1
|
Mitsuhashi T, Iimura Y, Suzuki H, Ueda T, Nishioka K, Nomura K, Nakajima M, Sugano H, Kondo A. Bipolar and Laplacian montages are suitable for high-gamma modulation language mapping with stereoelectroencephalography. Front Neurol 2024; 15:1380644. [PMID: 39479009 PMCID: PMC11521834 DOI: 10.3389/fneur.2024.1380644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Objective To determine the optimal montage and vocalization conditions for high-gamma language mapping using stereoelectroencephalography. Methods We studied 12 epilepsy patients who underwent invasive monitoring with depth electrodes and measurement of auditory-naming related high-gamma modulations. We determined the effects of electrode montage and vocalization conditions of the response on the high-gamma (60-140 Hz) amplitudes. Results Compared to common average reference montage, bipolar and Laplacian montages effectively reduced the degree of auditory naming-related signal deflections in the white matter during the stimulus and response phases (mixed model estimate: -21.2 to -85.4%; p < 0.001), while maintaining those at the cortical level (-4.4 to +7.8%; p = 0.614 to 0.085). They also reduced signal deflections outside the brain parenchyma during the response phase (-90.6 to -91.2%; p < 0.001). Covert responses reduced signal deflections outside the brain parenchyma during the response phase (-17.0%; p = 0.010). Conclusion On depth electrode recording, bipolar and Laplacian montages are suitable for measuring auditory naming-related high-gamma modulations in gray matter. The covert response may highlight the gray matter activity. Significance This study helps establish the practical guidelines for high-gamma language mapping using stereoelectroencephalography.
Collapse
Affiliation(s)
- Takumi Mitsuhashi
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Yasushi Iimura
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Hiroharu Suzuki
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Tetsuya Ueda
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Kazuki Nishioka
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Kazuki Nomura
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Kanaya K, Mitsuhashi T, Kiuchi T, Kobayashi S. The Efficacy of Intraoperative Passive Language Mapping for Glioma Surgery: A Case Report. Front Neurol 2021; 12:652401. [PMID: 34408717 PMCID: PMC8364957 DOI: 10.3389/fneur.2021.652401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Recently, electrocorticographic (ECoG) studies have emphasized the importance of gamma band-based functional mapping in the presurgical localization of the eloquent cortex. Passive functional mapping using ECoG signals provides a reliable method for identifying receptive language areas without many of the risks and limitations associated with electrical cortical stimulation. We report a surgical case of left temporal malignant glioma with intraoperative passive language mapping. Case Description: A 78-year-old woman was diagnosed with left temporal glioma with inspection of her language difficulty. MRI showed a left temporal tumor measuring 74.6 × 50.0 × 51.5 mm in size. Real-time CortiQ-based mapping using high-gamma activity by word-listening and story-listening tasks was performed. Significant listening task-evoked high gamma activities were detected in 5 channels in the superior temporal gyrus and one channel in the middle temporal gyrus. The tumor was grossly removed except for the region corresponding to listening task-evoked high gamma activities. Postoperatively, the patient's symptoms of language comprehension difficulty improved, and no new neurological deficits were observed. Conclusion: Intraoperative passive language mapping was successfully performed, and the patient's language function was well-preserved. Intraoperative passive language mapping, which is applicable in a short time and under general anesthesia, can be an important tool for detecting language areas.
Collapse
Affiliation(s)
- Kohei Kanaya
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Neurosurgery, Iida Municipal Hospital, Nagano, Japan
| | | | - Takafumi Kiuchi
- Department of Neurosurgery, Iida Municipal Hospital, Nagano, Japan
| | - Sumio Kobayashi
- Department of Neurosurgery, Iida Municipal Hospital, Nagano, Japan
| |
Collapse
|
3
|
Trébuchon A, Liégeois-Chauvel C, Gonzalez-Martinez JA, Alario FX. Contributions of electrophysiology for identifying cortical language systems in patients with epilepsy. Epilepsy Behav 2020; 112:107407. [PMID: 33181892 DOI: 10.1016/j.yebeh.2020.107407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
A crucial element of the surgical treatment of medically refractory epilepsy is to delineate cortical areas that must be spared in order to avoid clinically relevant neurological and neuropsychological deficits postoperatively. For each patient, this typically necessitates determining the language lateralization between hemispheres and language localization within hemisphere. Understanding cortical language systems is complicated by two primary challenges: the extent of the neural tissue involved and the substantial variability across individuals, especially in pathological populations. We review the contributions made through the study of electrophysiological activity to address these challenges. These contributions are based on the techniques of magnetoencephalography (MEG), intracerebral recordings, electrical-cortical stimulation (ECS), and the electrovideo analyses of seizures and their semiology. We highlight why no single modality alone is adequate to identify cortical language systems and suggest avenues for improving current practice.
Collapse
Affiliation(s)
- Agnès Trébuchon
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Catherine Liégeois-Chauvel
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Department of Neurological Surgery, School of Medicine, University of Pittsburgh (PA), USA
| | | | - F-Xavier Alario
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh (PA), USA; Aix-Marseille Univ, CNRS, LPC, Marseille, France.
| |
Collapse
|
4
|
Swift JR, Coon WG, Guger C, Brunner P, Bunch M, Lynch T, Frawley B, Ritaccio AL, Schalk G. Passive functional mapping of receptive language areas using electrocorticographic signals. Clin Neurophysiol 2018; 129:2517-2524. [PMID: 30342252 DOI: 10.1016/j.clinph.2018.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To validate the use of passive functional mapping using electrocorticographic (ECoG) broadband gamma signals for identifying receptive language cortex. METHODS We mapped language function in 23 patients using ECoG and using electrical cortical stimulation (ECS) in a subset of 15 subjects. RESULTS The qualitative comparison between cortical sites identified by ECoG and ECS show a high concordance. A quantitative comparison indicates a high level of sensitivity (95%) and a lower level of specificity (59%). Detailed analysis reveals that 82% of all cortical sites identified by ECoG were within one contact of a site identified by ECS. CONCLUSIONS These results show that passive functional mapping reliably localizes receptive language areas, and that there is a substantial concordance between the ECoG- and ECS-based methods. They also point to a more refined understanding of the differences between ECoG- and ECS-based mappings. This refined understanding helps to clarify the instances in which the two methods disagree and can explain why neurosurgical practice has established the concept of a "safety margin." SIGNIFICANCE Passive functional mapping using ECoG signals provides a fast, robust, and reliable method for identifying receptive language areas without many of the risks and limitations associated with ECS.
Collapse
Affiliation(s)
- J R Swift
- g.tec neurotechnology USA, Rensselaer, NY, USA; Dept. of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - W G Coon
- g.tec neurotechnology USA, Rensselaer, NY, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Dept. of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - C Guger
- g.tec neurotechnology USA, Rensselaer, NY, USA.
| | - P Brunner
- Dept. of Neurology, Albany Medical College, Albany, NY, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - M Bunch
- Dept. of Neurology, Albany Medical College, Albany, NY, USA.
| | - T Lynch
- Dept. of Neurology, Albany Medical College, Albany, NY, USA.
| | - B Frawley
- Dept. of Neurology, Albany Medical College, Albany, NY, USA.
| | - A L Ritaccio
- Dept. of Neurology, Mayo Clinic, Jacksonville, FL, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| | - G Schalk
- Dept. of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; Dept. of Neurology, Albany Medical College, Albany, NY, USA; National Ctr. for Adaptive Neurotechnologies, Wadsworth Center, NY State Dept. of Health, Albany, NY, USA.
| |
Collapse
|
5
|
Foster BL, Parvizi J. Direct cortical stimulation of human posteromedial cortex. Neurology 2017; 88:685-691. [PMID: 28100728 DOI: 10.1212/wnl.0000000000003607] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/17/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The posteromedial cortex (PMC) is a collective term for an anatomically heterogeneous area of the brain constituting a core node of the human default mode network (DMN), which is engaged during internally focused subjective cognition such as autobiographical memory. METHODS We explored the effects of causal perturbations of PMC with direct electric brain stimulation (EBS) during presurgical epilepsy monitoring with intracranial EEG electrodes. RESULTS Data were collected from 885 stimulations in 25 patients implanted with intracranial electrodes across the PMC. While EBS of regions immediately dorsal or ventral to the PMC reliably produced somatomotor or visual effects, respectively, we found no observable behavioral or subjectively reported effects when sites within the boundaries of PMC were electrically perturbed. In each patient, null effects of PMC stimulation were observed for sites in which intracranial recordings had clearly demonstrated electrophysiologic responses during autobiographical recall. CONCLUSIONS Direct electric modulation of the human PMC produced null effects when standard functional mapping methods were used. More sophisticated stimulation paradigms (e.g., EBS during experimental cognitive tests) will be required for testing the causal contribution of PMC to human cognition and subjective experience. Nonetheless, our findings suggest that some extant theories of PMC and DMN contribution to human awareness and subjective conscious states require cautious re-examination.
Collapse
Affiliation(s)
- Brett L Foster
- From the Laboratory of Behavioral and Cognitive Neuroscience (B.L.F., J.P.), Stanford Human Intracranial Cognitive Electrophysiology Program, Stanford University, CA; and Departments of Neurosurgery and Neuroscience (B.L.F.), Baylor College of Medicine, Houston, TX.
| | - Josef Parvizi
- From the Laboratory of Behavioral and Cognitive Neuroscience (B.L.F., J.P.), Stanford Human Intracranial Cognitive Electrophysiology Program, Stanford University, CA; and Departments of Neurosurgery and Neuroscience (B.L.F.), Baylor College of Medicine, Houston, TX.
| |
Collapse
|