1
|
Turner ME, Che J, Mirhaidari GJM, Kennedy CC, Blum KM, Rajesh S, Zbinden JC, Breuer CK, Best CA, Barker JC. The lysosomal trafficking regulator "LYST": an 80-year traffic jam. Front Immunol 2024; 15:1404846. [PMID: 38774881 PMCID: PMC11106369 DOI: 10.3389/fimmu.2024.1404846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Lysosomes and lysosome related organelles (LROs) are dynamic organelles at the intersection of various pathways involved in maintaining cellular hemostasis and regulating cellular functions. Vesicle trafficking of lysosomes and LROs are critical to maintain their functions. The lysosomal trafficking regulator (LYST) is an elusive protein important for the regulation of membrane dynamics and intracellular trafficking of lysosomes and LROs. Mutations to the LYST gene result in Chédiak-Higashi syndrome, an autosomal recessive immunodeficiency characterized by defective granule exocytosis, cytotoxicity, etc. Despite eight decades passing since its initial discovery, a comprehensive understanding of LYST's function in cellular biology remains unresolved. Accumulating evidence suggests that dysregulation of LYST function also manifests in other disease states. Here, we review the available literature to consolidate available scientific endeavors in relation to LYST and discuss its relevance for immunomodulatory therapies, regenerative medicine and cancer applications.
Collapse
Affiliation(s)
- Mackenzie E. Turner
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Jingru Che
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Gabriel J. M. Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Catherine C. Kennedy
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kevin M. Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Sahana Rajesh
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jacob C. Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Cameron A. Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Jenny C. Barker
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Plastic and Reconstructive Surgery, The Ohio State University Medical Center, Columbus, OH, United States
| |
Collapse
|
2
|
Kuptanon C, Morimoto M, Nicoli ER, Stephen J, Yarnell DS, Dorward H, Owen W, Parikh S, Ozbek NY, Malbora B, Ciccone C, Gunay-Aygun M, Gahl WA, Introne WJ, Malicdan MCV. cDNA sequencing increases the molecular diagnostic yield in Chediak-Higashi syndrome. Front Genet 2023; 14:1072784. [PMID: 36968585 PMCID: PMC10031035 DOI: 10.3389/fgene.2023.1072784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Chediak-Higashi syndrome (CHS) is rare autosomal recessive disorder caused by bi-allelic variants in the Lysosomal Trafficking Regulator (LYST) gene. Diagnosis is established by the detection of pathogenic variants in LYST in combination with clinical evidence of disease. Conventional molecular genetic testing of LYST by genomic DNA (gDNA) Sanger sequencing detects the majority of pathogenic variants, but some remain undetected for several individuals clinically diagnosed with CHS. In this study, cDNA Sanger sequencing was pursued as a complementary method to identify variant alleles that are undetected by gDNA Sanger sequencing and to increase molecular diagnostic yield. Methods: Six unrelated individuals with CHS were clinically evaluated and included in this study. gDNA Sanger sequencing and cDNA Sanger sequencing were performed to identify pathogenic LYST variants. Results: Ten novel LYST alleles were identified, including eight nonsense or frameshift variants and two in-frame deletions. Six of these were identified by conventional gDNA Sanger sequencing; cDNA Sanger sequencing was required to identify the remaining variant alleles. Conclusion: By utilizing cDNA sequencing as a complementary technique to identify LYST variants, a complete molecular diagnosis was obtained for all six CHS patients. In this small CHS cohort, the molecular diagnostic yield was increased, and canonical splice site variants identified from gDNA Sanger sequencing were validated by cDNA sequencing. The identification of novel LYST alleles will aid in diagnosing patients and these molecular diagnoses will also lead to genetic counseling, access to services and treatments and clinical trials in the future.
Collapse
Affiliation(s)
- Chulaluk Kuptanon
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marie Morimoto
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Elena-Raluca Nicoli
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Joshi Stephen
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - David S. Yarnell
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Heidi Dorward
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - William Owen
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Suhag Parikh
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Namik Yasar Ozbek
- Division of Pediatric Hematology and Oncology, University of Yeni Yuzyil, Gaziosmanpasa Hospital, Istanbul, Türkiye
| | - Baris Malbora
- Department of Pediatric Hematology/Oncology, Ankara City Hospital, The University of Health Sciences, Ankara, Türkiye
| | - Carla Ciccone
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Meral Gunay-Aygun
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - William A. Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Wendy J. Introne
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - May Christine V. Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: May Christine V. Malicdan,
| |
Collapse
|
3
|
Nuovo GJ. The key role of the pathologist in both documenting and exonerating accusations of scientific misconduct. Ann Diagn Pathol 2022; 61:152053. [DOI: 10.1016/j.anndiagpath.2022.152053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/01/2022]
|
4
|
Association of rare variants in genes of immune regulation with pediatric autoimmune CNS diseases. J Neurol 2022; 269:6512-6529. [PMID: 35960392 PMCID: PMC9372976 DOI: 10.1007/s00415-022-11325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background There is a gap in the literature regarding genetic underpinnings of pediatric autoimmune CNS diseases. This study explored rare gene variants implicated in immune dysregulation within these disorders. Methods This was a single-center observational study of children with inflammatory CNS disorder who had genetic testing through next generation focused exome sequencing targeting 155 genes associated with innate or adaptive immunity. For in silico prediction of functional effects of single-nucleotide variants, Polymorphism Phenotyping v2, and Sorting Intolerant from Tolerant were used, and Combined Annotation Dependent Depletion (CADD) scores were calculated. Identified genes were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results Of 54 patients, 42 (77.8%) carried variant(s), among which 12 (22.2%) had 3–8 variants. Eighty-eight unique single-nucleotide variants of 55 genes were identified. The most variants were detected in UNC13D, LRBA, LYST, NOD2, DOCK8, RNASEH2A, STAT5B, and AIRE. The majority of variants (62, 70.4%) had CADD > 10. KEGG pathway analysis revealed seven genes associated with primary immunodeficiency (Benjamini 1.40E − 06), six genes with NOD-like receptor signaling (Benjamini 4.10E − 04), five genes with Inflammatory Bowel Disease (Benjamini 9.80E − 03), and five genes with NF-kappa B signaling pathway (Benjamini 1.90E − 02). Discussion We observed a high rate of identification of rare and low-frequency variants in immune regulatory genes in pediatric neuroinflammatory CNS disorders. We identified 88 unique single-nucleotide variants of 55 genes with pathway analysis revealing an enrichment of NOD2-receptor signaling, consistent with involvement of the pathway within other autoinflammatory conditions and warranting further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11325-2.
Collapse
|
5
|
Xie N, Yang G, Zhang W, Xu H, Sun Q. Clinical Reasoning:A 50-Year-Old Man With Progressive Limb Weakness and Slurred Speech. Neurology 2022; 98:592-596. [PMID: 35145004 DOI: 10.1212/wnl.0000000000200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nina Xie
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China
| | - Guang Yang
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weiru Zhang
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hongwei Xu
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha 410008, China .,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China
| |
Collapse
|
6
|
Lindahl H, Bryceson YT. Neuroinflammation Associated With Inborn Errors of Immunity. Front Immunol 2022; 12:827815. [PMID: 35126383 PMCID: PMC8807658 DOI: 10.3389/fimmu.2021.827815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Zbinden JC, Mirhaidari GJM, Blum KM, Musgrave AJ, Reinhardt JW, Breuer CK, Barker JC. The lysosomal trafficking regulator is necessary for normal wound healing. Wound Repair Regen 2021; 30:82-99. [PMID: 34837653 DOI: 10.1111/wrr.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Non-healing wounds are a major threat to public health throughout the United States. Tissue healing is complex multifactorial process that requires synchronicity of several cell types. Endolysosomal trafficking, which contributes to various cell functions from protein degradation to plasma membrane repair, is an understudied process in the context of wound healing. The lysosomal trafficking regulator protein (LYST) is an essential protein of the endolysosomal system through an indeterminate mechanism. In this study, we examine the impact of impaired LYST function both in vitro with primary LYST mutant fibroblasts as well as in vivo with an excisional wound model. The wound model shows that LYST mutant mice have impaired wound healing in the form of delayed epithelialization and collagen deposition, independent of macrophage infiltration and polarisation. We show that LYST mutation confers a deficit in MCP-1, IGF-1, and IGFBP-2 secretion in beige fibroblasts, which are critical factors in normal wound healing. Identifying the mechanism of LYST function is important for understanding normal wound biology, which may facilitate the development of strategies to address problem wound healing.
Collapse
Affiliation(s)
- Jacob C Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andrew J Musgrave
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jenny C Barker
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
8
|
Yliranta A, Mäkinen J. Chediak-Higashi syndrome: neurocognitive and behavioral data from infancy to adulthood after bone marrow transplantation. Neurocase 2021; 27:1-7. [PMID: 33295840 DOI: 10.1080/13554794.2020.1856384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chediak-Higashi syndrome (CHS) is a rare autosomal disorder characterized by immunodeficiency, albinism, and progressive neurologic abnormalities. While survivors of the childhood-onset disease are known to exhibit learning disabilities and neuropsychiatric disorders followed by middle-age dementia, we lack detailed data on the progression. We present the case of a young adult with records from infancy to the first signs of deterioration. An early neuropsychological and neuropsychiatric profiling is crucial to intervention selection as children with CHS may not benefit from regular special education. Our patient never showed neuropsychiatric symptoms but high levels of socioemotional adaptability.
Collapse
Affiliation(s)
- Aino Yliranta
- Department of Neurology, Lapland Central Hospital, Rovaniemi, Finland
| | - Jussi Mäkinen
- Department of Neurology, Lapland Central Hospital, Rovaniemi, Finland
| |
Collapse
|
9
|
Patel RA, Hall DA, Eichenseer S, Bailey M. Movement Disorders and Hematologic Diseases. Mov Disord Clin Pract 2021; 8:193-207. [PMID: 33553488 PMCID: PMC7853188 DOI: 10.1002/mdc3.13129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Movement disorders can be associated with or caused by hematological abnormalities. The objective of this review is to highlight features that will aid in the clinician's recognition and treatment of these disorders. METHODS MESH terms relevant to movement disorders and hematologic diseases were searched to identify conditions included in this narrative, educational review. RESULTS Several conditions were identified, and they were organized by hematologic categories to include red blood cell abnormalities, white blood cell abnormalities, disorders of clotting and bleeding, hematologic malignancies, and others. CONCLUSIONS This review will increase providers' understanding of disorders that include movement disorders and hematologic abnormalities. Basic hematologic laboratories can aid in assessment of these disorders, to include complete blood count/hemogram and peripheral blood smear. Recognition is key, especially in the setting of underlying malignancy, vitamin deficiency, or other disorder in which treatment is available.
Collapse
Affiliation(s)
- Roshni Abee Patel
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Deborah A. Hall
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Sheila Eichenseer
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Meagan Bailey
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
10
|
Power B, Ferreira CR, Chen D, Zein WM, O'Brien KJ, Introne WJ, Stephen J, Gahl WA, Huizing M, Malicdan MCV, Adams DR, Gochuico BR. Hermansky-Pudlak syndrome and oculocutaneous albinism in Chinese children with pigmentation defects and easy bruising. Orphanet J Rare Dis 2019; 14:52. [PMID: 30791930 PMCID: PMC6385472 DOI: 10.1186/s13023-019-1023-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022] Open
Abstract
Background Determining the etiology of oculocutaneous albinism is important for proper clinical management and to determine prognosis. The purpose of this study was to genotype and phenotype eight adopted Chinese children who presented with oculocutaneous albinism and easy bruisability. Results The patients were evaluated at a single center; their ages ranged from 3 to 8 years. Whole exome or direct sequencing showed that two of the children had Hermansky-Pudlak syndrome (HPS) type-1 (HPS-1), one had HPS-3, one had HPS-4, and four had non-syndromic oculocutaneous albinism associated with TYR variants (OCA1). Two frameshift variants in HPS1 (c.9delC and c.1477delA), one nonsense in HPS4 (c.416G > A), and one missense variant in TYR (c.1235C > T) were unreported. The child with HPS-4 is the first case with this subtype reported in the Chinese population. Hypopigmentation in patients with HPS was mild compared to that in OCA1 cases, who had severe pigment defects. Bruises, which may be more visible in patients with hypopigmentation, were found in all cases with either HPS or OCA1. Whole mount transmission electron microscopy demonstrated absent platelet dense granules in the HPS cases; up to 1.9 mean dense granules per platelet were found in those with OCA1. Platelet aggregation studies in OCA1 cases were inconclusive. Conclusions Clinical manifestations of oculocutaneous albinism and easy bruisability may be observed in children with HPS or OCA1. Establishing definitive diagnoses in children presenting with these phenotypic features is facilitated by genetic testing. Non-syndromic oculocutaneous albinism and various HPS subtypes, including HPS-4, are found in children of Chinese ancestry.
Collapse
Affiliation(s)
- Bradley Power
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J Introne
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshi Stephen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Undiagnosed Diseases Program, NIH Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.,Undiagnosed Diseases Program, NIH Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.,Undiagnosed Diseases Program, NIH Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.
| |
Collapse
|
11
|
Abstract
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.
Collapse
|
12
|
|
13
|
|
14
|
Neurologic involvement in patients with atypical Chediak-Higashi disease. Neurology 2017; 88:721. [DOI: 10.1212/wnl.0000000000003675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 11/15/2022] Open
|
15
|
Faber IV, Prota JRM, Martinez ARM, Nucci A, Lopes-Cendes I, Júnior MCF. Inflammatory demyelinating neuropathy heralding accelerated chediak-higashi syndrome. Muscle Nerve 2016; 55:756-760. [PMID: 27669550 DOI: 10.1002/mus.25414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2016] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Chediak-Higashi syndrome (CHS) is a very rare autosomal recessive disorder (gene CHS1/LYST) characterized by partial albinism, recurrent infections, and easy bruising. Survivors develop a constellation of slowly progressive neurological manifestations. METHODS We describe clinical, laboratory, electrophysiological, and genetic findings of a patient who developed an immune-mediated demyelinating neuropathy as the main clinical feature of CHS. RESULTS The patient presented with subacute flaccid paraparesis, absent reflexes, and reduced vibration sense. Protein and immunoglobulins (Igs) were elevated in the cerebrospinal fluid. Electrodiagnostic tests indicated an acquired chronic demyelinating polyneuropathy. Intravenous Ig and immunosuppressant treatment resulted in neurological improvement. The patient later developed organomegaly and pancytopenia. Bone-marrow smear revealed giant azurophilic granules pathognomonic for CHS. Two novel mutations in the LYST gene were identified through whole exome sequencing [c.7786C>T and c.9106 + 1G>T]. CONCLUSIONS This case expands the clinical phenotype of CHS and highlights inflammatory demyelinating neuropathy as a manifestation of the disease. Muscle Nerve 55: 756-760, 2017.
Collapse
Affiliation(s)
- Ingrid Vasconcellos Faber
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo,126. Cidade Universitaria "Zeferino Vaz", Campinas, SP, Brazil
| | - Joana Rosa Marques Prota
- Department of Medical Genetics, School of Medical Sciences, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Alberto Rolim Muro Martinez
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo,126. Cidade Universitaria "Zeferino Vaz", Campinas, SP, Brazil
| | - Anamarli Nucci
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo,126. Cidade Universitaria "Zeferino Vaz", Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Marcondes Cavalcante França Júnior
- Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo,126. Cidade Universitaria "Zeferino Vaz", Campinas, SP, Brazil
| |
Collapse
|