Lerch M, Ramanathan S. The pathogenesis of neurological immune-related adverse events following immune checkpoint inhibitor therapy.
Semin Immunol 2025;
78:101956. [PMID:
40294474 DOI:
10.1016/j.smim.2025.101956]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of immune checkpoint inhibitors (ICI) has revolutionised cancer therapy, and patients who were previously incurable can now have excellent responses. These therapies work by blocking inhibitory immune pathways, like cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death-1 (PD-1), its ligand PD-L1, and lymphocyte activation gene 3 (LAG-3); which leads to increased anti-tumour immune responses. However, their use can lead to the development of immune-related adverse events (irAEs), which may result in severe disability, interruption of cancer therapy, and even death. Neurological autoimmune sequelae occur in 1-10 % of patients treated with ICIs and can be fatal. They encompass a broad spectrum of diseases, may affect the central and the peripheral nervous system, and include syndromes like encephalitis, cerebellitis, neuropathy, and myositis. In some cases, neurological irAEs can be associated with autoantibodies recognising neuronal or glial targets. In this review, we first describe the key targets in ICI therapy, followed by a formulation of irAEs and their clinical presentations, where we focus on neurological syndromes. We comprehensively formulate the current literature evaluating cell surface and intracellular autoantibodies, cytokines, chemokines, leukocyte patterns, other blood derived biomarkers, and immunogenetic profiles; and highlight their impact on our understanding of the pathogenesis of neurological irAEs. Finally, we describe therapeutic pathways and patient outcomes, and provide an overview on future aspects of ICI cancer therapy.
Collapse