1
|
Nakajima A, Yanagimura F, Saji E, Shimizu H, Toyoshima Y, Yanagawa K, Arakawa M, Hokari M, Yokoseki A, Wakasugi T, Okamoto K, Takebayashi H, Fujii C, Itoh K, Takei YI, Ohara S, Yamada M, Takahashi H, Nishizawa M, Igarashi H, Kakita A, Onodera O, Kawachi I. Stage-dependent immunity orchestrates AQP4 antibody-guided NMOSD pathology: a role for netting neutrophils with resident memory T cells in situ. Acta Neuropathol 2024; 147:76. [PMID: 38658413 DOI: 10.1007/s00401-024-02725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the CNS characterized by the production of disease-specific autoantibodies against aquaporin-4 (AQP4) water channels. Animal model studies suggest that anti-AQP4 antibodies cause a loss of AQP4-expressing astrocytes, primarily via complement-dependent cytotoxicity. Nonetheless, several aspects of the disease remain unclear, including: how anti-AQP4 antibodies cross the blood-brain barrier from the periphery to the CNS; how NMOSD expands into longitudinally extensive transverse myelitis or optic neuritis; how multiphasic courses occur; and how to prevent attacks without depleting circulating anti-AQP4 antibodies, especially when employing B-cell-depleting therapies. To address these knowledge gaps, we conducted a comprehensive 'stage-dependent' investigation of immune cell elements in situ in human NMOSD lesions, based on neuropathological techniques for autopsied/biopsied CNS materials. The present study provided three major findings. First, activated or netting neutrophils and melanoma cell adhesion molecule-positive (MCAM+) helper T (TH) 17/cytotoxic T (TC) 17 cells are prominent, and the numbers of these correlate with the size of NMOSD lesions in the initial or early-active stages. Second, forkhead box P3-positive (FOXP3+) regulatory T (Treg) cells are recruited to NMOSD lesions during the initial, early-active or late-active stages, suggesting rapid suppression of proinflammatory autoimmune events in the active stages of NMOSD. Third, compartmentalized resident memory immune cells, including CD103+ tissue-resident memory T (TRM) cells with long-lasting inflammatory potential, are detected under "standby" conditions in all stages. Furthermore, CD103+ TRM cells express high levels of granzyme B/perforin-1 in the initial or early-active stages of NMOSD in situ. We infer that stage-dependent compartmentalized immune traits orchestrate the pathology of anti-AQP4 antibody-guided NMOSD in situ. Our work further suggests that targeting activated/netting neutrophils, MCAM+ TH17/TC17 cells, and CD103+ TRM cells, as well as promoting the expansion of FOXP3+ Treg cells, may be effective in treating and preventing relapses of NMOSD.
Collapse
Affiliation(s)
- Akihiro Nakajima
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Fumihiro Yanagimura
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, NHO Niigata National Hospital, 3-52 Akasakamachi, Kashiwazaki, Niigata, 945-8585, Japan
| | - Etsuji Saji
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Yasuko Toyoshima
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, Brain Disease Center, Agano Hospital, 6317-15 Yasuda, Agano, Niigata, 959-2221, Japan
| | - Kaori Yanagawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Musashi Arakawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Musashi Clinic, 20-1 Hakusanura 2, Chuo-Ku, Niigata, 951-8131, Japan
| | - Mariko Hokari
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Akiko Yokoseki
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, Niigata Medical Center, 27-11 Kobari 3, Nishi-Ku, Niigata, 950-2022, Japan
| | - Takahiro Wakasugi
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, NHO Nishiniigata Chuo Hospital, 14-1 Masago 1, Nishi-Ku, Niigata, 950-2085, Japan
| | - Kouichirou Okamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8510, Japan
| | - Chihiro Fujii
- Department of Neurology, Kansai Medical University Medical Center, 10-15 Fumizonocho, Moriguchi, Osaka, 570-8507, Japan
- Department of Neurology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Yo-Ichi Takei
- Department of Neurology, NHO Matsumoto Medical Center, 2-20-30 Muraimachi-Minami, Matsumoto, Nagano, 399-8701, Japan
| | - Shinji Ohara
- Department of Neurology, NHO Matsumoto Medical Center, 2-20-30 Muraimachi-Minami, Matsumoto, Nagano, 399-8701, Japan
- Department of Neurology, Iida Hospital, 1-15 Odori, Iida, Nagano, 395-8505, Japan
| | - Mitsunori Yamada
- Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Pathology and Laboratory Medicine, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-Ku, Niigata, 950-1101, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Niigata University of Health and Welfare, 1398 Shimami-Cho, Kita-Ku, Niigata, 950-3198, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Izumi Kawachi
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan.
- Medical Education Center, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8510, Japan.
| |
Collapse
|
2
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|