1
|
Corridon PR. Still finding ways to augment the existing management of acute and chronic kidney diseases with targeted gene and cell therapies: Opportunities and hurdles. Front Med (Lausanne) 2023; 10:1143028. [PMID: 36960337 PMCID: PMC10028138 DOI: 10.3389/fmed.2023.1143028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The rising global incidence of acute and chronic kidney diseases has increased the demand for renal replacement therapy. This issue, compounded with the limited availability of viable kidneys for transplantation, has propelled the search for alternative strategies to address the growing health and economic burdens associated with these conditions. In the search for such alternatives, significant efforts have been devised to augment the current and primarily supportive management of renal injury with novel regenerative strategies. For example, gene- and cell-based approaches that utilize recombinant peptides/proteins, gene, cell, organoid, and RNAi technologies have shown promising outcomes primarily in experimental models. Supporting research has also been conducted to improve our understanding of the critical aspects that facilitate the development of efficient gene- and cell-based techniques that the complex structure of the kidney has traditionally limited. This manuscript is intended to communicate efforts that have driven the development of such therapies by identifying the vectors and delivery routes needed to drive exogenous transgene incorporation that may support the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Peter R. Corridon,
| |
Collapse
|
2
|
Shang Z, Wang M, Zhang B, Wang X, Wanyan P. Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials. BMC Med 2022; 20:284. [PMID: 36058903 PMCID: PMC9442938 DOI: 10.1186/s12916-022-02482-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How much scientific evidence is there to show that stem cell therapy is sufficient in preclinical and clinical studies of spinal cord injury before it is translated into clinical practice? This is a complicated problem. A single, small-sample clinical trial is difficult to answer, and accurate insights into this question can only be given by systematically evaluating all the existing evidence. METHODS The PubMed, Ovid-Embase, Web of Science, and Cochrane databases were searched from inception to February 10, 2022. Two independent reviewers performed the literature search, identified and screened the studies, and performed a quality assessment and data extraction. RESULTS In total, 62 studies involving 2439 patients were included in the analysis. Of these, 42 were single-arm studies, and 20 were controlled studies. The meta-analysis showed that stem cells improved the ASIA impairment scale score by at least one grade in 48.9% [40.8%, 56.9%] of patients with spinal cord injury. Moreover, the rate of improvement in urinary and gastrointestinal system function was 42.1% [27.6%, 57.2%] and 52.0% [23.6%, 79.8%], respectively. However, 28 types of adverse effects were observed to occur due to stem cells and transplantation procedures. Of these, neuropathic pain, abnormal feeling, muscle spasms, vomiting, and urinary tract infection were the most common, with an incidence of > 20%. While no serious adverse effects such as tumorigenesis were reported, this could be due to the insufficient follow-up period. CONCLUSIONS Overall, the results demonstrated that although the efficacy of stem cell therapy is encouraging, the subsequent adverse effects remain concerning. In addition, the clinical trials had problems such as small sample sizes, poor design, and lack of prospective registration, control, and blinding. Therefore, the current evidence is not sufficiently strong to support the clinical translation of stem cell therapy for spinal cord injury, and several problems remain. Additional well-designed animal experiments and high-quality clinical studies are warranted to address these issues.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Mingchuan Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Pingping Wanyan
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
3
|
Balak N. Lumbar Microdiskectomy. J Neurol Surg A Cent Eur Neurosurg 2021; 82:294-296. [PMID: 33618412 DOI: 10.1055/s-0040-1722749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Naci Balak
- Department of Neurosurgery, Istanbul Medeniyet University, Göztepe Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology 2020; 167:107986. [DOI: 10.1016/j.neuropharm.2020.107986] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
|
5
|
Castilla-Casadiego DA, Reyes-Ramos AM, Domenech M, Almodovar J. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics. Ann Biomed Eng 2020; 48:519-535. [PMID: 31705365 PMCID: PMC6952531 DOI: 10.1007/s10439-019-02400-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
Human adult mesenchymal stem or stromal cells (h-MSC) therapy has gained considerable attention due to the potential to treat or cure diseases given their immunosuppressive properties and tissue regeneration capabilities. Researchers have explored diverse strategies to promote high h-MSC production without losing functional characteristics or properties. Physical stimulus including stiffness, geometry, and topography, chemical stimulus, like varying the surface chemistry, and biochemical stimuli such as cytokines, hormones, small molecules, and herbal extracts have been studied but have yet to be translated to industrial manufacturing practice. In this review, we describe the role of those stimuli on h-MSC manufacturing, and how these stimuli positively promote h-MSC properties, impacting the cell manufacturing field for cell-based therapies. In addition, we discuss other process considerations such as bioreactor design, good manufacturing practice, and the importance of the cell donor and ethics factors for manufacturing potent h-MSC.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Ana M Reyes-Ramos
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| |
Collapse
|
6
|
Krucoff MO, Miller JP, Saxena T, Bellamkonda R, Rahimpour S, Harward SC, Lad SP, Turner DA. Toward Functional Restoration of the Central Nervous System: A Review of Translational Neuroscience Principles. Neurosurgery 2020; 84:30-40. [PMID: 29800461 DOI: 10.1093/neuros/nyy128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Injury to the central nervous system (CNS) can leave patients with devastating neurological deficits that may permanently impair independence and diminish quality of life. Recent insights into how the CNS responds to injury and reacts to critically timed interventions are being translated into clinical applications that have the capacity to drastically improve outcomes for patients suffering from permanent neurological deficits due to spinal cord injury, stroke, or other CNS disorders. The translation of such knowledge into practical and impactful treatments involves the strategic collaboration between neurosurgeons, clinicians, therapists, scientists, and industry. Therefore, a common understanding of key neuroscientific principles is crucial. Conceptually, current approaches to CNS revitalization can be divided by scale into macroscopic (systems-circuitry) and microscopic (cellular-molecular). Here we review both emerging and well-established tenets that are being utilized to enhance CNS recovery on both levels, and we explore the role of neurosurgeons in developing therapies moving forward. Key principles include plasticity-driven functional recovery, cellular signaling mechanisms in axonal sprouting, critical timing for recovery after injury, and mechanisms of action underlying cellular replacement strategies. We then discuss integrative approaches aimed at synergizing interventions across scales, and we make recommendations for the basis of future clinical trial design. Ultimately, we argue that strategic modulation of microscopic cellular behavior within a macroscopic framework of functional circuitry re-establishment should provide the foundation for most neural restoration strategies, and the early involvement of neurosurgeons in the process will be crucial to successful clinical translation.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Jonathan P Miller
- Department of Neurosurgery, Case Western Reserve University, Cleve-land, Ohio
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Ravi Bellamkonda
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Stephen C Harward
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Mechan-ical Engineering and Material Sciences, Pratt School of Engineering, Duke Uni-versity, Durham, North Carolina.,Duke Institute for Brain Sciences, Duke Univer-sity, Durham, North Carolina.,Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina.,Depart-ment of Neurobiology, Duke University, Durham, North Carolina.,Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
7
|
Riva L, Petrini C. A few ethical issues in translational research for gene and cell therapy. J Transl Med 2019; 17:395. [PMID: 31779636 PMCID: PMC6883654 DOI: 10.1186/s12967-019-02154-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although translational research for drug development can provide patients with valuable therapeutic resources it is not without risk, especially in the early-phase trials that present the highest degree of uncertainty. With the extraordinary evolution of biomedical technologies, a growing number of innovative products based on human cells and gene therapy are being tested and used as drugs. Their use on humans poses several challenges. Methods In this work, we discuss some ethical issues related to gene and cell therapies translational research. We focus on early-phase studies analysing the regulatory approach of Europe and the United States. We report the current recommendations and guidelines of international scientific societies and European and American regulatory authorities. Results The peculiarity of human cell- or tissue-based products and gene therapy has required the development of specific regulatory tools that must be continually updated in line with the progress of the research. The ethics of translational research for these products also requires further considerations, particularly with respect to the specificity of the associated risk profiles. Conclusions An integrated ethical approach that aims for transparency and regulation of development processes, the support of independent judgment in clinical trials and the elimination of unregulated and uncontrolled grey areas of action are necessary to move gene and cell therapy forward.
Collapse
Affiliation(s)
- Luciana Riva
- Bioethics Unit, Istituto Superiore di Sanità (Italian National Institute of Health), Via Giano della Bella 34, 00162, Rome, Italy.
| | - Carlo Petrini
- Bioethics Unit, Istituto Superiore di Sanità (Italian National Institute of Health), Via Giano della Bella 34, 00162, Rome, Italy
| |
Collapse
|
8
|
Van Pilsum Rasmussen SE, Seaman S, Brown D, Desai N, Sulkowski M, Segev DL, Durand CM, Sugarman J. Patient's Perspectives of Experimental HCV-Positive to HCV-Negative Renal Transplantation: Report from a Single Site. AJOB Empir Bioeth 2019; 11:40-52. [PMID: 31618112 DOI: 10.1080/23294515.2019.1670277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: With growing transplant wait times, clinical trials are evaluating the safety and efficacy of transplanting HCV-infected donor (HCV+) organs into HCV-noninfected recipients (HCV D+/R-). Such transplants raise ethical questions about safety, consent, and access to organs. Methods: We interviewed eight of the ten total HCV D+/R- transplant recipients enrolled in a pilot clinical trial examining the safety and feasibility of these novel transplants regarding their experiences in the trial, including their decision-making and perceptions of the informed consent process. Results: All interviewees reported positive experiences and expressed confidence regarding their decision to participate. Participants accepted an HCV + organ based on their assessments of the risks and potential benefits of HCV D+/R- transplants. For many, the risks of HCV were minimal compared to the risks of not receiving a transplant. All participants recalled providing informed consent, reporting that the process was thorough and that all their questions were addressed. Participants did not regret receiving an HCV D+/R- transplant and did not report experiencing stigma. However, given their understanding of HCV cure rates in the general population and the survival benefit associated with kidney transplantation, participants may have conflated research regarding HCV D+/R- transplantation with clinical care, suggesting a potential therapeutic misconception. Conclusions: Recipients of experimental HCV D+/R- transplants generally seemed to recognize the risks and benefits of these novel transplants and did not regret participating. Such salutary reported experiences are important in assessing the appropriateness of further research into the feasibility of HCV D+/R- transplants.
Collapse
Affiliation(s)
| | - Shanti Seaman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Diane Brown
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Niraj Desai
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Sulkowski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dorry L Segev
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Sugarman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Berman Institute of Bioethics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Goutman SA, Savelieff MG, Sakowski SA, Feldman EL. Stem cell treatments for amyotrophic lateral sclerosis: a critical overview of early phase trials. Expert Opin Investig Drugs 2019; 28:525-543. [PMID: 31189354 DOI: 10.1080/13543784.2019.1627324] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of cortical, brainstem, and spinal motor neurons; it causes progressive muscle weakness and atrophy, respiratory failure, and death. No currently available treatment either stops or reverses this disease. Therapeutics to slow, stop, and reverse ALS are needed. Stem cells may be a viable solution to sustain and nurture diseased motor neurons. Several early-stage clinical trials have been launched to assess the potential of stem cells for ALS treatment. Areas covered: Expert opinion: AREAS COVERED This review covers the key advances from early phase clinical trials of stem cell therapy for ALS and identifies promising avenues and key challenges. EXPERT OPINION Clinical trials in humans are still in the nascent stages of development. It will be critical to ensure that powered, well-controlled trials are conducted, that optimal treatment windows are identified, and that the ideal cell type, cell dose, and delivery site and method are determined. Several trials have used more invasive procedures, and ethical concerns of sham procedures on patients in the control arm and on their safety should be considered.
Collapse
Affiliation(s)
- Stephen A Goutman
- a Department of Neurology , University of Michigan , Ann Arbor , MI , USA.,b Program for Neurology Research & Discovery , University of Michigan , Ann Arbor , MI , USA
| | - Masha G Savelieff
- a Department of Neurology , University of Michigan , Ann Arbor , MI , USA.,b Program for Neurology Research & Discovery , University of Michigan , Ann Arbor , MI , USA
| | - Stacey A Sakowski
- a Department of Neurology , University of Michigan , Ann Arbor , MI , USA.,b Program for Neurology Research & Discovery , University of Michigan , Ann Arbor , MI , USA
| | - Eva L Feldman
- a Department of Neurology , University of Michigan , Ann Arbor , MI , USA.,b Program for Neurology Research & Discovery , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
10
|
Mazzini L, Ferrari D, Andjus PR, Buzanska L, Cantello R, De Marchi F, Gelati M, Giniatullin R, Glover JC, Grilli M, Kozlova EN, Maioli M, Mitrečić D, Pivoriunas A, Sanchez-Pernaute R, Sarnowska A, Vescovi AL. Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2019; 18:865-881. [PMID: 30025485 DOI: 10.1080/14712598.2018.1503248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a progressive, incurable neurodegenerative disease that targets motoneurons. Cell-based therapies have generated widespread interest as a potential therapeutic approach but no conclusive results have yet been reported either from pre-clinical or clinical studies. AREAS COVERED This is an integrated review of pre-clinical and clinical studies focused on the development of cell-based therapies for ALS. We analyze the biology of stem cell treatments and results obtained from pre-clinical models of ALS and examine the methods and the results obtained to date from clinical trials. We discuss scientific, clinical, and ethical issues and propose some directions for future studies. EXPERT OPINION While data from individual studies are encouraging, stem-cell-based therapies do not yet represent a satisfactory, reliable clinical option. The field will critically benefit from the introduction of well-designed, randomized and reproducible, powered clinical trials. Comparative studies addressing key issues such as the nature, properties, and number of donor cells, the delivery mode and the selection of proper patient populations that may benefit the most from cell-based therapies are now of the essence. Multidisciplinary networks of experts should be established to empower effective translation of research into the clinic.
Collapse
Affiliation(s)
- Letizia Mazzini
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Daniela Ferrari
- b Department of Biotechnology and Biosciences , University Milano Bicocca , Milano , Italy
| | - Pavle R Andjus
- c Center for laser microscopy, Faculty of Biology , University of Belgrade , Belgrade , Serbia
| | - Leonora Buzanska
- d Stem Cell Bioengineering Unit , Mossakowski Medical Research Center, Polish Academy of Sciences , Warsaw , Poland
| | - Roberto Cantello
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Fabiola De Marchi
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Maurizio Gelati
- e Scientific Direction , IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo , Foggia , Italy.,f Cell Factory e biobanca, Fondazione Cellule Staminali , Terni , Italy
| | - Rashid Giniatullin
- g A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Neulaniementie 2, Kuopio , FINLAND
| | - Joel C Glover
- h Department of Molecular Medicine , Institute of Basic Medical Sciences, University of Oslo and Norwegian Center for Stem Cell Research, Oslo University Hospital , Oslo , Norway
| | - Mariagrazia Grilli
- i Department Pharmaceutical Sciences , Laboratory of Neuroplasticity, University of Piemonte Orientale , Novara , Italy
| | - Elena N Kozlova
- j Department of Neuroscience , Uppsala University Biomedical Centre , Uppsala , Sweden
| | - Margherita Maioli
- k Department of Biomedical Sciences and Center for Developmental Biology and Reprogramming (CEDEBIOR) , University of Sassari, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR) , Sassari , Italy
| | - Dinko Mitrečić
- l Laboratory for Stem Cells, Croatian Institute for Brain Research , University of Zagreb School of Medicine , Zagreb , Croatia
| | - Augustas Pivoriunas
- m Department of Stem Cell Biology , State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| | - Rosario Sanchez-Pernaute
- n Preclinical Research , Andalusian Initiative for Advanced Therapies, Andalusian Health Ministry , Sevilla , Spain
| | - Anna Sarnowska
- d Stem Cell Bioengineering Unit , Mossakowski Medical Research Center, Polish Academy of Sciences , Warsaw , Poland
| | - Angelo L Vescovi
- b Department of Biotechnology and Biosciences , University Milano Bicocca , Milano , Italy.,f Cell Factory e biobanca, Fondazione Cellule Staminali , Terni , Italy
| | | |
Collapse
|
11
|
Warner FM, Cragg JJ, Jutzeler CR, Finnerup NB, Werhagen L, Weidner N, Maier D, Kalke YB, Curt A, Kramer JLK. Progression of Neuropathic Pain after Acute Spinal Cord Injury: A Meta-Analysis and Framework for Clinical Trials. J Neurotrauma 2018; 36:1461-1468. [PMID: 30417730 DOI: 10.1089/neu.2018.5960] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The translation of therapeutic interventions to humans with spinal cord injury with the goal of promoting growth and repair in the central nervous system could, inadvertently, drive mechanisms associated with the development of neuropathic pain. A framework is needed to evaluate the probability that a therapeutic intervention for acute spinal cord injury modifies the progression of neuropathic pain. We analyzed a large, longitudinal dataset from the European Multi-Center Study about Spinal Cord Injury (EMSCI) and compared these observations with a previously published Swedish/Danish cohort. A meta-analysis was performed to produce aggregate estimates for the transition period between 1-6 months and the transition period between 1-12 months after injury. A secondary analysis used logistic regression to explore associations between the progression of neuropathic pain and demographics, pain characteristics, and injury characteristics. For overall neuropathic pain, 72% presenting with pain symptoms at one month reported persisting symptoms at six months, and 23% who did not have neuropathic pain at one month later had it develop. From 1-12 months, there was a similar likelihood of pain persisting (69%) and slightly higher rate of pain developing (36%). Characteristics that were significantly associated with the progression of pain included age and sensory and motor preservation. We provide historical benchmarks for estimating the progression of neuropathic pain during the first year after acute SCI. This information will be useful for comparison and evaluating safety during early phase acute spinal cord injury trials.
Collapse
Affiliation(s)
- Freda M Warner
- 1 International Collaboration on Repair Discoveries (ICORD), and University of British Columbia, Vancouver, British Columbia, Canada.,2 School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacquelyn J Cragg
- 1 International Collaboration on Repair Discoveries (ICORD), and University of British Columbia, Vancouver, British Columbia, Canada.,3 Spinal Cord Injury Center University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Catherine R Jutzeler
- 1 International Collaboration on Repair Discoveries (ICORD), and University of British Columbia, Vancouver, British Columbia, Canada.,2 School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nanna B Finnerup
- 5 Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Werhagen
- 6 Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institut at Danderyds Hospital, Stockholm, Sweden
| | - Norbert Weidner
- 7 Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Doris Maier
- 8 Berufsgenossenschaftliche Klinik, Murnau, Germany
| | | | - Armin Curt
- 3 Spinal Cord Injury Center University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,4 European Multi-Centre Study on Spinal Cord Injury (EMSCI) Study Group
| | - John L K Kramer
- 1 International Collaboration on Repair Discoveries (ICORD), and University of British Columbia, Vancouver, British Columbia, Canada.,2 School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Bang OY. Stem cell therapy for stroke: lessons learned from recent successful randomized trials of
interventional therapy for stroke. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
13
|
Benjaminy S, Schepmyer A, Illes J, Traboulsee A. Resilience, trust, and civic engagement in the post-CCSVI era. BMC Health Serv Res 2018; 18:366. [PMID: 29769084 PMCID: PMC5956844 DOI: 10.1186/s12913-018-3130-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Background Scientific and financial investments in chronic cerebrospinal venous insufficiency (CCSVI) research have been made to address both the hope for and scepticism over this interventional strategy for MS. Despite limited evidence in support of the CCSVI hypothesis, the funding of clinical research was responsive to a demand by the public rarely seen in the history of medicine. We characterize patient perspectives about the CCSVI research trajectory, with particular attention to its impact on other non-pharmaceutical areas of MS research with a focus on stem cell interventions. Methods Semi-structured interviews with 20 MS patients across Canada who did not have CCSVI interventions. Interviews were analysed for recurring themes and individual variations using the constant comparative approach. Results Participants had a critical view of the divestment of funds from longstanding research to support CCSVI trials. They retain a sense of optimism, however, about emerging evidence for stem cell interventions for MS, and highlight the need for greater caution and conscientious communication of advances in medicine and science. Conclusions The unrealized hopes for CCSVI challenged but did not undermine the resilience of patient communities. The narrative that unfolded highlights the importance of drawing a socially-minded space for public participation in science.
Collapse
Affiliation(s)
- Shelly Benjaminy
- Neuroethics Canada, University of British Columbia, Vancouver, Canada.,Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Illinois, Canada.,Current: Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Andrew Schepmyer
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Illinois, Canada
| | - Judy Illes
- Neuroethics Canada, University of British Columbia, Vancouver, Canada.
| | - Anthony Traboulsee
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, Illinois, Canada.
| |
Collapse
|
14
|
Lee TE, Kim A, Jang M, Jeon B. Underregistration and Underreporting of Stem Cell Clinical Trials in Neurological Disorders. J Clin Neurol 2018; 14:215-224. [PMID: 29629526 PMCID: PMC5897206 DOI: 10.3988/jcn.2018.14.2.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Research on stem cells (SC) is growing rapidly in neurology, but clinical applications of SC for neurological disorders remain to be proven effective and safe. Human clinical trials need to be registered in registries in order to reduce publication bias and selective reporting. Methods We searched three databases—clinicaltrials.gov, the Clinical Research Information System (CRIS), and PubMed—for neurologically relevant SC-based human trials and articles in Korea. The registration of trials, posting and publication of results, and registration of published SC articles were examined. Results There were 17 completed trials registered at clinicaltrials.gov and the CRIS website, with results articles having been published for 5 of them. Our study found 16 publications, of which 1 was a review article, 1 was a protocol article, and 8 contained registered trial information. Conclusions Many registered SC trials related to neurological disorders are not reported, while many SC-related publications are not registered in a public registry. These results support the presence of biased reporting and publication bias in SC trials related to neurological disorders in Korea.
Collapse
Affiliation(s)
- Timothy E Lee
- University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Aryun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Mihee Jang
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Departments of Neurology and Movement Disorder Center, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Jantzie LL, Scafidi J, Robinson S. Stem cells and cell-based therapies for cerebral palsy: a call for rigor. Pediatr Res 2018; 83:345-355. [PMID: 28922350 DOI: 10.1038/pr.2017.233] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Cell-based therapies hold significant promise for infants at risk for cerebral palsy (CP) from perinatal brain injury (PBI). PBI leading to CP results from multifaceted damage to neural cells. Complex developing neural networks are injured by neural cell damage plus unique perturbations in cell signaling. Given that cell-based therapies can simultaneously repair multiple injured neural components during critical neurodevelopmental windows, these interventions potentially offer efficacy for patients with CP. Currently, the use of cell-based interventions in infants at risk for CP is limited by critical gaps in knowledge. In this review, we will highlight key questions facing the field, including: Who are optimal candidates for treatment? What are the goals of therapeutic interventions? What are the best strategies for agent delivery, including timing, dosage, location, and type? And, how are short- and long-term efficacy reliably tracked? Challenges unique to treating PBI with cell-based therapies, and lessons learned from cell-based therapies in closely related neurological disorders in the mature central nervous system, will be reviewed. Our goal is to update pediatric specialists who may be counseling families about the current state of the field. Finally, we will evaluate how rigor can be increased in the field to ensure the safety and best interests of this vulnerable patient population.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Departments of Pediatrics and Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Joseph Scafidi
- Department of Neurology, Children's National Health System, Washington, DC
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
16
|
Mammillothalamic and Mammillotegmental Tracts as New Targets for Dementia and Epilepsy Treatment. World Neurosurg 2017; 110:133-144. [PMID: 29129763 DOI: 10.1016/j.wneu.2017.10.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Recently, neuromodulation through deep brain stimulation (DBS) has appeared as a new surgical procedure in the treatment of some types of dementia and epilepsy. The mammillothalamic and mammillotegmental tracts are involved among the new targets. To our knowledge, a review article focused specifically on these mammillary body efferents is lacking in the medical literature. Their contribution to memory is, regrettably, often overlooked. METHODS A review of the relevant literature was conducted. RESULTS There is evidence that mammillary bodies can contribute to memory independently from hippocampal formation, but the mechanism is not yet known. Recent studies in animals have provided evidence for the specific roles of these mammillary body efferents in regulating memory independently. In animal studies, it has been shown that the disruption of the mammillothalamic tract inhibits seizures and that electrical stimulation of the mammillary body or mammillothalamic tract raises the seizure threshold. In humans, DBS targeting the mammillary body through the mammillothalamic tract or the stimulation of the anterior thalamic nucleus, especially in the areas closely related to the mammillothalamic tract, has been found effective in patients with medically refractory epilepsy. Nonetheless, little knowledge exists on the functional anatomy of the mammillary body efferents, and their role in the exact mechanism of epileptogenic activity and in the memory function of the human brain. CONCLUSIONS A comprehensive knowledge of the white matter anatomy of the mammillothalamic and mammillotegmental tracts is crucial since they have emerged as new DBS targets in the treatment of various disorders including dementia and epilepsy.
Collapse
|
17
|
Stem Cell Research and Clinical Translation: A Roadmap about Good Clinical Practice and Patient Care. Stem Cells Int 2017; 2017:5080259. [PMID: 29090010 PMCID: PMC5635281 DOI: 10.1155/2017/5080259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/27/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
The latest research achievements in the field of stem cells led in 2016 to the publication of “Guidelines for Stem Cell Research and Clinical Translation” by the International Society for Stem Cell Research (ISSCR). Updating the topics covered in previous publications, the new recommendations offer interesting ethical and scientific insights. Under the common principles of research integrity, protection of patient's welfare, respect for the research subjects, transparency and social justice, the centrality of good clinical practice, and informed consent in research and translational medicine is supported. The guidelines implement the abovementioned publications, requiring rigor in all areas of research, promoting the validity of the scientific activity results and emphasizing the need for an accurate and efficient public communication. This paper aims to analyze the aforementioned guidelines in order to provide a valid interpretive tool for experts. In particular, a research activity focused on the bioethical, scientific, and social implications of the new recommendations is carried out in order to provide food for thought. Finally, as an emerging issue of potential impact of current guidelines, an overview on implications of compensation for egg donation is offered.
Collapse
|