| |
Collapse
|
18
|
Sandroni C, D'Arrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M, Taccone FS, Di Rocco A, Meijer FJA, Westhall E, Antonelli M, Soar J, Nolan JP, Cronberg T. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2020; 46:1803-1851. [PMID: 32915254 PMCID: PMC7527362 DOI: 10.1007/s00134-020-06198-w] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Purpose To assess the ability of clinical examination, blood biomarkers, electrophysiology, or neuroimaging assessed within 7 days from return of spontaneous circulation (ROSC) to predict poor neurological outcome, defined as death, vegetative state, or severe disability (CPC 3–5) at hospital discharge/1 month or later, in comatose adult survivors from cardiac arrest (CA). Methods PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews (January 2013–April 2020) were searched. Sensitivity and false-positive rate (FPR) for each predictor were calculated. Due to heterogeneities in recording times, predictor thresholds, and definition of some predictors, meta-analysis was not performed. Results Ninety-four studies (30,200 patients) were included. Bilaterally absent pupillary or corneal reflexes after day 4 from ROSC, high blood values of neuron-specific enolase from 24 h after ROSC, absent N20 waves of short-latency somatosensory-evoked potentials (SSEPs) or unequivocal seizures on electroencephalogram (EEG) from the day of ROSC, EEG background suppression or burst-suppression from 24 h after ROSC, diffuse cerebral oedema on brain CT from 2 h after ROSC, or reduced diffusion on brain MRI at 2–5 days after ROSC had 0% FPR for poor outcome in most studies. Risk of bias assessed using the QUIPS tool was high for all predictors. Conclusion In comatose resuscitated patients, clinical, biochemical, neurophysiological, and radiological tests have a potential to predict poor neurological outcome with no false-positive predictions within the first week after CA. Guidelines should consider the methodological concerns and limited sensitivity for individual modalities. (PROSPERO CRD42019141169) Electronic supplementary material The online version of this article (10.1007/s00134-020-06198-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sonia D'Arrigo
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Sofia Cacciola
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy
| | | | - Marlijn J A Kamps
- Intensive Care Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mauro Oddo
- Department of Intensive Care Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Arianna Di Rocco
- Department of Public Health and Infectious Disease, Sapienza University, Rome, Italy
| | - Frederick J A Meijer
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erik Westhall
- Department of ClinicalSciences, Clinical Neurophysiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jasmeet Soar
- Critical Care Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Jerry P Nolan
- Department of Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
19
|
Maciel CB, Barden MM, Youn TS, Dhakar MB, Greer DM. Neuroprognostication Practices in Postcardiac Arrest Patients: An International Survey of Critical Care Providers. Crit Care Med 2020; 48:e107-e114. [PMID: 31939809 DOI: 10.1097/ccm.0000000000004107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To characterize approaches to neurologic outcome prediction by practitioners who assess prognosis in unconscious cardiac arrest individuals, and assess compliance to available guidelines. DESIGN International cross-sectional study. SETTING We administered a web-based survey to members of Neurocritical Care Society, Society of Critical Care Medicine, and American Academy of Neurology who manage unconscious cardiac arrest patients to characterize practitioner demographics and current neuroprognostic practice patterns. SUBJECTS Physicians that are members of aforementioned societies who care for successfully resuscitated cardiac arrest individuals. INTERVENTIONS Not applicable. MEASUREMENTS AND MAIN RESULTS A total of 762 physicians from 22 countries responses were obtained. A significant proportion of respondents used absent corneal reflexes (33.5%) and absent pupillary reflexes (36.2%) at 24 hours, which is earlier than the recommended 72 hours in the standard guidelines. Certain components of the neurologic examination may be overvalued, such as absent motor response or extensor posturing, which 87% of respondents considered being very or critically important prognostic indicators. Respondents continue to rely on myoclonic status epilepticus and neuroimaging, which were favored over median nerve somatosensory evoked potentials for prognostication, although the latter has been demonstrated to have a higher predictive value. Regarding definitive recommendations based on poor neurologic prognosis, most physicians seem to wait until the postarrest timepoints proposed by current guidelines, but up to 25% use premature time windows. CONCLUSIONS Neuroprognostic approaches to hypoxic-ischemic encephalopathy vary among physicians and are often not consistent with current guidelines. The overall inconsistency in approaches and deviation from evidence-based recommendations are concerning in this disease state where mortality is so integrally related to outcome prediction.
Collapse
Affiliation(s)
- Carolina B Maciel
- Department of Neurology, Yale University School of Medicine, New Haven, CT
- Department of Neurology, UF-Health Shands Hospital, University of Florida College of Medicine, Gainesville, FL
| | - Mary M Barden
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Teddy S Youn
- Department of Neurology, UF-Health Shands Hospital, University of Florida College of Medicine, Gainesville, FL
| | - Monica B Dhakar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - David M Greer
- Department of Neurology, Yale University School of Medicine, New Haven, CT
- Department of Neurology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
20
|
Agarwal S, Morris N, Der-Nigoghossian C, May T, Brodie D. The Influence of Therapeutics on Prognostication After Cardiac Arrest. Curr Treat Options Neurol 2019; 21:60. [PMID: 31768661 DOI: 10.1007/s11940-019-0602-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to highlight the influence of therapeutic maneuvers on neuro-prognostication measures administered to comatose survivors of cardiac arrest. We focus on the effect of sedation regimens in the setting of targeted temperature management (TTM), one of the principle interventions known to improve neurological recovery after cardiac arrest. Further, we discuss the critical need for novel markers, as well as refinement of existing markers, among patients receiving extracorporeal membrane oxygenation (ECMO) in the setting of failed conventional resuscitation, known as extracorporeal cardiopulmonary resuscitation (ECPR). RECENT FINDINGS Automated pupillometry may have some advantage over standard pupillary examination for prognostication following TTM, sedation, or the use of ECMO after cardiac arrest. New serum biomarkers such as Neurofilament light chain have shown good predictive abilities and need further validation in these populations. There is a high-level uncertainty in brain death declaration protocols particularly related to apnea testing and appropriate ancillary tests in patients receiving ECMO. Both sedation and TTM alone and in combination have been shown to affect prognostic markers to varying degrees. The optimal approach to analog-sedation is unknown, and requires further study. Moreover, validation of known prognostic markers, as well as brain death declaration processes in patients receiving ECMO is warranted. Data on the effects of TTM, sedation, and ECMO on biomarkers (e.g., neuron-specific enolase) and electrophysiology measures (e.g., somatosensory-evoked potentials) is sparse. The best approach may be one customized to the individual patient, a precision-medicine approach.
Collapse
Affiliation(s)
- Sachin Agarwal
- Division of Neurocritical Care and Hospitalist Neurology, Department of Neurology, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, USA.
| | - Nicholas Morris
- Department of Neurology, Program in Trauma, University of Maryland Medical Center, Baltimore, MD, USA
| | - Caroline Der-Nigoghossian
- Clinical Pharmacy, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, USA
| | - Teresa May
- Division of Pulmonary and Critical Care Medicine, Maine Medical Center, Portland, ME, USA
| | - Daniel Brodie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|