1
|
Li Q, Lv X, Qian Q, Liao K, Du X. Neuroticism polygenic risk predicts conversion from mild cognitive impairment to Alzheimer's disease by impairing inferior parietal surface area. Hum Brain Mapp 2024; 45:e26709. [PMID: 38746977 PMCID: PMC11094517 DOI: 10.1002/hbm.26709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
The high prevalence of conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) makes early prevention of AD extremely critical. Neuroticism, a heritable personality trait associated with mental health, has been considered a risk factor for conversion from aMCI to AD. However, whether the neuroticism genetic risk could predict the conversion of aMCI and its underlying neural mechanisms is unclear. Neuroticism polygenic risk score (N-PRS) was calculated in 278 aMCI patients with qualified genomic and neuroimaging data from ADNI. After 1-year follow-up, N-PRS in patients of aMCI-converted group was significantly greater than those in aMCI-stable group. Logistic and Cox survival regression revealed that N-PRS could significantly predict the early-stage conversion risk from aMCI to AD. These results were well replicated in an internal dataset and an independent external dataset of 933 aMCI patients from the UK Biobank. One sample Mendelian randomization analyses confirmed a potentially causal association from higher N-PRS to lower inferior parietal surface area to higher conversion risk of aMCI patients. These analyses indicated that neuroticism genetic risk may increase the conversion risk from aMCI to AD by impairing the inferior parietal structure.
Collapse
Affiliation(s)
- Qiaojun Li
- College of Information EngineeringTianjin University of CommerceTianjinChina
| | - Xingping Lv
- College of SciencesTianjin University of CommerceTianjinChina
| | - Qian Qian
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Kun Liao
- College of SciencesTianjin University of CommerceTianjinChina
| | - Xin Du
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | | |
Collapse
|
2
|
Trevisan L, Gaudio A, Monfrini E, Avanzino L, Di Fonzo A, Mandich P. Genetics in Parkinson's disease, state-of-the-art and future perspectives. Br Med Bull 2024; 149:60-71. [PMID: 38282031 PMCID: PMC10938543 DOI: 10.1093/bmb/ldad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder and is clinically characterized by the presence of motor (bradykinesia, rigidity, rest tremor and postural instability) and non-motor symptoms (cognitive impairment, autonomic dysfunction, sleep disorders, depression and hyposmia). The aetiology of PD is unknown except for a small but significant contribution of monogenic forms. SOURCES OF DATA No new data were generated or analyzed in support of this review. AREAS OF AGREEMENT Up to 15% of PD patients carry pathogenic variants in PD-associated genes. Some of these genes are associated with mendelian inheritance, while others act as risk factors. Genetic background influences age of onset, disease course, prognosis and therapeutic response. AREAS OF CONTROVERSY Genetic testing is not routinely offered in the clinical setting, but it may have relevant implications, especially in terms of prognosis, response to therapies and inclusion in clinical trials. Widely adopted clinical guidelines on genetic testing are still lacking and open to debate. Some new genetic associations are still awaiting confirmation, and selecting the appropriate genes to be included in diagnostic panels represents a difficult task. Finally, it is still under study whether (and to which degree) specific genetic forms may influence the outcome of PD therapies. GROWING POINTS Polygenic Risk Scores (PRS) may represent a useful tool to genetically stratify the population in terms of disease risk, prognosis and therapeutic outcomes. AREAS TIMELY FOR DEVELOPING RESEARCH The application of PRS and integrated multi-omics in PD promises to improve the personalized care of patients.
Collapse
Affiliation(s)
- L Trevisan
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo P. Daneo 3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino – SS Centro Tumori Ereditari, Largo R. Benzi 10, Genova, 16132, Italy
| | - A Gaudio
- IRCCS Ospedale Policlinico San Martino- UOC Genetica Medica, Largo R. Benzi 10, Genova, 16132, Italy
| | - E Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
- Neurology Unit, Foundation IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via Festa del Perdono 7, Milan, 20122, Italy
| | - L Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 3, Genova, 16132, Italy
| | - A Di Fonzo
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
- Neurology Unit, Foundation IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via Festa del Perdono 7, Milan, 20122, Italy
| | - P Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo P. Daneo 3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino- UOC Genetica Medica, Largo R. Benzi 10, Genova, 16132, Italy
| |
Collapse
|
3
|
Koch S, Schmidtke J, Krawczak M, Caliebe A. Clinical utility of polygenic risk scores: a critical 2023 appraisal. J Community Genet 2023; 14:471-487. [PMID: 37133683 PMCID: PMC10576695 DOI: 10.1007/s12687-023-00645-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/31/2023] [Indexed: 05/04/2023] Open
Abstract
Since their first appearance in the context of schizophrenia and bipolar disorder in 2009, polygenic risk scores (PRSs) have been described for a large number of common complex diseases. However, the clinical utility of PRSs in disease risk assessment or therapeutic decision making is likely limited because PRSs usually only account for the heritable component of a trait and ignore the etiological role of environment and lifestyle. We surveyed the current state of PRSs for various diseases, including breast cancer, diabetes, prostate cancer, coronary artery disease, and Parkinson disease, with an extra focus upon the potential improvement of clinical scores by their combination with PRSs. We observed that the diagnostic and prognostic performance of PRSs alone is consistently low, as expected. Moreover, combining a PRS with a clinical score at best led to moderate improvement of the power of either risk marker. Despite the large number of PRSs reported in the scientific literature, prospective studies of their clinical utility, particularly of the PRS-associated improvement of standard screening or therapeutic procedures, are still rare. In conclusion, the benefit to individual patients or the health care system in general of PRS-based extensions of existing diagnostic or treatment regimens is still difficult to judge.
Collapse
Affiliation(s)
- Sebastian Koch
- Institut für Medizinische Informatik und Statistik, Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jörg Schmidtke
- Amedes MVZ Wagnerstibbe, Hannover, Germany
- Institut für Humangenetik, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Krawczak
- Institut für Medizinische Informatik und Statistik, Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Amke Caliebe
- Institut für Medizinische Informatik und Statistik, Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
4
|
Li Q, Lv X, Jin F, Liao K, Gao L, Xu J. Associations of Polygenic Risk Score for Late-Onset Alzheimer's Disease With Biomarkers. Front Aging Neurosci 2022; 14:849443. [PMID: 35493930 PMCID: PMC9047857 DOI: 10.3389/fnagi.2022.849443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a common irreversible neurodegenerative disease with heterogeneous genetic characteristics. Identifying the biological biomarkers with the potential to predict the conversion from normal controls to LOAD is clinically important for early interventions of LOAD and clinical treatment. The polygenic risk score for LOAD (AD-PRS) has been reported the potential possibility for reliably identifying individuals with risk of developing LOAD recently. To investigate the external phenotype changes resulting from LOAD and the underlying etiology, we summarize the comprehensive associations of AD-PRS with multiple biomarkers, including neuroimaging, cerebrospinal fluid and plasma biomarkers, cardiovascular risk factors, cognitive behavior, and mental health. This systematic review helps improve the understanding of the biomarkers with potential predictive value for LOAD and further optimizing the prediction and accurate treatment of LOAD.
Collapse
Affiliation(s)
- Qiaojun Li
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Xingping Lv
- School of Sciences, Tianjin University of Commerce, Tianjin, China
| | - Fei Jin
- Department of Molecular Imaging, Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Kun Liao
- School of Sciences, Tianjin University of Commerce, Tianjin, China
| | - Liyuan Gao
- School of Sciences, Tianjin University of Commerce, Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Genetics of cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:195-226. [PMID: 35248195 DOI: 10.1016/bs.pbr.2022.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Presentation and progression of cognitive symptoms in Parkinson's disease are highly variable. PD is a genetically complex disorder with multiple genetic risk factors and understanding the role that genes play in cognitive outcomes is important for patient counseling and treatment. Currently, there are seven well-described genes that increase the risk for PD, with variable levels of penetrance: SNCA, LRRK2, VPS35, PRKN, PINK1, DJ1 and GBA. In addition, large, genome-wide association studies have identified multiple loci in our DNA which increase PD risk. In this chapter, we summarize what is currently known about each of the seven strongly-associated PD genes and select PD risk variants, including PITX3, TMEM106B, SNCA Rep1, APOɛ4, COMT and MAPT H1/H1, along with their respective relationships to cognition.
Collapse
|
6
|
Polygenic Risk Scores Contribute to Personalized Medicine of Parkinson's Disease. J Pers Med 2021; 11:jpm11101030. [PMID: 34683174 PMCID: PMC8539098 DOI: 10.3390/jpm11101030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder characterized by the loss of dopaminergic neurons. The vast majority of PD patients develop the disease sporadically and it is assumed that the cause lies in polygenic and environmental components. The overall polygenic risk is the result of a large number of common low-risk variants discovered by large genome-wide association studies (GWAS). Polygenic risk scores (PRS), generated by compiling genome-wide significant variants, are a useful prognostic tool that quantifies the cumulative effect of genetic risk in a patient and in this way helps to identify high-risk patients. Although there are limitations to the construction and application of PRS, such as considerations of limited genetic underpinning of diseases explained by SNPs and generalizability of PRS to other populations, this personalized risk prediction could make a promising contribution to stratified medicine and tailored therapeutic interventions in the future.
Collapse
|
7
|
Kim S, Shin JY, Kwon NJ, Kim CU, Kim C, Lee CS, Seo JS. Evaluation of low-pass genome sequencing in polygenic risk score calculation for Parkinson's disease. Hum Genomics 2021; 15:58. [PMID: 34454617 PMCID: PMC8403377 DOI: 10.1186/s40246-021-00357-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background Low-pass sequencing (LPS) has been extensively investigated for applicability to various genetic studies due to its advantages over genotype array data including cost-effectiveness. Predicting the risk of complex diseases such as Parkinson’s disease (PD) using polygenic risk score (PRS) based on the genetic variations has shown decent prediction accuracy. Although ultra-LPS has been shown to be effective in PRS calculation, array data has been favored to the majority of PRS analysis, especially for PD.
Results Using eight high-coverage WGS, we assessed imputation approaches for downsampled LPS data ranging from 0.5 × to 7.0 × . We demonstrated that uncertain genotype calls of LPS diminished imputation accuracy, and an imputation approach using genotype likelihoods was plausible for LPS. Additionally, comparing imputation accuracies between LPS and simulated array illustrated that LPS had higher accuracies particularly at rare frequencies. To evaluate ultra-low coverage data in PRS calculation for PD, we prepared low-coverage WGS and genotype array of 87 PD cases and 101 controls. Genotype imputation of array and downsampled LPS were conducted using a population-specific reference panel, and we calculated risk scores based on the PD-associated SNPs from an East Asian meta-GWAS. The PRS models discriminated cases and controls as previously reported when both LPS and genotype array were used. Also strong correlations in PRS models for PD between LPS and genotype array were discovered. Conclusions Overall, this study highlights the potentials of LPS under 1.0 × followed by genotype imputation in PRS calculation and suggests LPS as attractive alternatives to genotype array in the area of precision medicine for PD. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-021-00357-w.
Collapse
Affiliation(s)
- Sungjae Kim
- Precision Medicine Institute, Seoul, 08511, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jong-Yeon Shin
- Precision Medicine Institute, Seoul, 08511, Republic of Korea
| | - Nak-Jung Kwon
- Precision Medicine Institute, Seoul, 08511, Republic of Korea
| | | | - Changhoon Kim
- Precision Medicine Institute, Seoul, 08511, Republic of Korea
| | - Chong Sik Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Pungnap 2(i)-dong, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Jeong-Sun Seo
- Precision Medicine Institute, Seoul, 08511, Republic of Korea. .,Asian Genome Institute, Seoul National University Bundang Hospital, 172 Dolma-ro, Seongnam, Bundang-gu, Gyeonggi-do, 13605, Republic of Korea.
| |
Collapse
|
8
|
Erratum: Genetic Risk Scores and Hallucinations in Parkinson Disease Patients. NEUROLOGY-GENETICS 2020; 7:e545. [PMID: 33575484 DOI: 10.1212/nxg.0000000000000545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
[This corrects the article on p. e492 in vol. 6, PMID: 32802953.].
Collapse
|