1
|
Mubeen H, Masood A, Zafar A, Khan ZQ, Khan MQ, Nisa AU. Insights into AlphaFold's breakthrough in neurodegenerative diseases. Ir J Med Sci 2024; 193:2577-2588. [PMID: 38833116 DOI: 10.1007/s11845-024-03721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Neurodegenerative diseases (ND) are disorders of the central nervous system (CNS) characterized by impairment in neurons' functions, and complete loss, leading to memory loss, and difficulty in learning, language, and movement processes. The most common among these NDs are Alzheimer's disease (AD) and Parkinson's disease (PD), although several other disorders also exist. These are frontotemporal dementia (FTD), amyotrophic lateral syndrome (ALS), Huntington's disease (HD), and others; the major pathological hallmark of NDs is the proteinopathies, either of amyloid-β (Aβ), tauopathies, or synucleinopathies. Aggregation of proteins that do not undergo normal configuration, either due to mutations or through some disturbance in cellular pathway contributes to the diseases. Artificial Intelligence (AI) and deep learning (DL) have proven to be successful in the diagnosis and treatment of various congenital diseases. DL approaches like AlphaFold (AF) are a major leap towards success in CNS disorders. This 3D protein geometry modeling algorithm developed by DeepMind has the potential to revolutionize biology. AF has the potential to predict 3D-protein confirmation at an accuracy level comparable to experimentally predicted one, with the additional advantage of precisely estimating protein interactions. This breakthrough will be beneficial to identify diseases' advancement and the disturbance of signaling pathways stimulating impaired functions of proteins. Though AlphaFold has solved a major problem in structural biology, it cannot predict membrane proteins-a beneficial approach for drug designing.
Collapse
Affiliation(s)
- Hira Mubeen
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan.
| | - Ammara Masood
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Asma Zafar
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Zohaira Qayyum Khan
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Muneeza Qayyum Khan
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Alim Un Nisa
- Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| |
Collapse
|
2
|
Rojsajjakul T, Selvan N, De B, Rosenberg JB, Kaminsky SM, Sondhi D, Janki P, Crystal RG, Mesaros C, Khanna R, Blair IA. Expression and processing of mature human frataxin after gene therapy in mice. Sci Rep 2024; 14:8391. [PMID: 38600238 PMCID: PMC11006666 DOI: 10.1038/s41598-024-59060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/06/2024] [Indexed: 04/12/2024] Open
Abstract
Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results suggest that AAVrh.10hFXN can likely induce expression of therapeutic levels of mature hFXN in mice.
Collapse
Affiliation(s)
- Teerapat Rojsajjakul
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, Penn/CHOP Friedreich's Ataxia Center of Excellence, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Bishnu De
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | | | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, Penn/CHOP Friedreich's Ataxia Center of Excellence, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, Penn/CHOP Friedreich's Ataxia Center of Excellence, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Lynch DR, Goldsberry A, Rummey C, Farmer J, Boesch S, Delatycki MB, Giunti P, Hoyle JC, Mariotti C, Mathews KD, Nachbauer W, Perlman S, Subramony S, Wilmot G, Zesiewicz T, Weissfeld L, Meyer C. Propensity matched comparison of omaveloxolone treatment to Friedreich ataxia natural history data. Ann Clin Transl Neurol 2024; 11:4-16. [PMID: 37691319 PMCID: PMC10791025 DOI: 10.1002/acn3.51897] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE The natural history of Friedreich ataxia is being investigated in a multi-center longitudinal study designated the Friedreich ataxia Clinical Outcome Measures Study (FACOMS). To understand the utility of this study in analysis of clinical trials, we performed a propensity-matched comparison of data from the open-label MOXIe extension (omaveloxolone) to that from FACOMS. METHODS MOXIe extension patients were matched to FACOMS patients using logistic regression to estimate propensity scores based on multiple covariates: sex, baseline age, age of onset, baseline modified Friedreich Ataxia Rating scale (mFARS) score, and baseline gait score. The change from baseline in mFARS at Year 3 for the MOXIe extension patients compared to the matched FACOMS patients was analyzed as the primary efficacy endpoint using mixed model repeated measures analysis. RESULTS Data from the MOXIe extension show that omaveloxolone provided persistent benefit over 3 years when compared to an untreated, matched cohort from FACOMS. At each year, in all analysis populations, patients in the MOXIe extension experienced a smaller change from baseline in mFARS score than matched FACOMS patients. In the primary pooled population (136 patients in each group) by Year 3, patients in the FACOMS matched set progressed 6.6 points whereas patients treated with omaveloxolone in MOXIe extension progressed 3 points (difference = -3.6; nominal p value = 0.0001). INTERPRETATION These results suggest a meaningful slowing of Friedreich ataxia progression with omaveloxolone, and consequently detail how propensity-matched analysis may contribute to understanding of effects of therapeutic agents. This demonstrates the direct value of natural history studies in clinical trial evaluations.
Collapse
Affiliation(s)
- David R. Lynch
- Departments of Pediatrics and NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | | | - Jennifer Farmer
- Friedreich Ataxia Research AllianceDowningtownPennsylvaniaUSA
| | - Sylvia Boesch
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | - Martin B. Delatycki
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Paola Giunti
- University College London HospitalBloomsburyLondonUK
| | - J. Chad Hoyle
- Department of NeurologyOhio State University College of MedicineColumbusOhioUSA
| | | | - Katherine D. Mathews
- Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | | | - Susan Perlman
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - S.H. Subramony
- Department of Neurology, McKnight Brain InstituteUniversity of Florida Health SystemGainesvilleFloridaUSA
| | - George Wilmot
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Theresa Zesiewicz
- Department of NeurologyUniversity of South Florida Ataxia Research CenterTampaFloridaUSA
| | | | | |
Collapse
|
4
|
Rojsajjakul T, Selvan N, De B, Rosenberg JB, Kaminsky SM, Sondhi D, Janki P, Crystal RG, Mesaros C, Khanna R, Blair IA. Expression and processing of mature human frataxin after gene therapy in mice. RESEARCH SQUARE 2023:rs.3.rs-3788652. [PMID: 38234818 PMCID: PMC10793484 DOI: 10.21203/rs.3.rs-3788652/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results demonstrate that AAVrh.10hFXN may induce expression of therapeutic levels of mature hFXN in mice.
Collapse
|
5
|
Rodden LN, McIntyre K, Keita M, Wells M, Park C, Profeta V, Waldman A, Rummey C, Balcer LJ, Lynch DR. Retinal hypoplasia and degeneration result in vision loss in Friedreich ataxia. Ann Clin Transl Neurol 2023; 10:1397-1406. [PMID: 37334854 PMCID: PMC10424660 DOI: 10.1002/acn3.51830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Friedreich ataxia (FRDA) is an inherited condition caused by a GAA triplet repeat (GAA-TR) expansion in the FXN gene. Clinical features of FRDA include ataxia, cardiomyopathy, and in some, vision loss. In this study, we characterize features of vision loss in a large cohort of adults and children with FRDA. METHODS Using optical coherence tomography (OCT), we measured peripapillary retinal nerve fiber layer (RNFL) thickness in 198 people with FRDA, and 77 controls. Sloan letter charts were used to determine visual acuity. RNFL thickness and visual acuity were compared to measures of disease severity obtained from the Friedreich Ataxia Clinical Outcomes Measures Study (FACOMS). RESULTS The majority of patients, including children, had pathologically thin RNFLs (mean = 73 ± 13 μm in FRDA; 98 ± 9 μm in controls) and low-contrast vision deficits early in the disease course. Variability in RNFL thickness in FRDA (range: 36 to 107 μm) was best predicted by disease burden (GAA-TR length X disease duration). Significant deficits in high-contrast visual acuity were apparent in patients with an RNFL thickness of ≤68 μm. RNFL thickness decreased at a rate of -1.2 ± 1.4 μm/year and reached 68 μm at a disease burden of approximately 12,000 GAA years, equivalent to disease duration of 17 years for participants with 700 GAAs. INTERPRETATION These data suggest that both hypoplasia and subsequent degeneration of the RNFL may be responsible for the optic nerve dysfunction in FRDA and support the development of a vision-directed treatment for selected patients early in the disease to prevent RNFL loss from reaching the critical threshold.
Collapse
Affiliation(s)
- Layne N. Rodden
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kellie McIntyre
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Medina Keita
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Mckenzie Wells
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Courtney Park
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Victoria Profeta
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amy Waldman
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Laura J. Balcer
- Departments of Neurology, Population Health and OphthalmologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Rojsajjakul T, Wu L, Grady CB, Hwang WT, Mesaros C, Lynch DR, Blair IA. Liquid Chromatography-Mass Spectrometry Analysis of Frataxin Proteoforms in Whole Blood as Biomarkers of the Genetic Disease Friedreich's Ataxia. Anal Chem 2023; 95:4251-4260. [PMID: 36800320 PMCID: PMC9979142 DOI: 10.1021/acs.analchem.3c00091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Friedreich's ataxia (FRDA) is caused primarily by expanded GAA repeats in intron 1 of both alleles of the FXN gene, which causes transcriptional silencing and reduced expression of frataxin mRNA and protein. FRDA is characterized by slowly progressive ataxia and cardiomyopathy. Symptoms generally appear during adolescence, and patients slowly progress to wheelchair dependency usually in the late teens or early twenties with death on average in the 4th decade. There are two known mature proteoforms of frataxin. Mitochondrial frataxin (frataxin-M) is a 130-amino acid protein with a molecular weight of 14,268 Da, and there is an alternatively spliced N-terminally acetylated 135-amino acid form (frataxin-E) with a molecular weight of 14,953 Da found in erythrocytes. There is reduced expression of frataxin in the heart and brain, but frataxin is not secreted into the systemic circulation, so it cannot be analyzed in serum or plasma. Blood is a readily accessible biofluid that contains numerous different cell types that express frataxin. We have found that pig blood can serve as an excellent surrogate matrix to validate an assay for frataxin proteoforms because pig frataxin is lost during the immunoprecipitation step used to isolate human frataxin. Frataxin-M is expressed in blood cells that contain mitochondria, whereas extra-mitochondrial frataxin-E is found in erythrocytes. This means that the analysis of frataxin in whole blood provides information on the concentration of both proteoforms without having to isolate the individual cell types. In the current study, we observed that the distributions of frataxin levels for a sample of 25 healthy controls and 50 FRDA patients were completely separated from each other, suggesting 100% specificity and 100% sensitivity for distinguishing healthy controls from FRDA cases, a very unusual finding for a biomarker assay. Additionally, frataxin levels were significantly correlated with the GAA repeat length and age of onset with higher correlations for extra-mitochondrial frataxin-E than those for mitochondrial frataxin-M. These findings auger well for using frataxin levels measured by the validated stable isotope dilution ultrahigh-performance liquid chromatography-multiple reaction monitoring/mass spectrometry assay to monitor therapeutic interventions and the natural history of FRDA. Our study also illustrates the utility of using whole blood for protein disease biomarker discovery and validation.
Collapse
Affiliation(s)
- Teerapat Rojsajjakul
- Penn/CHOP
Friedreich’s Ataxia Center of Excellence, Philadelphia, Pennsylvania 19104, United States,Center
of Excellence in Environmental Toxicology, Department of Systems Pharmacology
and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linfeng Wu
- Agilent
Technologies Inc., 5301
Stevens Creek Blvd., Santa Clara, California 95051, United States
| | - Connor B. Grady
- Center
for Clinical Epidemiology and Biostatistics, Department of Biostatistics,
Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| | - Wei-Ting Hwang
- Center
for Clinical Epidemiology and Biostatistics, Department of Biostatistics,
Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| | - Clementina Mesaros
- Penn/CHOP
Friedreich’s Ataxia Center of Excellence, Philadelphia, Pennsylvania 19104, United States,Center
of Excellence in Environmental Toxicology, Department of Systems Pharmacology
and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David R. Lynch
- Penn/CHOP
Friedreich’s Ataxia Center of Excellence, Philadelphia, Pennsylvania 19104, United States,Departments
of Pediatrics and Neurology, Children’s
Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ian A. Blair
- Penn/CHOP
Friedreich’s Ataxia Center of Excellence, Philadelphia, Pennsylvania 19104, United States,Center
of Excellence in Environmental Toxicology, Department of Systems Pharmacology
and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States,. Phone: +1-610-529-0610. Fax: +1-215-573-9889
| |
Collapse
|
7
|
Keita M, McIntyre K, Rodden LN, Schadt K, Lynch DR. Friedreich ataxia: clinical features and new developments. Neurodegener Dis Manag 2022; 12:267-283. [PMID: 35766110 PMCID: PMC9517959 DOI: 10.2217/nmt-2022-0011] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Friedreich's ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological features, affects 1 in 50,000-100,000 individuals in the USA. However, FRDA also includes cardiac, orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The multifaceted approach for clinical care has necessitated the development of disease-specific clinical care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will refine the time course and anatomical targeting of novel approaches.
Collapse
Affiliation(s)
- Medina Keita
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kellie McIntyre
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Schadt
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|