1
|
Nabbout R, Matricardi S, De Liso P, Dulac O, Oualha M. Ketogenic diet for super-refractory status epilepticus (SRSE) with NORSE and FIRES: Single tertiary center experience and literature data. Front Neurol 2023; 14:1134827. [PMID: 37122314 PMCID: PMC10133555 DOI: 10.3389/fneur.2023.1134827] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background and purpose Ketogenic diet (KD) is an emerging treatment option for super-refractory status epilepticus (SRSE). We evaluated the effectiveness of KD in patients presenting SRSE including NORSE (and its subcategory FIRES). Methods A retrospective review of the medical records was performed at the Necker Enfants Malades Hospital. All children with SRSE in whom KD was started during the last 10 years were included. A systematic search was carried out for all study designs, including at least one patient of any age with SRSE in whom KD was started. The primary outcome was the responder rate and Kaplan-Meier survival curves were generated for the time-to-KD response. As secondary outcomes, Cox proportional hazard models were created to assess the impact of NORSE-related factors on KD efficacy. Results Sixteen children received KD for treatment of SRSE, and three had NORSE presentation (one infectious etiology, two FIRES). In medical literature, 1,613 records were initially identified, and 75 were selected for review. We selected 276 patients receiving KD during SRSE. The most common etiology of SRSE was acute symptomatic (21.3%), among these patients, 67.7% presented with NORSE of immune and infectious etiologies. Other etiologies were remote symptomatic (6.8%), progressive symptomatic (6.1%), and SE in defined electroclinical syndromes (14.8%), including two patients with genetic etiology and NORSE presentation. The etiology was unknown in 50.7% of the patients presenting with cryptogenic NORSE, of which 102 presented with FIRES. Overall, most patients with NORSE benefit from KD (p < 0.004), but they needed a longer time to achieve RSE resolution after starting KD compared with other non-NORSE SRSE (p = 0.001). The response to KD in the NORSE group with identified etiology compared to the cryptogenic NORSE was significantly higher (p = 0.01), and the time to achieve SE resolution after starting KD was shorter (p = 0.04). Conclusions The search for underlying etiology should help to a better-targeted therapy. KD can have good efficacy in NORSE; however, the time to achieve SE resolution seems to be longer in cryptogenic cases. These findings highlight the therapeutic role of KD in NORSE, even though this favorable response needs to be better confirmed in prospective controlled studies.
Collapse
Affiliation(s)
- Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
- Imagine Institute, National Institute of Health and Medical Research, Mixed Unit of Research 1163, University Paris Cité, Paris, France
- *Correspondence: Rima Nabbout ;
| | - Sara Matricardi
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Paola De Liso
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Member of ERN EpiCARE, Rome, Italy
| | - Olivier Dulac
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Université de Paris, Paris, France
| |
Collapse
|
2
|
Zeng Y, Mu J, Zhou D. Calculation and management of ketogenic diet parenteral nutrition in super-refractory status epilepticus. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractSuper-refractory status epilepticus (SRSE) is an important neurological emergency associated with high mortality and morbidity and poses a heavy economic burden on patients. Ketogenic diet parenteral nutrition (KD-PN) is ketogenic diet therapy provided through parenteral administration and may be an adjuvant treatment for these who cannot accept enteral diet. However, the calculation and management of KD-PN presents a challenge for clinicians. This review focuses on the practical aspects of KD-PN therapy for treatment of SRSE, including the dietary composition, potential drug-diet interactions, and monitoring during KD-PN treatment. As with all SRSE treatments, KD-PN has many adverse effects, like hyperlipemia, hepatotoxicity, metabolic acidosis, insufficient ketosis or hyper-ketosis, and propofol infusion syndrome. We summarize monitoring and treatment methods in our review. This review provides some practical aspects for treatment of SRSE.
Collapse
|
3
|
Kaul N, Nation J, Laing J, Nicolo J, Deane AM, Udy AA, Kwan P, O'Brien TJ. Modified low ratio ketogenic therapy in the treatment of adults with super-refractory status epilepticus. JPEN J Parenter Enteral Nutr 2022; 46:1819-1827. [PMID: 35285036 PMCID: PMC9790306 DOI: 10.1002/jpen.2373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Induction of ketosis by manipulation of nutrition intake has been proposed as an adjunctive treatment for super-refractory status epilepticus (SRSE). However, the classical 4:1 ketogenic ratio may not meet the nutrition needs, specifically protein for critically ill adults. The aim of this study was to analyze the outcomes of adults with SRSE who received a lower ketogenic ratio of 2:1 grams of fat to non-fat grams, including 20%-30% of energy from medium chain triglycerides. METHODS We reviewed patients aged ≥18 years with SRSE treated with ketogenic therapy between July 2015 and December 2020 at two quaternary teaching hospitals in Melbourne, Australia. Data collected from medical records included patient demographics, nutrition prescription, clinical outcomes, and ketogenic therapy-related complications. The primary outcome of the study was to assess tolerability of ketogenic therapy. RESULTS Twelve patients (female = 7) were treated with ketogenic therapy for SRSE. Patients received between 4 and 8 antiseizure medications and 1-5 anesthetic agents prior to commencement of ketogenic therapy. Blood beta-hydroxybutyrate concentrations were variable (median = 0.5 mmol/L, range: 0.0-6.1 mmol/L). SRSE resolved in 10 cases (83%) after a median of 9 days (range: 2-21 days) following commencement of ketogenic therapy. Ketogenic therapy-associated complications were reported in five patients, leading to cessation in two patients. CONCLUSION Despite the challenge in maintaining ketosis during critical illness, low ratio 2:1 ketogenic therapy incorporating medium chain triglycerides is tolerable for adults with SRSE. Further studies are required to determine the optimal timing, nutrition prescription and duration of ketogenic therapy for SRSE treatment.
Collapse
Affiliation(s)
- Neha Kaul
- Department of Nutrition and DieteticsAlfred HospitalMelbourneVictoriaAustralia,Department of Allied Health (Clinical Nutrition)Royal Melbourne HospitalParkvilleVictoriaAustralia,Departments of Neurosciences and NeurologyAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia,Department of Medicine, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia
| | - Judy Nation
- Department of Medicine, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia
| | - Joshua Laing
- Departments of Neurosciences and NeurologyAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| | - John‐Paul Nicolo
- Departments of Neurosciences and NeurologyAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia,Department of NeurologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Adam M. Deane
- Department of Medicine, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia,Intensive Care UnitRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Andrew A. Udy
- Department of Epidemiology and Preventative Medicine, Australian and New Zealand Intensive Care Research CentreMonash UniversityMelbourneVictoriaAustralia,Department of Intensive Care and Hyperbaric MedicineAlfred HospitalMelbourneVictoriaAustralia
| | - Patrick Kwan
- Departments of Neurosciences and NeurologyAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia,Department of Medicine, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia,Department of NeurologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Terence J. O'Brien
- Departments of Neurosciences and NeurologyAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia,Department of Medicine, Royal Melbourne HospitalUniversity of MelbourneParkvilleVictoriaAustralia,Department of NeurologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Kaul N, Nicolo JP, O’Brien TJ, Kwan P. Practical considerations of dietary therapies for epilepsy in adults. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractDespite the increasing number of anti-seizure medications becoming available, the proportion of patients with drug-resistant epilepsy remains unchanged. Dietary therapy for epilepsy is well-established practice in paediatric care, but relatively underutilised in adults. Recently, international recommendations have been published to guide the treatment of adults receiving dietary therapy for epilepsy.This review focuses on the specific aspects of care unique to the management of adults receiving dietary therapy for epilepsy, including patient selection, diet composition, initiation, monitoring and cessation of dietary treatment. We emphasise the need for a multidisciplinary team approach with appropriately trained neurologists and dietitians to provide holistic care while the patients are receiving dietary therapy. Future research should focus on the optimal diet composition and meeting the psychosocial needs of adults with epilepsy to maximise efficacy and adherence to dietary treatment.
Collapse
|
5
|
Katz JB, Owusu K, Nussbaum I, Beekman R, DeFilippo NA, Gilmore EJ, Hirsch LJ, Cervenka MC, Maciel CB. Pearls and Pitfalls of Introducing Ketogenic Diet in Adult Status Epilepticus: A Practical Guide for the Intensivist. J Clin Med 2021; 10:881. [PMID: 33671485 PMCID: PMC7926931 DOI: 10.3390/jcm10040881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Status epilepticus (SE) carries an exceedingly high mortality and morbidity, often warranting an aggressive therapeutic approach. Recently, the implementation of a ketogenic diet (KD) in adults with refractory and super-refractory SE has been shown to be feasible and effective. Methods: We describe our experience, including the challenges of achieving and maintaining ketosis, in an adult with new onset refractory status epilepticus (NORSE). Case Vignette: A previously healthy 29-year-old woman was admitted with cryptogenic NORSE following a febrile illness; course was complicated by prolonged super-refractory SE. A comprehensive work-up was notable only for mild cerebral spinal fluid (CSF) pleocytosis, elevated nonspecific serum inflammatory markers, and edematous hippocampi with associated diffusion restriction on magnetic resonance imaging (MRI). Repeat CSF testing was normal and serial MRIs demonstrated resolution of edema and diffusion restriction with progressive hippocampal and diffuse atrophy. She required prolonged therapeutic coma with high anesthetic infusion rates, 16 antiseizure drug (ASD) trials, empiric immunosuppression and partial bilateral oophorectomy. Enteral ketogenic formula was started on hospital day 28. However, sustained beta-hydroxybutyrate levels >2 mmol/L were only achieved 37 days later following a comprehensive adjustment of the care plan. KD was challenging to maintain in the intensive care unit (ICU) and was discontinued due to poor nutritional state and pressure ulcers. KD was restarted again in a non-ICU unit facilitating ASD tapering without re-emergence of SE. Discussion: There are inconspicuous carbohydrates in commonly administered medications for SE including antibiotics, electrolyte repletion formulations, different preparations of the same drug (i.e., parenteral, tablet, or suspension) and even solutions used for oral care-all challenging the use of KD in the hospitalized patient. Tailoring comprehensive care and awareness of possible complications of KD are important for the successful implementation and maintenance of ketosis.
Collapse
Affiliation(s)
- Jason B. Katz
- Department of Neurology, Neurocritical Care Division, UF Health-Shands Hospital, University of Florida, Gainesville, FL 32611, USA;
| | - Kent Owusu
- Department of Neurology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06520, USA; (K.O.); (I.N.); (R.B.); (E.J.G.); (L.J.H.)
- Care Signature, Yale New Haven Health, New Haven, CT 06510, USA
| | - Ilisa Nussbaum
- Department of Neurology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06520, USA; (K.O.); (I.N.); (R.B.); (E.J.G.); (L.J.H.)
| | - Rachel Beekman
- Department of Neurology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06520, USA; (K.O.); (I.N.); (R.B.); (E.J.G.); (L.J.H.)
| | - Nicholas A. DeFilippo
- Department of Pharmacy Services, Yale New Haven Hospital, New Haven, CT 06510, USA;
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Emily J. Gilmore
- Department of Neurology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06520, USA; (K.O.); (I.N.); (R.B.); (E.J.G.); (L.J.H.)
| | - Lawrence J. Hirsch
- Department of Neurology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06520, USA; (K.O.); (I.N.); (R.B.); (E.J.G.); (L.J.H.)
| | - Mackenzie C. Cervenka
- Department of Neurology, Epilepsy Division, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Carolina B. Maciel
- Department of Neurology, Neurocritical Care Division, UF Health-Shands Hospital, University of Florida, Gainesville, FL 32611, USA;
- Department of Neurology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06520, USA; (K.O.); (I.N.); (R.B.); (E.J.G.); (L.J.H.)
| |
Collapse
|