1
|
De Angelis F, Cameron JR, Eshaghi A, Parker R, Connick P, Stutters J, Plantone D, Doshi A, John N, Williams T, Calvi A, MacManus D, Barkhof F, Chandran S, Weir CJ, Toosy A, Chataway J. Optical coherence tomography in secondary progressive multiple sclerosis: cross-sectional and longitudinal exploratory analysis from the MS-SMART randomised controlled trial. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-334801. [PMID: 39694820 DOI: 10.1136/jnnp-2024-334801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Optical coherence tomography (OCT) inner retinal metrics reflect neurodegeneration in multiple sclerosis (MS). We explored OCT measures as biomarkers of disease severity in secondary progressive MS (SPMS). METHODS We investigated people with SPMS from the Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial OCT substudy, analysing brain MRIs, clinical assessments and OCT at baseline and 96 weeks. We measured peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses. Statistical analysis included correlations, multivariable linear regressions and mixed-effects models. RESULTS Of the 212 participants recruited at baseline, 192 attended at 96 weeks follow-up. Baseline pRNFL and GCIPL thickness correlated with Symbol Digit Modalities Test (SDMT) (respectively, r=0.33 (95% CI 0.20 to 0.47); r=0.39 (0.26 to 0.51)) and deep grey matter volume (respectively, r=0.21 (0.07 to 0.35); r=0.28 (0.14 to 0.41)).pRNFL was associated with Expanded Disability Status Scale (EDSS) score change (normalised beta (B)=-0.12 (-0.23 to -0.01)). Baseline pRNFL and GCIPL were associated with Timed 25-Foot Walk change (T25FW) (respectively, B=-0.14 (-0.25 to -0.03); B=-0.20 (-0.31 to -0.10)) and 96-week percentage brain volume change (respectively, B=0.14 (0.03 to 0.25); B=0.23 (0.12 to 0.34)). There were significant annualised thinning rates: pRNFL (-0.83 µm/year) and GCIPL (-0.37 µm/year). CONCLUSIONS In our cohort of people with SPMS and long disease duration, OCT measures correlated with SDMT and deep grey matter volume at baseline; EDSS, T25FW and whole brain volume change at follow-up.
Collapse
Affiliation(s)
- Floriana De Angelis
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- University College London Hospitals, Biomedical Research Centre, National Institute for Health and Care Research, London, UK
| | - James R Cameron
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, Edinburgh, UK
| | - Arman Eshaghi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Richard Parker
- Edinburgh Clinical Trials Unit, The University of Edinburgh, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Peter Connick
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, Edinburgh, UK
| | - Jonathan Stutters
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Domenico Plantone
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Neuroscience, University of Siena Faculty of Medicine and Surgery, Siena, Italy
| | - Anisha Doshi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Nevin John
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alberto Calvi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Advanced Imaging in Neuroimmunological Diseases lab (ImaginEM), Fundacio Clinic per la Recerca Biomedica, Barcelona, Spain
| | - David MacManus
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- University College London Hospitals, Biomedical Research Centre, National Institute for Health and Care Research, London, UK
- Department of Radiology and Nuclear Medicine, VU University Medical Centre Amsterdam, Amsterdam, Noord-Holland, Netherlands
| | - Siddharthan Chandran
- The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, Edinburgh, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, The University of Edinburgh, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Ahmed Toosy
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- University College London Hospitals, Biomedical Research Centre, National Institute for Health and Care Research, London, UK
| |
Collapse
|
2
|
Raqib R, Sarker P. Repurposed Drugs and Plant-Derived Natural Products as Potential Host-Directed Therapeutic Candidates for Tuberculosis. Biomolecules 2024; 14:1497. [PMID: 39766204 PMCID: PMC11673177 DOI: 10.3390/biom14121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death due to infectious disease. It is a treatable disease; however, conventional treatment requires a lengthy treatment regimen with severe side effects, resulting in poor compliance among TB patients. Intermittent drug use, the non-compliance of patients, and prescription errors, among other factors, have led to the emergence of multidrug-resistant TB, while the mismanagement of multidrug-resistant TB (MDR-TB) has eventually led to the development of extensively drug-resistant tuberculosis (XDR-TB). Thus, there is an urgent need for new drug development, but due to the enormous expenses and time required (up to 20 years) for new drug research and development, new therapeutic approaches to TB are required. Host-directed therapies (HDT) could be a most attractive strategy, as they target the host defense processes instead of the microbe and thereby may prevent the alarming rise of MDR- and XDR-TB. This paper reviews the progress in HDT for the treatment of TB using repurposed drugs which have been investigated in clinical trials (completed or ongoing) and plant-derived natural products that are in clinical or preclinical trial stages. Additionally, this review describes the existing challenges to the development and future research directions in the implementation of HDT.
Collapse
Affiliation(s)
- Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh;
| | | |
Collapse
|
3
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
4
|
Schuldesz AC, Tudor R, Nandarge PS, Elagez A, Cornea A, Ion R, Bratosin F, Prodan M, Simu M. The Effects of Epigallocatechin-3-Gallate Nutritional Supplementation in the Management of Multiple Sclerosis: A Systematic Review of Clinical Trials. Nutrients 2024; 16:2723. [PMID: 39203859 PMCID: PMC11356828 DOI: 10.3390/nu16162723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic, debilitating neurological condition for which current treatments often focus on managing symptoms without curing the underlying disease. Recent studies have suggested that dietary supplements could potentially modify disease progression and enhance quality of life. This systematic review aims to evaluate the efficacy and safety of epigallocatechin-3-gallate (EGCG) as a dietary supplement in patients with MS, with a specific focus on its impact on disease progression, symptom management, and overall quality of life. We conducted a comprehensive systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, utilizing an exhaustive search across the databases PubMed, Scopus, and Web of Science up to 23 February 2024. Eligible studies were randomized controlled trials. Nine clinical trials involving 318 participants were analyzed, with dosages ranging from 600 mg to 1200 mg of EGCG daily, although most studies had only a 4-month follow-up period. Results indicated that EGCG supplementation, particularly when combined with coconut oil, led to significant improvements in metabolic health markers and functional abilities such as gait speed and balance. One trial observed significant improvements in the Berg balance scale score from an average of 49 to 52 after four months of treatment with 800 mg of EGCG daily. Additionally, interleukin-6 levels significantly decreased, suggesting anti-inflammatory effects. Measures of quality of life such as the Beck Depression Inventory (BDI) scale showed significant improvements after EGCG supplementation. However, primary outcomes like disease progression measured by the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) of lesion activities showed minimal or no significant changes across most studies. EGCG supplementation appears to provide certain symptomatic and functional benefits in MS patients, particularly in terms of metabolic health and physical functionality. However, it does not significantly impact the primary disease progression markers such as EDSS scores and MRI lesions. These findings underscore the potential of EGCG as a supportive treatment in MS management, though its role in altering disease progression remains unclear. Future research should focus on long-term effects and optimal dosing to further elucidate its therapeutic potential.
Collapse
Affiliation(s)
- Amanda Claudia Schuldesz
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (A.C.S.); (M.P.)
| | - Raluca Tudor
- Discipline of Neurology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (A.C.); (M.S.)
| | - Prashant Sunil Nandarge
- Department of General Medicine, D.Y. Patil Medical College Kolhapur, Kolhapur 416005, India;
| | - Ahmed Elagez
- Department of General Medicine, Misr University for Science & Technology, Giza 3236101, Egypt;
| | - Amalia Cornea
- Discipline of Neurology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (A.C.); (M.S.)
| | - Radu Ion
- Department III Functional Sciences, Division of Public Health and Management, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Felix Bratosin
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Mihaela Prodan
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (A.C.S.); (M.P.)
| | - Mihaela Simu
- Discipline of Neurology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (A.C.); (M.S.)
| |
Collapse
|
5
|
Chataway J, Williams T, Li V, Marrie RA, Ontaneda D, Fox RJ. Clinical trials for progressive multiple sclerosis: progress, new lessons learned, and remaining challenges. Lancet Neurol 2024; 23:277-301. [PMID: 38365380 DOI: 10.1016/s1474-4422(24)00027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/04/2023] [Accepted: 01/12/2024] [Indexed: 02/18/2024]
Abstract
Despite the success of disease-modifying treatments in relapsing multiple sclerosis, for many individuals living with multiple sclerosis, progressive disability continues to accrue. How to interrupt the complex pathological processes underlying progression remains a daunting and ongoing challenge. Since 2014, several immunomodulatory approaches that have modest but clinically meaningful effects have been approved for the management of progressive multiple sclerosis, primarily for people who have active inflammatory disease. The approval of these drugs required large phase 3 trials that were sufficiently powered to detect meaningful effects on disability. New classes of drug, such as Bruton tyrosine-kinase inhibitors, are coming to the end of their trial stages, several candidate neuroprotective compounds have been successful in phase 2 trials, and innovative approaches to remyelination are now also being explored in clinical trials. Work continues to define intermediate outcomes that can provide results in phase 2 trials more quickly than disability measures, and more efficient trial designs, such as multi-arm multi-stage and futility approaches, are increasingly being used. Collaborations between patient organisations, pharmaceutical companies, and academic researchers will be crucial to ensure that future trials maintain this momentum and generate results that are relevant for people living with progressive multiple sclerosis.
Collapse
Affiliation(s)
- Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK; Medical Research Council Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK; National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK.
| | - Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ruth Ann Marrie
- Departments of Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
6
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
7
|
Andreu-Fernández V, Serra-Delgado M, Almeida-Toledano L, García-Meseguer À, Vieiros M, Ramos-Triguero A, Muñoz-Lozano C, Navarro-Tapia E, Martínez L, García-Algar Ó, Gómez-Roig MD. Effect of Postnatal Epigallocatechin-Gallate Treatment on Cardiac Function in Mice Prenatally Exposed to Alcohol. Antioxidants (Basel) 2023; 12:antiox12051067. [PMID: 37237934 DOI: 10.3390/antiox12051067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Prenatal alcohol exposure affects the cardiovascular health of the offspring. Epigallocatechin-3-gallate (EGCG) may be a protective agent against it, but no data are available regarding its impact on cardiac dysfunction. We investigated the presence of cardiac alterations in mice prenatally exposed to alcohol and the effect of postnatal EGCG treatment on cardiac function and related biochemical pathways. C57BL/6J pregnant mice received 1.5 g/kg/day (Mediterranean pattern), 4.5 g/kg/day (binge pattern) of ethanol, or maltodextrin until Day 19 of pregnancy. Post-delivery, treatment groups received EGCG-supplemented water. At post-natal Day 60, functional echocardiographies were performed. Heart biomarkers of apoptosis, oxidative stress, and cardiac damage were analyzed by Western blot. BNP and Hif1α increased and Nrf2 decreased in mice prenatally exposed to the Mediterranean alcohol pattern. Bcl-2 was downregulated in the binge PAE drinking pattern. Troponin I, glutathione peroxidase, and Bax increased in both ethanol exposure patterns. Prenatal alcohol exposure led to cardiac dysfunction in exposed mice, evidenced by a reduced ejection fraction, left ventricle posterior wall thickness at diastole, and Tei index. EGCG postnatal therapy restored the physiological levels of these biomarkers and improved cardiac dysfunction. These findings suggest that postnatal EGCG treatment attenuates the cardiac damage caused by prenatal alcohol exposure in the offspring.
Collapse
Affiliation(s)
- Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Biosanitary Research Institute, Valencian International University (VIU), 46002 Valencia, Spain
| | - Mariona Serra-Delgado
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain
| | - Laura Almeida-Toledano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain
| | - Àgueda García-Meseguer
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - Melina Vieiros
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - Anna Ramos-Triguero
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - Concha Muñoz-Lozano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Biosanitary Research Institute, Valencian International University (VIU), 46002 Valencia, Spain
| | - Leopoldo Martínez
- Department of Pediatric Surgery, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Óscar García-Algar
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - María D Gómez-Roig
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain
| |
Collapse
|
8
|
Fatima MT, Bhat AA, Nisar S, Fakhro KA, Al-Shabeeb Akil AS. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon 2022; 9:e12698. [PMID: 36632095 PMCID: PMC9826852 DOI: 10.1016/j.heliyon.2022.e12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Healthy diet is vital to cellular health. The human body succumbs to numerous diseases which afflict severe economic and psychological burdens on the patient and family. Oxidative stress is a possible crucial regulator of various pathologies, including type 2 diabetes and neurodegenerative diseases. It generates reactive oxygen species (ROS) that trigger the dysregulation of essential cellular functions, ultimately affecting cellular health and homeostasis. However, lower levels of ROS can be advantageous and are implicated in a variety of signaling pathways. Due to this dichotomy, the terms oxidative "eustress," which refers to a good oxidative event, and "distress," which can be hazardous, have developed. ROS affects multiple signaling pathways, leading to compromised insulin secretion, insulin resistance, and β-cell dysfunction in diabetes. ROS is also associated with increased mitochondrial dysfunction and neuroinflammation, aggravating neurodegenerative conditions in the body, particularly with age. Treatment includes drugs/therapies often associated with dependence, side effects including non-selectivity, and possible toxicity, particularly in the long run. It is imperative to explore alternative medicines as an adjunct therapy, utilizing natural remedies/resources to avoid all the possible harms. Antioxidants are vital components of our body that fight disease by reducing oxidative stress or nullifying the excess toxic free radicals produced under various pathological conditions. In this review, we focus on the antioxidant effects of components of dietary foods such as tea, coffee, wine, oils, and honey and the role and mechanism of action of these antioxidants in alleviating type 2 diabetes and neurodegenerative disorders. We aim to provide information about possible alternatives to drug treatments used alone or combined to reduce drug intake and encourage the consumption of natural ingredients at doses adequate to promote health and combat pathologies while reducing unwanted risks and side effects.
Collapse
Affiliation(s)
- Munazza Tamkeen Fatima
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz Ahmed Bhat
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid Adnan Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Doha, Qatar,Department of Genetic Medicine, Weill Cornell Medical College, Doha, P.O. Box 24144, Doha, Qatar,Department of Human Genetics, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ammira Sarah Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar,Corresponding author.
| |
Collapse
|
9
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Afzal O, Dalhat MH, Altamimi ASA, Rasool R, Alzarea SI, Almalki WH, Murtaza BN, Iftikhar S, Nadeem S, Nadeem MS, Kazmi I. Green Tea Catechins Attenuate Neurodegenerative Diseases and Cognitive Deficits. Molecules 2022; 27:7604. [PMID: 36364431 PMCID: PMC9655201 DOI: 10.3390/molecules27217604] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/12/2023] Open
Abstract
Neurodegenerative diseases exert an overwhelming socioeconomic burden all around the globe. They are mainly characterized by modified protein accumulation that might trigger various biological responses, including oxidative stress, inflammation, regulation of signaling pathways, and excitotoxicity. These disorders have been widely studied during the last decade in the hopes of developing symptom-oriented therapeutics. However, no definitive cure has yet been discovered. Tea is one of the world's most popular beverages. The same plant, Camellia Sinensis (L.).O. Kuntze, is used to make green, black, and oolong teas. Green tea has been most thoroughly studied because of its anti-cancer, anti-obesity, antidiabetic, anti-inflammatory, and neuroprotective properties. The beneficial effect of consumption of tea on neurodegenerative disorders has been reported in several human interventional and observational studies. The polyphenolic compounds found in green tea, known as catechins, have been demonstrated to have many therapeutic effects. They can help in preventing and, somehow, treating neurodegenerative diseases. Catechins show anti-inflammatory as well as antioxidant effects via blocking cytokines' excessive production and inflammatory pathways, as well as chelating metal ions and free radical scavenging. They may inhibit tau protein phosphorylation, amyloid beta aggregation, and release of apoptotic proteins. They can also lower alpha-synuclein levels and boost dopamine levels. All these factors have the potential to affect neurodegenerative disorders. This review will examine catechins' neuroprotective effects by highlighting their biological, pharmacological, antioxidant, and metal chelation abilities, with a focus on their ability to activate diverse cellular pathways in the brain. This review also points out the mechanisms of catechins in various neurodegenerative and cognitive diseases, including Alzheimer's, Parkinson's, multiple sclerosis, and cognitive deficit.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shamaila Nadeem
- Department of Zoology, Kinnaird College for Women, 93-Jail Road Lahore, Lahore 54000, Pakistan
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Rabies virus glycoprotein- and transferrin-functionalized liposomes to elevate epigallocatechin gallate and FK506 activity and mediate MAPK against neuronal apoptosis in Parkinson's disease. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Ivashynka A, Leone MA, Barizzone N, Cucovici A, Cantello R, Vecchio D, Zuccalà M, Pizzino A, Copetti M, D'Alfonso S, Fontana A. The impact of lifetime coffee and tea loads on Multiple Sclerosis severity. Clin Nutr ESPEN 2022; 47:199-205. [DOI: 10.1016/j.clnesp.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
|
13
|
Therapeutic Effects of Catechins in Less Common Neurological and Neurodegenerative Disorders. Nutrients 2021; 13:nu13072232. [PMID: 34209677 PMCID: PMC8308206 DOI: 10.3390/nu13072232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, neurological and neurodegenerative disorders research has focused on altered molecular mechanisms in search of potential pharmacological targets, e.g., imbalances in mechanisms of response to oxidative stress, inflammation, apoptosis, autophagy, proliferation, differentiation, migration, and neuronal plasticity, which occur in less common neurological and neurodegenerative pathologies (Huntington disease, multiple sclerosis, fetal alcohol spectrum disorders, and Down syndrome). Here, we assess the effects of different catechins (particularly of epigalocatechin-3-gallate, EGCG) on these disorders, as well as their use in attenuating age-related cognitive decline in healthy individuals. Antioxidant and free radical scavenging properties of EGCG -due to their phenolic hydroxyl groups-, as well as its immunomodulatory, neuritogenic, and autophagic characteristics, makes this catechin a promising tool against neuroinflammation and microglia activation, common in these pathologies. Although EGCG promotes the inhibition of protein aggregation in experimental Huntington disease studies and improves the clinical severity in multiple sclerosis in animal models, its efficacy in humans remains controversial. EGCG may normalize DYRK1A (involved in neural plasticity) overproduction in Down syndrome, improving behavioral and neural phenotypes. In neurological pathologies caused by environmental agents, such as FASD, EGCG enhances antioxidant defense and regulates placental angiogenesis and neurodevelopmental processes. As demonstrated in animal models, catechins attenuate age-related cognitive decline, which results in improvements in long-term outcomes and working memory, reduction of hippocampal neuroinflammation, and enhancement of neuronal plasticity; however, further studies are needed. Catechins are valuable compounds for treating and preventing certain neurodegenerative and neurological diseases of genetic and environmental origin. However, the use of different doses of green tea extracts and EGCG makes it difficult to reach consistent conclusions for different populations.
Collapse
|
14
|
Herrmann CJJ, Els A, Boehmert L, Periquito J, Eigentler TW, Millward JM, Waiczies S, Kuchling J, Paul F, Niendorf T. Simultaneous T 2 and T 2 ∗ mapping of multiple sclerosis lesions with radial RARE-EPI. Magn Reson Med 2021; 86:1383-1402. [PMID: 33951214 DOI: 10.1002/mrm.28811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE The characteristic MRI features of multiple sclerosis (MS) lesions make it conceptually appealing to pursue parametric mapping techniques that support simultaneous generation of quantitative maps of 2 or more MR contrast mechanisms. We present a modular rapid acquisition with relaxation enhancement (RARE)-EPI hybrid that facilitates simultaneous T2 and T 2 ∗ mapping (2in1-RARE-EPI). METHODS In 2in1-RARE-EPI the first echoes in the echo train are acquired with a RARE module, later echoes are acquired with an EPI module. To define the fraction of echoes covered by the RARE and EPI module, an error analysis of T2 and T 2 ∗ was conducted with Monte Carlo simulations. Radial k-space (under)sampling was implemented for acceleration (R = 2). The feasibility of 2in1-RARE-EPI for simultaneous T2 and T 2 ∗ mapping was examined in a phantom study mimicking T2 and T 2 ∗ relaxation times of the brain. For validation, 2in1-RARE-EPI was benchmarked versus multi spin-echo (MSE) and multi gradient-echo (MGRE) techniques. The clinical applicability of 2in1-RARE-EPI was demonstrated in healthy subjects and MS patients. RESULTS There was a good agreement between T2 / T 2 ∗ values derived from 2in1-RARE-EPI and T2 / T 2 ∗ reference values obtained from MSE and MGRE in both phantoms and healthy subjects. In patients, MS lesions in T2 and T 2 ∗ maps deduced from 2in1-RARE-EPI could be just as clearly delineated as in reference maps calculated from MSE/MGRE. CONCLUSION This work demonstrates the feasibility of radially (under)sampled 2in1-RARE-EPI for simultaneous T2 and T 2 ∗ mapping in MS patients.
Collapse
Affiliation(s)
- Carl J J Herrmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Chair of Medical Engineering, Technical University of Berlin, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joseph Kuchling
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
15
|
Bellmann-Strobl J, Paul F, Wuerfel J, Dörr J, Infante-Duarte C, Heidrich E, Körtgen B, Brandt A, Pfüller C, Radbruch H, Rust R, Siffrin V, Aktas O, Heesen C, Faiss J, Hoffmann F, Lorenz M, Zimmermann B, Groppa S, Wernecke KD, Zipp F. Epigallocatechin Gallate in Relapsing-Remitting Multiple Sclerosis: A Randomized, Placebo-Controlled Trial. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e981. [PMID: 33762428 PMCID: PMC8054966 DOI: 10.1212/nxi.0000000000000981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/07/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To assess the safety and efficacy of epigallocatechin-3-gallate (EGCG) add-on to glatiramer acetate (GA) in patients with relapsing-remitting multiple sclerosis (RRMS). METHODS We enrolled patients with RRMS (aged 18-60 years, Expanded Disability Status Scale [EDSS] score 0-6.5), receiving stable GA treatment in a multicenter, prospective, double-blind, phase II, randomized controlled trial. Participants received up to 800 mg oral EGCG daily over a period of 18 months. The primary outcome was the proportion of patients without new hyperintense lesions on T2-weighted (T2w) brain MRI within 18 months. Secondary end points included additional MRI and clinical parameters. Immunologic effects of EGCG were investigated in exploratory experiments. RESULTS A total of 122 patients on GA were randomly assigned to EGCG treatment (n = 62) or placebo (n = 60). We could not demonstrate a difference between groups after 18 months for the primary outcome or other radiologic (T2w lesion volume, T1w hypointense lesion number or volume, number of cumulative contrast-enhancing lesions, percent brain volume change), or clinical (EDSS, MS functional composite, and annualized relapse rate) parameter. EGCG treatment did not affect immune response to GA. Pharmacologic analysis revealed wide ranging EGCG plasma levels. The treatment was well tolerated with a similar incidence of mostly mild adverse events similar in both groups. CONCLUSION In RRMS, oral EGCG add-on to GA was not superior to placebo in influencing MRI and clinical disease activity over 18 months. The treatment was safe at a daily dosage up to 800 mg EGCG. It did not influence immune parameters, despite indication of EGCG being bioavailable in patients. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that for patients with RRMS, EGCG added to GA did not significantly affect the development of new hyperintense lesions on T2-weighted brain MRI. TRIAL REGISTRATION INFORMATION Clinical trial registration number: NCT00525668.
Collapse
Affiliation(s)
- Judith Bellmann-Strobl
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin.
| | - Friedemann Paul
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Jens Wuerfel
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Jan Dörr
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Carmen Infante-Duarte
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Elmira Heidrich
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Benedict Körtgen
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Alexander Brandt
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Caspar Pfüller
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Helena Radbruch
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Rebekka Rust
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Volker Siffrin
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Orhan Aktas
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Christoph Heesen
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Jürgen Faiss
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Frank Hoffmann
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Mario Lorenz
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Benno Zimmermann
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Sergiu Groppa
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Klaus-Dieter Wernecke
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| | - Frauke Zipp
- From the NeuroCure Clinical Research Center (J.B.-S., F.P., J.D., A.B., V.S.), Charité-Universitätsmedizin Berlin; Medical Image Analysis Center (J.W.), University Basel; Institut for Medical Immunology (C.I.-D., E.H.), Charité-Universitätsmedizin Berlin; Department of Neurology and Neuroimaging Center (B.K.), Johannes Gutenberg University, Mainz; Charité-Universitätsmedizin Berlin (C.P.); NeuroCure Clinical Research Center (H.R., R.R.), Charité-Universitätsmedizin Berlin, Germany; Department of Neurology (O.A.), Medical Faculty, Heinrich Heine University Düsseldorf; Institut für Neuroimmunologie und Multiple Sklerose (C.H.), Universitätsklinikum Hamburg-Eppendorf, Hamburg; Klinik für Neurologie (J.F.), Asklepios Klinik Lübben/Teupitz; Department of Neurology (F.H.), Krankenhaus Martha-Maria Halle-Dölau, Halle/Saale; Medizinische Klinik für Kardiologie und Angiologie (M.L.), Campus Mitte, Charité-Universitätsmedizin Berlin; Institute of Nutritional and Food Sciences (B.Z.), University of Bonn; Department of Neurology and Neuroimaging Center (NIC) (S.G., F.Z.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz; and Charité-Universitätsmedizin Berlin and SOSTANA GmbH (K.-D.W.), Berlin
| |
Collapse
|
16
|
Klumbies K, Rust R, Dörr J, Konietschke F, Paul F, Bellmann-Strobl J, Brandt AU, Zimmermann HG. Retinal Thickness Analysis in Progressive Multiple Sclerosis Patients Treated With Epigallocatechin Gallate: Optical Coherence Tomography Results From the SUPREMES Study. Front Neurol 2021; 12:615790. [PMID: 33995239 PMCID: PMC8113620 DOI: 10.3389/fneur.2021.615790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Epigallocatechin gallate (EGCG) is an anti-inflammatory agent and has proven neuroprotective properties in animal models of multiple sclerosis (MS). Optical coherence tomography (OCT) assessed retinal thickness analysis can reflect treatment responses in MS. Objective: To analyze the influence of EGCG treatment on retinal thickness analysis as secondary and exploratory outcomes of the randomized controlled Sunphenon in Progressive Forms of MS trial (SUPREMES, NCT00799890). Methods: SUPREMES patients underwent OCT with the Heidelberg Spectralis device at a subset of visits. We determined peripapillary retinal nerve fiber layer (pRNFL) thickness from a 12° ring scan around the optic nerve head and thickness of the ganglion cell/inner plexiform layer (GCIP) and inner nuclear layer (INL) within a 6 mm diameter grid centered on the fovea from a macular volume scan. Longitudinal OCT data were available for exploratory analysis from 31 SUPREMES participants (12/19 primary/secondary progressive MS (PPMS/SPMS); mean age 51 ± 7 years; 12 female; mean time since disease onset 16 ± 11 years). We tested the null hypothesis of no treatment*time interaction using nonparametric analysis of longitudinal data in factorial experiments. Results: After 2 years, there were no significant differences in longitudinal retinal thickness changes between EGCG treated and placebo arms in any OCT parameter (Mean change [confidence interval] ECGC vs. Placebo: pRNFL: -0.83 [1.29] μm vs. -0.64 [1.56] μm, p = 0.156; GCIP: -0.67 [0.67] μm vs. -0.14 [0.47] μm, p = 0.476; INL: -0.06 [0.58] μm vs. 0.22 [0.41] μm, p = 0.455). Conclusion: Retinal thickness analysis did not reveal a neuroprotective effect of EGCG. While this is in line with the results of the main SUPREMES trial, our study was probably underpowered to detect an effect. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT00799890.
Collapse
Affiliation(s)
- Katharina Klumbies
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rebekka Rust
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Dörr
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Neurology Department, Oberhavel Clinic, Hennigsdorf, Germany
| | - Frank Konietschke
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|