1
|
Konen FF, Wurster U, Schwenkenbecher P, Gerritzen A, Groß CC, Eichhorn P, Harrer A, Isenmann S, Lewczuk P, Lewerenz J, Leypoldt F, Otto M, Regeniter A, Roskos M, Ruprecht K, Spreer A, Strik H, Uhr M, Wick M, Wildemann B, Wiltfang J, Zimmermann T, Hannich M, Khalil M, Tumani H, Süße M, Skripuletz T. Oligoclonal bands and kappa free light chains: Competing parameters or complementary biomarkers? Autoimmun Rev 2025; 24:103765. [PMID: 39947571 DOI: 10.1016/j.autrev.2025.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND The 2024-revised McDonald criteria for multiple sclerosis (MS) proposed to incorporate cerebrospinal fluid (CSF)-specific oligoclonal bands and kappa free light chains (KFLC) as diagnostic biomarkers. While the 2017-revised criteria highlighted CSF-specific oligoclonal bands to indicate intrathecal IgG synthesis, significantly enhancing early MS diagnosis, KFLC have emerged as additional marker. Now, the question rises of whether both biomarkers serve as competing or complementary tools in MS diagnostics. METHODS In this narrative review, we extensively searched the literature on oligoclonal bands and KFLC determination in CSF and serum across neurological disorders, with a focus on MS, using the PubMed database to demonstrate the complementarity of both biomarkers. RESULTS Oligoclonal bands have long been a reliable marker of intrathecal IgG synthesis in MS, valued for their high diagnostic sensitivity, unique patient "fingerprints," clonality differentiation, semi-quantitative analysis, and pre-analytic robustness. However, they present challenges in standardization, labor-intensity, method variability, examiner dependency, and limited data on non-IgG immunoglobulins. Quantitative KFLC measurement provides rapid, examiner-independent, and cost-effective assessment across all immunoglobulin classes but might have lower specificity, lacked consensus on standardized interpretation in recent years, and is not yet supported by comprehensive prospective multinational studies on its prognostic role. CONCLUSION Both oligoclonal bands and KFLC have unique strengths and limitations that complement each other, potentially serving as complementary markers for evaluating intrathecal Ig synthesis in MS diagnosis. Further evidence is needed to establish the value of KFLC in MS diagnosis, thus multicenter prospective studies are being conducted to compare the diagnostic utility of both markers.
Collapse
Affiliation(s)
- Franz F Konen
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| | - Ulrich Wurster
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | - Catharina C Groß
- Department of Neurology with Institute of Translational Neurology, University Hospital and University Münster, 48149 Münster, Germany.
| | - Peter Eichhorn
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 81377 München, Germany.
| | - Andrea Harrer
- Department of Neurology, Christian-Doppler University Hospital, Paracelsus Medical University, Centre for Cognitive Neuroscience, 5020 Salzburg, Austria; Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Stefan Isenmann
- Department of Neurology, GFO Kliniken Niederrhein, St. Josef Krankenhaus Moers, 47441 Moers, Germany.
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, 89081 Ulm, Germany.
| | - Frank Leypoldt
- Institute of Clinical Chemistry and Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, 24105 Kiel, Germany.
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany.
| | - Axel Regeniter
- Infectious Disease Serology and Immunology, Medica Medizinische Laboratorien Dr. F. Kaeppeli AG, 8032 Zurich, Switzerland.
| | - Martin Roskos
- SYNLAB Holding Deutschland GmbH, 86156 Augsburg, Germany.
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Annette Spreer
- Department of Neurology, Klinikum Braunschweig, 38126 Braunschweig, Germany.
| | - Herwig Strik
- Department of Neurology, Sozialstiftung Bamberg, 96049 Bamberg, Germany.
| | - Manfred Uhr
- Department of Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Manfred Wick
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 81377 München, Germany.
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany.
| | | | - Malte Hannich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17489 Greifswald, Germany.
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria.
| | | | - Marie Süße
- Department of Neurology, University Medicine Greifswald, Germany.
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
2
|
Higgins V, Chen Y, Freedman MS, Rodriguez-Capote K, Beriault DR. A review of laboratory practices for CSF oligoclonal banding and associated tests. Crit Rev Clin Lab Sci 2025:1-23. [PMID: 40254719 DOI: 10.1080/10408363.2025.2490166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/26/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system, often emerging in early adulthood and representing a leading cause of neurological disability in young adults. Diagnosing MS involves a combination of clinical assessment, imaging and laboratory tests, with cerebrospinal fluid (CSF)-specific immunoglobulin G (IgG) oligoclonal bands (OCB) being an important marker for fulfilling the dissemination in time criteria. A recent survey of Canadian clinical laboratories highlighted considerable variation in OCB reporting practices nationwide, spanning quality control (QC) practices, acceptable time limits between paired CSF and serum sample collections, protocols for reporting band counts, interpretation and reporting of mirrored patterns, testing panels, and interpretive thresholds. These inconsistencies impact patient care and the comparability of laboratory results across different laboratories. The Harmonized CSF Analysis for MS Investigation (hCAMI) subcommittee of the Canadian Society of Clinical Chemists Reference Interval Harmonization Working Group was established to generate recommendations for laboratory processes and reporting of CSF OCB and associated tests supporting MS diagnosis. This review serves as a foundation for these efforts, summarizing the available evidence in areas where practice variations have been noted. This review begins by examining current practices and guidelines for standardized quality assurance, including optimal QC materials, frequency, documentation, and participation in external quality assurance programs. The disparity between paired CSF and serum sample acceptability time limits was further examined by reviewing current practices and recommendations as well as compiling evidence on IgG synthesis, turnover rate, biological variation, and stability in CSF and serum samples. Additionally, this review addresses the lack of consensus on reporting the number of CSF-specific and CSF-serum matched bands, focusing on interpreter variability and clinical utility. Contributing factors and clinical implications of mirror patterns, including discussion on monoclonal gammopathies and cases of matched bands of differing staining intensity, is provided. Testing panel components including adjunctive CSF tests, such as the IgG index, to support MS investigations despite their absence from clinical guidelines is also discussed. This review also provides a comprehensive analysis of current practices, guidelines, and the evidence surrounding different cutoffs for IgG index and CSF-specific bands. Finally, the review considers emerging biomarkers, such as the kappa free light chain index and serum neurofilament light chain, which show promise for MS diagnosis and management. This comprehensive review of current practices, guidelines, and evolving evidence will guide the hCAMI subcommittee's efforts to harmonize CSF OCB analysis and improve MS diagnosis.
Collapse
Affiliation(s)
- Victoria Higgins
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Yu Chen
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Discipline of Laboratory Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
- Department of Laboratory Medicine, Dr. Everett Chalmers Regional Hospital, Horizon Health Network, Fredericton, New Brunswick, Canada
| | - Mark S Freedman
- Department of Medicine, Division of Neurology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karina Rodriguez-Capote
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Interior Health Authority, Kelowna, British Columbia, Canada
| | - Daniel R Beriault
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Ferriz J, Guallart C, Timoneda P, Fandos M, Lopez-Arqueros J, Sierra-Rivera A, Garcia-Hita M, Marcaida G, Carcelén-Gadea M. Diagnostic approach for multiple sclerosis: optimizing algorithms for intrathecal synthesis of immunoglobulins. Lab Med 2024:lmae101. [PMID: 39703160 DOI: 10.1093/labmed/lmae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The kappa-free light chain (κFLC) index has shown its value in detecting the intrathecal synthesis of immunoglobulins. We aimed to evaluate the diagnostic performance of the κFLC index for multiple sclerosis (MS) and compare different algorithms proposed in the literature to optimize its use for our population. METHODS Based on the results of the oligoclonal bands (OCBs) and κFLC index of 255 patients with suspected MS different optimization strategies were evaluated, for which the optimal κFLC index cut-off thresholds were calculated. RESULTS The best diagnostic performance was achieved by using a reflexive algorithm, in which OCBs are only performed according to the κFLC index result. With a single cut-off (κFLC index = 7.9), an accuracy of 92.2% was obtained (sensitivity = 92.4%, specificity = 92%) with an OCB performance rate of 58.1%. When applying 2 cut-offs (κFLC index = 4.2 and 13), the accuracy was the same (92.2%, sensitivity = 89.6%, specificity = 94%), but the OCB performance rate dropped to 29.4%. CONCLUSION The 2-step strategy proposed with κFLC determination followed by OCB analysis in the borderline cases appears to be the most suitable solution, further optimized by adjusting the decision thresholds to 4.2 < κFLC index < 13, resulting in high accuracy and the most saving of OCBs.
Collapse
Affiliation(s)
- Jorge Ferriz
- Department of Clinical Biochemistry, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Cristina Guallart
- Department of Clinical Biochemistry, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Pilar Timoneda
- Department of Clinical Biochemistry, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Marta Fandos
- Department of Clinical Biochemistry, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Javier Lopez-Arqueros
- Department of Neurology, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Antonio Sierra-Rivera
- Department of Clinical Biochemistry, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Marta Garcia-Hita
- Department of Microbiology, Hospital La Vega Lorenzo Guirao, Cieza, Spain
| | - Goitzane Marcaida
- Department of Clinical Biochemistry, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Maria Carcelén-Gadea
- Department of Neurology, General University Hospital Consortium of Valencia, Valencia, Spain
| |
Collapse
|
4
|
De Napoli G, Gastaldi M, Natali P, Bedin R, Simone AM, Santangelo M, Mariotto S, Vitetta F, Smolik K, Cardi M, Meletti S, Ferraro D. Kappa index in the diagnostic work-up of autoimmune encephalitis. J Neurol Sci 2024; 463:123146. [PMID: 39033735 DOI: 10.1016/j.jns.2024.123146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The presence of inflammatory changes in the cerebrospinal fluid (CSF), including immunoglobulin intrathecal synthesis (IS), can support the diagnosis of autoimmune encephalitis (AE) and allow prompt treatment. The main aim of our study was to calculate the Kappa index as a marker of IS, in patients with AE. METHODS Charts of patients undergoing a diagnostic work-up for suspected AE between 2009 and 2023 were reviewed and the Graus criteria applied. CSF and serum kappa free light chains were determined using the Freelite assay (The Binding Site Group) and the turbidimetric Optilite analyzer. RESULTS We identified 34 patients with "definite" AE (9 anti-NMDAR AE and 25 limbic AE) and nine patients with "possible" AE. Five patients (15%) with definite AE had pleocytosis and twelve (34%) showed CSF-restricted oligoclonal bands (OCB) at isoelectric focusing. The Kappa index was >6 in 29.4% and > 3 in 50% of the definite AE patients. It was elevated (>3) in 36.4% of patients with definite AE who resulted negative to OCB testing and was the only altered parameter suggestive of an ongoing inflammatory process in the CNS in three definite AE patients with otherwise normal CSF findings (i.e. normal cell count and protein levels, no OCBs). In the possible AE group, one patient had a Kappa index >3 in the absence of OCB. CONCLUSIONS The Kappa index could be useful, as a more sensitive marker of IS and as a supportive marker of neuroinflammation, in the diagnostic work-up of suspected AE.
Collapse
Affiliation(s)
- Giulia De Napoli
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Patrizia Natali
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria and Azienda Unità Sanitaria Locale, Ospedale Civile di Baggiovara, Modena, Italy
| | - Roberta Bedin
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Vitetta
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Krzysztof Smolik
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Martina Cardi
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Diana Ferraro
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy.
| |
Collapse
|
5
|
Morello M, Mastrogiovanni S, Falcione F, Rossi V, Bernardini S, Casciani S, Viola A, Reali M, Pieri M. Laboratory Diagnosis of Intrathecal Synthesis of Immunoglobulins: A Review about the Contribution of OCBs and K-index. Int J Mol Sci 2024; 25:5170. [PMID: 38791208 PMCID: PMC11121313 DOI: 10.3390/ijms25105170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The diagnosis of MS relies on a combination of imaging, clinical examinations, and biological analyses, including blood and cerebrospinal fluid (CSF) assessments. G-Oligoclonal bands (OCBs) are considered a "gold standard" for MS diagnosis due to their high sensitivity and specificity. Recent advancements have involved the introduced of kappa free light chain (k-FLC) assay into cerebrospinal fluid (CSF) and serum (S), along with the albumin quotient, leading to the development of a novel biomarker known as the "K-index" or "k-FLC index". The use of the K-index has been recommended to decrease costs, increase laboratory efficiency, and to skip potential subjective operator-dependent risk that could happen during the identification of OCBs profiles. This review aims to provide a comprehensive overview and analysis of recent scientific articles, focusing on updated methods for MS diagnosis with an emphasis on the utility of the K-index. Numerous studies indicate that the K-index demonstrates high sensitivity and specificity, often comparable to or surpassing the diagnostic accuracy of OCBs evaluation. The integration of the measure of the K-index with OCBs assessment emerges as a more precise method for MS diagnosis. This combined approach not only enhances diagnostic accuracy, but also offers a more efficient and cost-effective alternative.
Collapse
Affiliation(s)
- Maria Morello
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Simone Mastrogiovanni
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Fabio Falcione
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Vanessa Rossi
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Stefania Casciani
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
| | - Antonietta Viola
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
| | - Marilina Reali
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
| | - Massimo Pieri
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
6
|
Tortosa-Carreres J, Quiroga-Varela A, Castillo-Villalba J, Piqueras-Rodríguez M, Ramió-Torrenta L, Cubas-Núñez L, Gasqué-Rubio R, Quintanilla-Bordas C, Huertas-Pons JM, Miguela A, Casanova B, Laiz-Marro B, Pérez-Miralles FC. Improving the efficiency of free kappa light chains as diagnostic biomarker of Multiple Sclerosis by using a novel algorithm. Mult Scler Relat Disord 2023; 79:104997. [PMID: 37714099 DOI: 10.1016/j.msard.2023.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Intrathecal immunoglobulin synthesis (ITS) plays a crucial role in the diagnosis of multiple sclerosis (MS). Traditionally, the gold standard method for detecting ITS has been through the analysis of oligoclonal bands (OCB). However, the paradigm has shifted with the introduction of the free kappa light chains (FKLC) method. In fact, a recent consensus recommends evaluating FKLC index (FKLCi) as the primary approach and reserving oligoclonal bands with borderline results. The objective of our study is to investigate the diagnostic efficiency of combining FKLC with other methods to predict ITS while minimizing the reliance on OCB. METHODS A total of 192 patients were included in the study, consisting of 145 individuals diagnosed with multiple sclerosis (pwMS) and 46 with other neurological diseases (controls). Among the MS cases, 100 patients were assigned to the Training Cohort (TC), while an external Validation Cohort (VC) comprised of 45 MS patients was established. Diagnostic efficiency was assessed for FKLCi, OCB, Link index, and the Reiber formula for IgG and FKLC. Optimal cutoff values for Link index and FKLCi were also determined. The last procedure was developed for diverse algorithms using the parameters mentioned above, which included the optimal cutoffs previously obtained. The calculations were conducted independently for both the TC and the VC, as well as for a composite cohort formed by combining data from all patients (OC) RESULTS: One algorithm, named KRO, was developed based on the determination of FKLCi and Reiber Formula as the primary diagnostic parameters. For cases where the FKLCi result was mildly increased, OCB was utilized as a supplementary test. The KRO algorithm demonstrated superior diagnostic accuracy in the OC (89%), resulting in a reduction of OCB consumption by 91%. DISCUSSION The KRO algorithm demonstrated superior sensitivity and accuracy although lower specificity and NPV compared to the use of FKLCi and OCB alone. The present research aligns with the new consensus recommendations regarding the diagnostic approach. Our findings indicate that employing a combined marker approach via KRO could prove to be a proficient screening tool for multiple sclerosis. This approach also holds the potential to address inherent limitations associated with each individual marker. However, to further validate and solidify the efficacy of our algorithm, additional studies involving larger cohorts are warranted.
Collapse
Affiliation(s)
- Jordi Tortosa-Carreres
- Laboratory Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Medicine Department, University of Valencia, Valencia 46010, Spain.
| | - Anna Quiroga-Varela
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jessica Castillo-Villalba
- Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España; Medicine Department, University of Valencia, Valencia 46010, Spain
| | - Mónica Piqueras-Rodríguez
- Laboratory Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Medicine Department, University of Valencia, Valencia 46010, Spain
| | - Lluís Ramió-Torrenta
- Girona Neuroimmumology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Sciences Department, University of Girona, Girona, Spain
| | - Laura Cubas-Núñez
- Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España
| | - Raquel Gasqué-Rubio
- Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España; Medicine Department, University of Valencia, Valencia 46010, Spain
| | - Carlos Quintanilla-Bordas
- Neurology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España
| | - Joana María Huertas-Pons
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Albert Miguela
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Bonaventura Casanova
- Neurology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España
| | - Begoña Laiz-Marro
- Laboratory Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain
| | - Francisco Carlos Pérez-Miralles
- Neurology Department, La Fe University and Polytechnic Hospital, Valencia 46026, Spain; Grupo de investigación en Neuroinmunología, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, España
| |
Collapse
|
7
|
Zhang F, Gao X, Liu J, Zhang C. Biomarkers in autoimmune diseases of the central nervous system. Front Immunol 2023; 14:1111719. [PMID: 37090723 PMCID: PMC10113662 DOI: 10.3389/fimmu.2023.1111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
The autoimmune diseases of the central nervous system (CNS) represent individual heterogeneity with different disease entities. Although clinical and imaging features make it possible to characterize larger patient cohorts, they may not provide sufficient evidence to detect disease activity and response to disease modifying drugs. Biomarkers are becoming a powerful tool due to their objectivity and easy access. Biomarkers may indicate various aspects of biological processes in healthy and/or pathological states, or as a response to drug therapy. According to the clinical features described, biomarkers are usually classified into predictive, diagnostic, monitoring and safety biomarkers. Some nerve injury markers, humoral markers, cytokines and immune cells in serum or cerebrospinal fluid have potential roles in disease severity and prognosis in autoimmune diseases occurring in the CNS, which provides a promising approach for clinicians to early intervention and prevention of future disability. Therefore, this review mainly summarizes the potential biomarkers indicated in autoimmune disorders of the CNS.
Collapse
Affiliation(s)
- Fenghe Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Gao
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
- Centers of Neuroimmunology and Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
8
|
Hegen H, Walde J, Berek K, Arrambide G, Gnanapavan S, Kaplan B, Khalil M, Saadeh R, Teunissen C, Tumani H, Villar LM, Willrich MAV, Zetterberg H, Deisenhammer F. Cerebrospinal fluid kappa free light chains for the diagnosis of multiple sclerosis: A systematic review and meta-analysis. Mult Scler 2023; 29:169-181. [PMID: 36453167 PMCID: PMC9925892 DOI: 10.1177/13524585221134213] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND Intrathecal immunoglobulin-G synthesis is a hallmark of multiple sclerosis (MS), which can be detected by oligoclonal IgG bands (OCB) or by κ-free light chains (κ-FLC) in cerebrospinal fluid. OBJECTIVE To perform a systematic review and meta-analysis to evaluate whether κ-FLC index has similar diagnostic value to identify patients with clinically isolated syndrome (CIS) or MS compared to OCB, and to determine κ-FLC index cut-off. METHODS PubMed was searched for studies that assessed diagnostic sensitivity and specificity of κ-FLC index and OCB to discriminate CIS/MS patients from control subjects. Two reviewers following preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines performed study eligibility assessment and data extraction. Findings from studies were analyzed with bivariate mixed models. RESULTS A total of 32 studies were included in the meta-analysis to evaluate diagnostic value of κ-FLC index. Sensitivity and specificity ranged from 52% to 100% (weighted average: 88%) and 69% to 100% (89%) for κ-FLC index and from 37% to 100% (85%) and 74% to 100% (92%) for OCB. Mean difference of sensitivity and specificity between κ-FLC index and OCB was 2 and -4 percentage points. Diagnostic accuracy determined by mixed models revealed no significant difference between κ-FLC index and OCB. A discriminatory cut-off for κ-FLC index was determined at 6.1. CONCLUSION The findings indicate that κ-FLC index has similar diagnostic accuracy in MS as OCB.
Collapse
Affiliation(s)
- Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janette Walde
- Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georgina Arrambide
- Centre d'Esclerosi Múltiple de Catalunya, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Sharmilee Gnanapavan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Batia Kaplan
- Laboratory of Hematology, Sheba Medical Center, Ramat Gan, Israel
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Ruba Saadeh
- Department of Laboratory Medicine and Pathology and Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hayrettin Tumani
- CSF Laboratory, Department of Neurology, University of Ulm, Ulm, Germany
| | - Luisa M Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden/Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden/Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK/UK Dementia Research Institute, University College London, London, UK/Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | | |
Collapse
|
9
|
Hegen H, Arrambide G, Gnanapavan S, Kaplan B, Khalil M, Saadeh R, Teunissen C, Tumani H, Villar LM, Willrich MAV, Zetterberg H, Deisenhammer F. Cerebrospinal fluid kappa free light chains for the diagnosis of multiple sclerosis: A consensus statement. Mult Scler 2023; 29:182-195. [PMID: 36527368 PMCID: PMC9925908 DOI: 10.1177/13524585221134217] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cerebrospinal fluid (CSF) analysis is of utmost importance for diagnosis and differential diagnosis of patients with suspected multiple sclerosis (MS). Evidence of intrathecal immunoglobulin G (IgG) synthesis proves the inflammatory nature of the disease, increases diagnostic certainty and substitutes for dissemination in time according to current diagnostic criteria. The gold standard to determine intrathecal IgG synthesis is the detection of CSF-restricted oligoclonal bands (OCBs). However, advances in laboratory methods brought up κ-free light chains (FLCs) as a new biomarker, which are produced in excess over intact immunoglobulins and accumulate in CSF in the case of central nervous system-derived inflammation. Overwhelming evidence showed a high diagnostic accuracy of intrathecal κ-FLC synthesis in MS with sensitivity and specificity of approximately 90% similar to OCB. κ-FLCs have advantages as its detection is fast, easy, cost-effective, reliable, rater-independent and returning quantitative results which might also improve the value of predicting MS disease activity. An international panel of experts in MS and CSF diagnostics developed a consensus of all participants. Six recommendations are given for establishing standard CSF evaluation in patients suspected of having MS. The panel recommended to include intrathecal κ-FLC synthesis in the next revision of MS diagnostic criteria as an additional tool to measure intrathecal immunoglobulin synthesis.
Collapse
Affiliation(s)
- Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georgina Arrambide
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sharmilee Gnanapavan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Batia Kaplan
- Laboratory of Hematology, Sheba Medical Center, Ramat Gan, Israel
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Ruba Saadeh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA/Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Program Neuroinflammation, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hayrettin Tumani
- CSF Laboratory, Department of Neurology, University of Ulm, Ulm, Germany
| | - Luisa Maria Villar
- Biostatistics Unit, Department of Immunology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden/Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden/Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK/UK Dementia Research Institute at UCL, London, UK/Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | | |
Collapse
|
10
|
Arneth B, Kraus J. The Use of Kappa Free Light Chains to Diagnose Multiple Sclerosis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1512. [PMID: 36363469 PMCID: PMC9698214 DOI: 10.3390/medicina58111512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Background: The positive implications of using free light chains in diagnosing multiple sclerosis have increasingly gained considerable interest in medical research and the scientific community. It is often presumed that free light chains, particularly kappa and lambda free light chains, are of practical use and are associated with a higher probability of obtaining positive results compared to oligoclonal bands. The primary purpose of the current paper was to conduct a systematic review to assess the up-to-date methods for diagnosing multiple sclerosis using kappa and lambda free light chains. Method: An organized literature search was performed across four electronic sources, including Google Scholar, Web of Science, Embase, and MEDLINE. The sources analyzed in this systematic review and meta-analysis comprise randomized clinical trials, prospective cohort studies, retrospective studies, controlled clinical trials, and systematic reviews. Results: The review contains 116 reports that includes 1204 participants. The final selection includes a vast array of preexisting literature concerning the study topic: 35 randomized clinical trials, 21 prospective cohort studies, 19 retrospective studies, 22 controlled clinical trials, and 13 systematic reviews. Discussion: The incorporated literature sources provided integral insights into the benefits of free light chain diagnostics for multiple sclerosis. It was also evident that the use of free light chains in the diagnosis of clinically isolated syndrome (CIS) and multiple sclerosis is relatively fast and inexpensive in comparison to other conventional state-of-the-art diagnostic methods, e.g., using oligoclonal bands (OCBs).
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University, Feulgenstr. 12, 35392 Giessen, Germany
| | - Jörg Kraus
- Department of Laboratory Medicine, Paracelsus Medical University and Salzburger Landeskliniken, Strubergasse 21, 5020 Salzburg, Austria
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
| |
Collapse
|
11
|
Intrathecal B cell-related markers for an optimized biological investigation of multiple sclerosis patients. Sci Rep 2022; 12:16425. [PMID: 36180495 PMCID: PMC9525661 DOI: 10.1038/s41598-022-19811-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
In multiple sclerosis (MS) disease, the importance of the intrathecal B cell response classically revealed as IgG oligoclonal bands (OCB) in cerebrospinal fluid (CSF) was reaffirmed again in the recently revised diagnostic criteria. We aimed to optimize Laboratory investigation by testing the performance of new B cell-related molecules in CSF (Ig free light chains (FLCκ and λ) and CXCL13 (B-Cell Attracting chemokine1)) for MS diagnosis. 320 paired (CSF-serum) samples were collected from 160 patients with MS (n = 82) and non-MS diseases (n = 78). All patients benefited from IgG index determination, OCB detection, CSF CXCL13 and FLC (κ and λ) measurement in CSF and serum for metrics calculation (κ/λ ratio, FLC-related indexes, and κFLC-intrathecal fraction (IF)). CXCL13 and FLC metrics in CSF were higher in patients with MS and positive OCB. As expected, κFLC metrics—in particular, κFLC index and κFLC IF—had the highest accuracy for MS diagnosis. κ index showed the best performance (sensitivity 83% and specificity 91.7%) at a cut-off of 14.9. Most of the FLC-related parameters were positively correlated with IgG index and the level of CXCL13. In conclusion, the quantitative, standardizable, and technically simple CSF FLCκ metrics seem to be reliable for MS diagnosis, but could not replace OCB detection. CXCL13 appears to be an effective parameter reflecting the intrathecal B cell response. An optimized way for CSF testing combining the conventional and the new B cell-related parameters is proposed in this study.
Collapse
|
12
|
Marlas M, Bost C, Dorcet G, Delourme A, Biotti D, Ciron J, Renaudineau Y, Puissant-Lubrano B. Kappa-index: Real-life evaluation of a new tool for multiple sclerosis diagnosis. Clin Immunol 2022; 241:109066. [PMID: 35705146 DOI: 10.1016/j.clim.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
The intrathecal production of oligoclonal immunoglobulin bands (OCB) is a prognostic factor for multiple sclerosis (MS) evolution in clinically isolated syndrome (CIS) patients and a diagnostic factor for MS. The kappa free light chain (K)-index represents a quantitative automated alternative to OCB. We retrospectively evaluated OCB and K-index results in 274 patients with MS (n = 48) or CIS (n = 29) at diagnosis, non-MS inflammatory central nervous diseases (n = 35), and non-inflammatory central/peripheral nervous diseases (n = 162). Several cut-offs were established: a pathophysiological cut-off (K-index: 3.3) useful for differential diagnosis (negative predictive value for MS >99%), an optimised cut-off (K-index: 9.1) with better sensitivity and equivalent specificity than OCB for the diagnosis of MS, and a high-risk cut-off (K-index: >55.0) allowing prediction of MS (specificity 100%). We developed a scaled interpretation of the K-index and we discuss the usefulness of testing OCB only when the K-index is positive >3.3 to obtain a better specificity.
Collapse
Affiliation(s)
- Mathilde Marlas
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Chloé Bost
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; INFINITy, Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM U1291, CNRS U5051, Université Toulouse III, Toulouse, France.
| | - Guillaume Dorcet
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Département de Neurologie CRC-SEP, Hôpital Paul-Pierre Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Adrien Delourme
- Département de Neurologie CRC-SEP, Hôpital Paul-Pierre Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Damien Biotti
- INFINITy, Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM U1291, CNRS U5051, Université Toulouse III, Toulouse, France; Département de Neurologie CRC-SEP, Hôpital Paul-Pierre Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Jonathan Ciron
- INFINITy, Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM U1291, CNRS U5051, Université Toulouse III, Toulouse, France; Département de Neurologie CRC-SEP, Hôpital Paul-Pierre Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Yves Renaudineau
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; INFINITy, Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM U1291, CNRS U5051, Université Toulouse III, Toulouse, France.
| | - Bénédicte Puissant-Lubrano
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; INFINITy, Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM U1291, CNRS U5051, Université Toulouse III, Toulouse, France.
| |
Collapse
|
13
|
Castillo-Villalba J, Gil-Perotín S, Gasque-Rubio R, Cubas-Nuñez L, Carratalà-Boscà S, Alcalá C, Quintanilla-Bordás C, Pérez-Miralles F, Ferrer C, Cañada Martínez A, Tortosa J, Solís-Tarazona L, Campos L, Leivas A, Laíz Marro B, Casanova B. High Levels of Cerebrospinal Fluid Kappa Free Light Chains Relate to IgM Intrathecal Synthesis and Might Have Prognostic Implications in Relapsing Multiple Sclerosis. Front Immunol 2022; 13:827738. [PMID: 35330910 PMCID: PMC8940299 DOI: 10.3389/fimmu.2022.827738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebrospinal kappa free light chain (KFLC)-index is a marker of intrathecal immunoglobulin synthesis that aids in the diagnosis of multiple sclerosis (MS). However, little evidence exists on its prognostic role. Our aim is to analyze the relationship between KFLC-index and other MS biomarkers and to explore its prognostic role. This is a monocentric observational study in a cohort of 52 people with relapsing MS (pwRMS) performed on prospectively acquired clinical data and with retrospective evaluation of biomarkers. We measured KFLC-index, immunoglobulin intrathecal synthesis, cerebrospinal fluid (CSF) chitinase 3-like 1 (CHI3L1), and neurofilament light protein (NFL) and reviewed MRI to detect leptomeningeal contrast enhancement (LMCE). We compared time to Expanded Disability Status Scale (EDSS) 3 and to initiation of high-efficacy disease-modifying therapies (heDMTs) by multivariate Cox regression analysis. Median KFLC-index correlated with IgG/IgM indexes (p < 0.0001/p < 0.05) and IgG-oligoclonal bands (OCGBs) (p < 0.001). Patients with IgM-oligoclonal bands (OCMBs) had a higher KFLC-index (p = 0.049). KFLC-index was higher in patients with LMCE (p = 0.008) and correlated with CHI3L1 (p = 0.007), but disease activity had no effect on its value. Bivariate and multivariate analyses confirmed KFLC-index > 58 as an independent risk factor for reaching an EDSS of 3 (hazard ratio (HR) = 12.4; 95% CI = 1.1-147; p = 0.047) and for the need of treatment with heDMTs (HR = 3.0; 95% CI = 1.2-7.1; p = 0.0013). To conclude, our data suggest a potential prognostic role of the KFLC-index during the MS course.
Collapse
Affiliation(s)
- Jéssica Castillo-Villalba
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sara Gil-Perotín
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Raquel Gasque-Rubio
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Laura Cubas-Nuñez
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sara Carratalà-Boscà
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carmen Alcalá
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carlos Quintanilla-Bordás
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Francisco Pérez-Miralles
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Cristina Ferrer
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Antonio Cañada Martínez
- Data Science, Biostatistics and Bioinformatics, Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Jordi Tortosa
- Clinical Laboratory, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Luisa Campos
- Scientific Department, The Binding Site Iberia, Barcelona, Spain
| | - Alberto Leivas
- Scientific Department, The Binding Site Iberia, Barcelona, Spain
| | - Begoña Laíz Marro
- Clinical Laboratory, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, Neurology Department and Health Research Institute, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
14
|
Saadeh RS, Bryant SC, McKeon A, Weinshenker B, Murray DL, Pittock SJ, Willrich MAV. CSF Kappa Free Light Chains: Cutoff Validation for Diagnosing Multiple Sclerosis. Mayo Clin Proc 2022; 97:738-751. [PMID: 34893322 DOI: 10.1016/j.mayocp.2021.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine and validate a cerebrospinal fluid (CSF) κ (KCSF) value statistically comparable to detection of CSF-specific oligoclonal bands (OCB) to support the diagnosis of multiple sclerosis (MS). PATIENTS AND METHODS A total of 702 retrospective and 657 prospective paired CSF/serum samples from residual waste samples of physician-ordered OCB tests were obtained and tested for KCSF at Mayo Clinic. Charts were reviewed by a neurologist blinded to KCSF results. Specificity and sensitivity for MS diagnosis were evaluated to establish a diagnostic cutoff value for KCSF in the retrospective cohort and then validated in the prospective cohort. RESULTS Retrospective and prospective subgroups, respectively, included MS (n=85, 70), non-MS (n=615, 585), and undetermined diagnosis (excluded, n=2, 2). The retrospective data established a KCSF cutoff value of 0.1 mg/dL to be comparable to OCB testing. In the retrospective subgroup, KCSF vs OCB sensitivities for diagnosis of MS were 68.2% vs 75.0% (P=.08) and specificities were 86.1% vs 87.6% (P=.27). The KCSF area under the receiver operating characteristic curve was 0.772 (95% CI, 0.720 to 0.824), and for OCB was 0.813 (95% CI, 0.764 to 0.861). The prospective cohort was then used to validate the diagnostic KCSF value of 0.1 mg/dL; KCSF vs OCB sensitivities were 78.6% for both (P>.99) and specificities were 87.1% vs 89.4% (P=.09). CONCLUSION The KCSF value of 0.1 mg/dL is a valid alternative to OCB testing, offering a standardized quantitative measure, eliminating human error, reducing cost and turnaround time, with no significant difference in sensitivity and specificity. This study provides class I evidence that a KCSF value of 0.1 mg/dL can be used in place of OCB testing to support the diagnosis of MS.
Collapse
Affiliation(s)
- Ruba S Saadeh
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Neurology, Mayo Clinic, Rochester, MN
| | | | - Andrew McKeon
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Neurology, Mayo Clinic, Rochester, MN
| | | | - David L Murray
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Sean J Pittock
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Neurology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
15
|
Levraut M, Landes C, Mondot L, Cohen M, Bresch S, Brglez V, Seitz-Polski B, Lebrun-Frenay C. Kappa Free Light Chains, Soluble Interleukin-2 Receptor, and Interleukin-6 Help Explore Patients Presenting With Brain White Matter Hyperintensities. Front Immunol 2022; 13:864133. [PMID: 35401550 PMCID: PMC8990749 DOI: 10.3389/fimmu.2022.864133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022] Open
Abstract
Introduction Many patients are referred to multiple sclerosis (MS) tertiary centers to manage brain white matter hyperintensities (WMH). Multiple diagnoses can match in such situations, and we lack proper tools to diagnose complex cases. Objective This study aimed to prospectively analyze and correlate with the final diagnosis, cerebrospinal fluid (CSF) interleukin (IL)-1β, soluble IL-2 receptor (CD25), IL-6, IL-10, and kappa free light chains (KFLC) concentrations in patients presenting with brain WMH. Methods All patients over 18 years addressed to our MS tertiary center for the diagnostic workup of brain WMH were included from June 1, 2020, to June 1, 2021. Patients were separated into three groups-MS and related disorder (MSARD), other inflammatory neurological disorder (OIND), and non-inflammatory neurological disorder (NIND) groups-according to clinical presentation, MRI characteristics, and biological workup. Results A total of 176 patients (129 women, mean age 45.8 ± 14.7 years) were included. The diagnosis was MSARD (n = 88), OIND (n = 35), and NIND (n = 53). Median CSF KFLC index and KFLC intrathecal fraction (IF) were higher in MSARD than in the OIND and NIND groups; p < 0.001 for all comparisons. CSF CD25 and IL-6 concentrations were higher in the OIND group than in both the MSARD and NIND groups; p < 0.001 for all comparisons. KFLC index could rule in MSARD when compared to NIND (sensitivity, 0.76; specificity, 0.91) or OIND (sensitivity, 0.73; specificity, 0.76). These results were similar to those with oligoclonal bands (sensitivity, 0.59; specificity, 0.98 compared to NIND; sensitivity, 0.59; specificity, 0.88 compared to OIND). In contrast, elevated CSF CD25 and IL-6 could rule out MSARD when compared to OIND (sensitivity, 0.58 and 0.88; specificity, 0.95 and 0.74, respectively). Discussion Our results show that, as OCBs, KFLC biomarkers are helpful tools to rule in MSARD, whereas elevated CSF CD25 and IL-6 rule out MSARD. Interestingly, CSF IL-6 concentration could help identify neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, and central nervous system (CNS) vasculitis. These results need to be confirmed within more extensive and multicentric studies. Still, they sustain that KFLC, CSF CD25, and CSF IL-6 could be reliable biomarkers in brain WMH diagnostic workup for differentiating MSARD from other brain inflammatory MS mimickers.
Collapse
Affiliation(s)
- Michael Levraut
- URRIS-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Département de Médecine Interne, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Cassandre Landes
- URRIS-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Lydiane Mondot
- URRIS-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Département de Neurologie, CRC SEP, Centre Hospitalier Universitaire de Nice, Nice, France
- Département de Radiologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Mikael Cohen
- URRIS-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Département de Neurologie, CRC SEP, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Saskia Bresch
- Département de Neurologie, CRC SEP, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Vesna Brglez
- ImmunoPredict-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Laboratoire d’Immunologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Barbara Seitz-Polski
- ImmunoPredict-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Laboratoire d’Immunologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Christine Lebrun-Frenay
- URRIS-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Département de Neurologie, CRC SEP, Centre Hospitalier Universitaire de Nice, Nice, France
| |
Collapse
|
16
|
Carta S, Ferraro D, Ferrari S, Briani C, Mariotto S. Oligoclonal bands: clinical utility and interpretation cues. Crit Rev Clin Lab Sci 2022; 59:391-404. [DOI: 10.1080/10408363.2022.2039591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sara Carta
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Diana Ferraro
- Department of Biomedicine, Metabolic, and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Ferrari
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Chiara Briani
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| |
Collapse
|
17
|
Cerebrospinal fluid kappa free light chains as biomarker in multiple sclerosis—from diagnosis to prediction of disease activity. Wien Med Wochenschr 2022; 172:337-345. [PMID: 35133530 PMCID: PMC9606042 DOI: 10.1007/s10354-022-00912-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/03/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disorder of the central nervous system that shows a high interindividual heterogeneity, which frequently poses challenges regarding diagnosis and prediction of disease activity. In this context, evidence of intrathecal inflammation provides an important information and might be captured by kappa free light chains (κ-FLC) in the cerebrospinal fluid (CSF). In this review, we provide an overview on what is currently known about κ‑FLC, its historical development, the available assays and current evidence on its diagnostic and prognostic value in MS. Briefly, intrathecal κ‑FLC synthesis reaches similar diagnostic accuracy compared to the well-established CSF-restricted oligoclonal bands (OCB) to identify patients with MS, and recent studies even depict its value for prediction of early MS disease activity. Furthermore, detection of κ‑FLC has significant methodological advantages in comparison to OCB detection.
Collapse
|
18
|
Konen FF, Schwenkenbecher P, Wurster U, Jendretzky KF, Möhn N, Gingele S, Sühs KW, Hannich MJ, Grothe M, Witte T, Stangel M, Süße M, Skripuletz T. The Influence of Renal Function Impairment on Kappa Free Light Chains in Cerebrospinal Fluid. J Cent Nerv Syst Dis 2021; 13:11795735211042166. [PMID: 34840504 PMCID: PMC8619759 DOI: 10.1177/11795735211042166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/07/2021] [Indexed: 11/15/2022] Open
Abstract
Background The determination of kappa free light chains (KFLC) in cerebrospinal fluid (CSF) is an upcoming biomarker for the detection of an intrathecal immunoglobulin synthesis. Since renal function impairment leads to altered serum KFLC and albumin concentrations, interpretation of KFLC in CSF may be influenced by these parameters. Methods In this two-center study, the influence of renal function (according to the CKD-EPI creatinine equation) on KFLC and albumin concentrations was investigated in patients with "physiological" (n = 139), "non-inflammatory" (n = 146), and "inflammatory" (n = 172) CSF profiles in respect to the KFLC index and the evaluation in quotient diagrams in reference to the hyperbolic reference range (KFLC IF). Results All sample groups displayed declining KFLC indices and KFLC IF values with decreasing renal function (P-values between <.0001 and .0209). In "inflammatory" CSF profile samples, 15% of the patients presented a KFLC index <5.9 while 10% showed an intrathecal KFLC fraction below QKappa(lim), suggesting possible false negative KFLC results. Conclusions The influence of renal function should be considered while interpreting KFLC results in patients with neuroinflammatory diseases. The interpretation of KFLC in quotient diagrams is less susceptible to renal function impairment than the KFLC index and should be preferentially used.
Collapse
Affiliation(s)
- Franz F Konen
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Ulrich Wurster
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Nora Möhn
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Malte J Hannich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Grothe
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Torsten Witte
- Department of Clinical Immunology & Rheumatology, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Marie Süße
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
19
|
Konen FF, Schwenkenbecher P, Jendretzky KF, Gingele S, Sühs KW, Tumani H, Süße M, Skripuletz T. The Increasing Role of Kappa Free Light Chains in the Diagnosis of Multiple Sclerosis. Cells 2021; 10:3056. [PMID: 34831279 PMCID: PMC8622045 DOI: 10.3390/cells10113056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
Free light chains (FLC) are a promising biomarker to detect intrathecal inflammation in patients with inflammatory central nervous system (CNS) diseases, including multiple sclerosis (MS). The diagnostic use of this biomarker, in particular the kappa isoform of FLC ("KFLC"), has been investigated for more than 40 years. Based on an extensive literature review, we found that an agreement on the correct method for evaluating KFLC concentrations has not yet been reached. KFLC indices with varying cut-off values and blood-CSF-barrier (QAlbumin) related non-linear formulas for KFLC interpretation have been investigated in several studies. All approaches revealed high diagnostic sensitivity and specificity compared with the oligoclonal bands, which are considered the gold standard for the detection of intrathecally synthesized immunoglobulins. Measurement of KFLC is fully automated, rater-independent, and has been shown to be stable against most pre-analytic influencing factors. In conclusion, the determination of KFLC represents a promising diagnostic approach to show intrathecal inflammation in neuroinflammatory diseases. Multicenter studies are needed to show the diagnostic sensitivity and specificity of KFLC in MS by using the latest McDonald criteria and appropriate, as well as standardized, cut-off values for KFLC concentrations, preferably considering non-linear formulas such as Reiber's diagram.
Collapse
Affiliation(s)
- Franz Felix Konen
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| | - Philipp Schwenkenbecher
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| | - Konstantin Fritz Jendretzky
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| | - Kurt-Wolfram Sühs
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| | | | - Marie Süße
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| |
Collapse
|
20
|
Rosenstein I, Rasch S, Axelsson M, Novakova L, Blennow K, Zetterberg H, Lycke J. Kappa free light chain index as a diagnostic biomarker in multiple sclerosis: A real-world investigation. J Neurochem 2021; 159:618-628. [PMID: 34478561 DOI: 10.1111/jnc.15500] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Kappa free light chain (KFLC) index, a measure for intrathecal production of free kappa chains, has been increasingly recognized for its diagnostic potential in multiple sclerosis (MS) as a quantitative alternative to IgG oligoclonal bands (OCBs). Our objective was to investigate the sensitivity, specificity, and overall diagnostic accuracy of KFLC index in MS. KFLC index was prospectively determined as part of the diagnostic workup in patients with suspected MS (n = 327) between May 2013 and February 2020. Patients with clinically isolated syndrome (CIS), radiologically isolated syndrome (RIS), and MS had markedly higher KFLC index (44.6, IQR 16-128) compared with subjects with other neuro-inflammatory disorders (ONID) and symptomatic controls (SC) (2.19, IQR 1.68-2.98, p < 0.001). KFLC index had a sensitivity of 0.93 (95% CI 0.88-0.95) and specificity of 0.87 (95% CI 0.8-0.92) to discriminate CIS/RIS/MS from ONID and SC (AUC 0.94, 95% CI 0.91-0.97, p < 0.001). KFLC index and intrathecal fraction (IF) KFLC had similar accuracies to detect MS. Treatment with disease-modifying therapy (DMT) did not influence the level of KFLC index and it was not affected by demographic factors or associated with degenerative or inflammatory biomarkers in cerebrospinal fluid (CSF). KFLC index in MS diagnostics has methodological advantages compared to OCB and is independent to subjective interpretation. Moreover, it is an attractive diagnostic tool since the diagnostic specificity and sensitivity of KFLC index are similar with that of OCBs and KFLCIF and better than for IgG index. We show that KFLC index was influenced neither by DMT nor by demographic factors or other inflammatory or degenerative processes in MS as determined by biomarkers in CSF.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Rasch
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Ferraro D, Bedin R, Natali P, Franciotta D, Smolik K, Santangelo M, Immovilli P, Camera V, Vitetta F, Gastaldi M, Trenti T, Meletti S, Sola P. Kappa Index Versus CSF Oligoclonal Bands in Predicting Multiple Sclerosis and Infectious/Inflammatory CNS Disorders. Diagnostics (Basel) 2020; 10:diagnostics10100856. [PMID: 33096861 PMCID: PMC7589948 DOI: 10.3390/diagnostics10100856] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023] Open
Abstract
Background: Cerebrospinal fluid (CSF) kappa free light chains (KFLC) are gaining increasing interest as markers of intrathecal immunoglobulin synthesis. The main aim of this study was to assess the diagnostic accuracy (AUC) of the kappa index (CSF/serum KFLC divided by the CSF/serum albumin ratio) compared to CSF oligoclonal IgG bands (OCB) in predicting Multiple Sclerosis (MS) or a central nervous system infectious/inflammatory disorder (CNSID). Methods: We enrolled patients who underwent a diagnostic spinal tap throughout two years. KFLC levels were determined using a Freelite assay (Binding Site) and the turbidimetric Optilite analyzer. Results: Of 540 included patients, 223 had a CNSID, and 84 had MS. The kappa index was more sensitive (0.89 versus 0.85) and less specific (0.84 versus 0.89), with the same AUC (0.87) as OCB for MS diagnosis (optimal cut-off: 6.2). Adding patients with a single CSF IgG band to the OCB-positive group slightly increased the AUC (0.88). Likewise, the kappa index (cut-off: 3.9) was more sensitive (0.67 versus 0.50) and less specific (0.81 versus 0.97), with the same AUC (0.74) as OCB, for a CNSID diagnosis. Conclusion: The kappa index and CSF OCB have comparable diagnostic accuracies for a MS or CNSID diagnosis and supply the clinician with useful, complementary information.
Collapse
Affiliation(s)
- Diana Ferraro
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (V.C.); (F.V.); (S.M.); (P.S.)
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (R.B.); (K.S.)
- Correspondence: ; Tel.: +39-0593961678
| | - Roberta Bedin
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (R.B.); (K.S.)
| | - Patrizia Natali
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria and Azienda Unità Sanitaria Locale, Ospedale Civile, 41126 Modena, Italy; (P.N.); (T.T.)
| | - Diego Franciotta
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.F.); (M.G.)
| | - Krzysztof Smolik
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (R.B.); (K.S.)
| | | | - Paolo Immovilli
- Neurology Unit, Ospedale G. da Saliceto, 29121 Piacenza, Italy;
| | - Valentina Camera
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (V.C.); (F.V.); (S.M.); (P.S.)
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (R.B.); (K.S.)
| | - Francesca Vitetta
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (V.C.); (F.V.); (S.M.); (P.S.)
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.F.); (M.G.)
| | - Tommaso Trenti
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria and Azienda Unità Sanitaria Locale, Ospedale Civile, 41126 Modena, Italy; (P.N.); (T.T.)
| | - Stefano Meletti
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (V.C.); (F.V.); (S.M.); (P.S.)
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (R.B.); (K.S.)
| | - Patrizia Sola
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (V.C.); (F.V.); (S.M.); (P.S.)
| |
Collapse
|