1
|
Wang D, Sun Z, Li Y. Horizontal analysis and longitudinal cohort study of chronic renal failure correlates and cerebral small vessel disease relationship using peak width of skeletonized mean diffusivity. Front Neurol 2024; 15:1461258. [PMID: 39318874 PMCID: PMC11421033 DOI: 10.3389/fneur.2024.1461258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Background and purpose Peak width of skeletonized mean diffusivity (PSMD) is an MRI-based biomarker that may reflect white matter lesions (WML). PSMD is based on skeletonization of MR DTI data and histogram analysis. Both chronic renal failure (CRF) and WML may be affected by multisystemic small-vessel disorder. We aimed to explore the relationship between PSMD and estimated glomerular filtration rate (eGFR). Methods Fifty followed-up CRF patients matched for age, sex, hypertension and smoking status were enrolled and classified into a progressive group (n = 16) and stable group (n = 34) based on eGFR levels. Longitudinal and horizontal differences of PSMD were compared between the progressive and stable groups at the initial and follow-up time points. Pearson's correlation was used for correlation of eGFR with PSMD and WML (per Fazekas scale score). ROC was used to measure the sensitivity of PSMD and WML score to changes of eGFR. Results At the follow-up time point, PSMD of the progressive group was significantly higher than at the initial time point (p < 0.001), and PSMD of the progressive group was significantly higher than stable group (p < 0.001). PSMD and eGFR were significantly correlated. AUC curves explored that ΔPSMD (PSMD changes at the follow-up and initial time points) and follow-up PSMD was better for the classification of progressive and stable groups. Conclusion PSMD has significant correlation with eGFR, PSMD can reveal a close relationship between WML and CRF.
Collapse
Affiliation(s)
| | | | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen P, Liu T, Wei Y, Ma Z, Lu T, Lan S, Xie J, Mo S. Associations between semi-quantitative evaluation of intracranial arterial calcification and total cerebral small vessel disease burden score: a retrospective case-control study. Front Neurol 2024; 15:1417186. [PMID: 39144704 PMCID: PMC11322091 DOI: 10.3389/fneur.2024.1417186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background and purpose Arteriosclerotic cerebral small vessel disease (aCSVD) is a cause of cognitive impairment, dementia, and stroke. Developing a better understanding of the risk factor of aCSVD is key to reducing the incidence of these conditions. This study investigated the association between intracranial arterial calcification (IAC) and total cerebral small vessel disease (CSVD) burden score. Materials and methods This is a retrospective study, the subjects were transient ischemic attack (TIA) or acute ischemic stroke (AIS) patients. The data of 303 inpatients admitted to our study hospital between December 2018 and July 2020 were analyzed. Four imaging markers of CSVD (lacunes, white matter hyperintensities, cerebral microbleeds, and enlarged perivascular spaces) were evaluated by magnetic resonance imaging, and a total CSVD burden score was calculated. The experimental group was divided into four subgroups according to total CSVD burden score (1-4 points). Patients without CSVD (0 points) served as the control group. Head computerized tomography (CT) scans were used to assess ICA, using Babiarz's method. The correlations between IAC and single imaging markers of CSVD were determined using Spearman's rank correlation. Binary logic regression analysis and multivariate ordered logic regression analysis were used to determine the associations between IAC and aCSVD. Results IAC was positively correlated with total CSVD burden score (r = 0.681), deep white matter hyperintensities (r = 0.539), periventricular white matter hyperintensities (r = 0.570), cerebral microbleeds (r = 0.479), lacunes (r = 0.541), and enlarged perivascular spaces (r = 0.554) (all p < 0.001). After adjusting for the confounding factors of age, diabetes, and hypertension, aCSVD was independently associated with IAC grade 1-2 [odds ratio (OR) = 23.747, 95% confidence interval (CI) = 8.376-67.327] and IAC grade 3-4 (OR = 30.166, 95% CI = 8.295-109.701). aCSVD severity was independently associated with IAC grade 3-4 (OR = 4.697, 95% CI = 1.349-16.346). Conclusion IAC is associated with the total CSVD burden score and single imaging signs.
Collapse
Affiliation(s)
- Peng Chen
- Department of Radiology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Tiejun Liu
- Department of Radiology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Yin Wei
- Department of Radiology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Zhen Ma
- Department of Ultrasound, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Tao Lu
- Department of Radiology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Suxi Lan
- Department of Radiology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Jinling Xie
- Department of Radiology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Shen Mo
- Department of Radiology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| |
Collapse
|
3
|
Zhao J, Wang X, Li Q, Lu C, Li S. The relevance of serum macrophage migratory inhibitory factor and cognitive dysfunction in patients with cerebral small vascular disease. Front Aging Neurosci 2023; 15:1083818. [PMID: 36824264 PMCID: PMC9941340 DOI: 10.3389/fnagi.2023.1083818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Cerebral small vascular disease (CSVD) is a common type of cerebrovascular disease, and an important cause of vascular cognitive impairment (VCI) and stroke. The disease burden is expected to increase further as a result of population aging, an ongoing high prevalence of risk factors (e.g., hypertension), and inadequate management. Due to the poor understanding of pathophysiology in CSVD, there is no effective preventive or therapeutic approach for CSVD. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that is related to the occurrence and development of vascular dysfunction diseases. Therefore, MIF may contribute to the pathogenesis of CSVD and VCI. Here, reviewed MIF participation in chronic cerebral ischemia-hypoperfusion and neurodegeneration pathology, including new evidence for CSVD, and its potential role in protection against VCI.
Collapse
Affiliation(s)
- Jianhua Zhao
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China,*Correspondence: Jianhua Zhao,
| | - Xiaoting Wang
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qiong Li
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Yao T, Song G, Li Y, Wang D. Chronic kidney disease correlates with MRI findings of cerebral small vessel disease. Ren Fail 2021; 43:255-263. [PMID: 33478332 PMCID: PMC7833022 DOI: 10.1080/0886022x.2021.1873804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective: Cerebral small vessel disease (CSVD) and chronic kidney disease (CKD) may be part of a multisystem small-vessel disorder. Since the kidney and brain share unique susceptibilities to vascular injury, kidney impairment may be predictive of the presence and severity of CSVD. This study explored the relationship between CSVD and CKD. Methods: Between December 2015 and December 2017 (follow-up 10–20 months) 52 patients with chronic nephritis and CKD were classified into a progressive group (n = 17) and stable group (n = 35). Age, gender, hypertension, diabetes and smoking were matched between groups. CSVD features of both groups, including enlarged Virchow-Robin spaces (VRS), white matter lesions (WML), lacunar infarcts (LI), and cerebral microbleeds (CMB) were evaluated by magnetic resonance (MR) imaging. Results: WML and CMB in the progressive group were exacerbated at follow-up compared to initial exam (p = 0.004 and 0.041, respectively). There was no significant change in VRS, WML, LI, or CMB in the stable group at follow-up compared to initial exam. CMB were significantly different between the progressive group and stable group at follow-up.etimtaed Glomerular filtration rate (eGFR) was significantly correlated with VRS, WML, and CMB at follow-up (p = 0.037, 0.041, and 0.009, respectively). Conclusions: Patients with progressive CKD have a higher prevalence and severity of CSVD, which correlates with deterioration of renal function as assessed by decreased eGFR. Thus EGFR may also be of value in the prediction of cerebral small vessel disease.
Collapse
Affiliation(s)
- Tingting Yao
- Institute of Diagnostic and Interventional Radiology, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guoping Song
- Institute of Diagnostic and Interventional Radiology, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Wang
- Institute of Diagnostic and Interventional Radiology, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Wang X, Yin H, Ji X, Sang S, Shao S, Wang G, Lv M, Xue F, Du Y, Sun Q. Association between homocysteine and white matter hyperintensities in rural-dwelling Chinese people with asymptomatic intracranial arterial stenosis: A population-based study. Brain Behav 2021; 11:e02205. [PMID: 34032023 PMCID: PMC8323025 DOI: 10.1002/brb3.2205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Although homocysteine (Hcy) has been proven to be associated with the incidence of white matter hyperintensities (WMH) in patients with stroke, this association remains unclear in participants with asymptomatic intracranial arterial stenosis (aICAS). This study aimed to investigate the association of Hcy with WMH in participants with aICAS. MATERIALS AND METHODS This was a cross-sectional study based on the Kongcun Town Study. Participants diagnosed with aICAS by magnetic resonance angiography in the Kongcun Town Study were enrolled in this study. Data on demographics, lifestyle, medical histories, and Hcy levels were collected via interviews, clinical examinations, and laboratory tests. The volume of WMH was calculated using the lesion segmentation tool system for the Statistical Parametric Mapping package based on magnetic resonance imaging. The association between Hcy and WMH volume was analyzed using linear and logistic regression analyses. RESULTS A total of 137 aICAS participants were enrolled in the present study. Hcy was associated with the incidence of severe WMH (4th quartile, ≥4.20 ml) after adjustment for certain covariates [Hcy as a continuous variable, odds ratio (95% confidence interval) (OR (95% CI)): 1.09 (1.00, 1.19), p = .047; as a categorical variable (Hcy ≥15 μmol/L), OR (95% CI): 3.74 (1.37, 10.19), p = .010)]. After stratification according to the degree of aICAS, this relationship remained significant only in the moderate-to-severe stenosis group (stenosis ≥50%). (Hcy as continuous variable, OR (95% CI): 1.14 (1.02, 1.27), p = .025; as a categorical variable (Hcy ≥15 μmol/L), OR (95% CI): 5.59 (1.40, 15.25), p = .015). CONCLUSION Serum Hcy concentration may be positively associated with the volume of WMH in rural-dwelling Chinese people with moderate-to-severe (stenosis ≥50%) aICAS.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hao Yin
- Department of Neurology, Jining No.1 People's Hospital, Jining, China
| | - Xiaokang Ji
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Shaowei Sang
- Department of Clinical Epidemiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sai Shao
- Department of Radiology, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangbin Wang
- Department of Radiology, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Lv
- Department of Clinical Epidemiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinjian Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, Machado C, Santo G, Silva F, Ferreira L, Santana I, Sargento-Freitas J. Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front Neurol 2020; 11:594672. [PMID: 33362697 PMCID: PMC7756029 DOI: 10.3389/fneur.2020.594672] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) is a dynamic interface responsible for maintaining the central nervous system homeostasis. Its unique characteristics allow protecting the brain from unwanted compounds, but its impairment is involved in a vast number of pathological conditions. Disruption of the BBB and increase in its permeability are key in the development of several neurological diseases and have been extensively studied in stroke. Ischemic stroke is the most prevalent type of stroke and is characterized by a myriad of pathological events triggered by an arterial occlusion that can eventually lead to fatal outcomes such as hemorrhagic transformation (HT). BBB permeability seems to follow a multiphasic pattern throughout the different stroke stages that have been associated with distinct biological substrates. In the hyperacute stage, sudden hypoxia damages the BBB, leading to cytotoxic edema and increased permeability; in the acute stage, the neuroinflammatory response aggravates the BBB injury, leading to higher permeability and a consequent risk of HT that can be motivated by reperfusion therapy; in the subacute stage (1-3 weeks), repair mechanisms take place, especially neoangiogenesis. Immature vessels show leaky BBB, but this permeability has been associated with improved clinical recovery. In the chronic stage (>6 weeks), an increase of BBB restoration factors leads the barrier to start decreasing its permeability. Nonetheless, permeability will persist to some degree several weeks after injury. Understanding the mechanisms behind BBB dysregulation and HT pathophysiology could potentially help guide acute stroke care decisions and the development of new therapeutic targets; however, effective translation into clinical practice is still lacking. In this review, we will address the different pathological and physiological repair mechanisms involved in BBB permeability through the different stages of ischemic stroke and their role in the development of HT and stroke recovery.
Collapse
Affiliation(s)
| | - João André Sousa
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Brás
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Carla Cecília
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Bruno Rodrigues
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Luciano Almendra
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Cristina Machado
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Gustavo Santo
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fernando Silva
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Oxidative Stress-Mediated Blood-Brain Barrier (BBB) Disruption in Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/4356386] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB), as a crucial gate of brain-blood molecular exchange, is involved in the pathogenesis of multiple neurological diseases. Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the scavenger system. Since oxidative stress plays a significant role in the production and maintenance of the BBB, the cerebrovascular system is especially vulnerable to it. The pathways that initiate BBB dysfunction include, but are not limited to, mitochondrial dysfunction, excitotoxicity, iron metabolism, cytokines, pyroptosis, and necroptosis, all converging on the generation of ROS. Interestingly, ROS also provide common triggers that directly regulate BBB damage, parameters including tight junction (TJ) modifications, transporters, matrix metalloproteinase (MMP) activation, inflammatory responses, and autophagy. We will discuss the role of oxidative stress-mediated BBB disruption in neurological diseases, such as hemorrhagic stroke, ischemic stroke (IS), Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and cerebral small vessel disease (CSVD). This review will also discuss the latest clinical evidence of potential biomarkers and antioxidant drugs towards oxidative stress in neurological diseases. A deeper understanding of how oxidative stress damages BBB may open up more therapeutic options for the treatment of neurological diseases.
Collapse
|
8
|
Zhao H, Zheng T, Yang X, Fan M, Zhu L, Liu S, Wu L, Sun C. Cryptotanshinone Attenuates Oxygen-Glucose Deprivation/ Recovery-Induced Injury in an in vitro Model of Neurovascular Unit. Front Neurol 2019; 10:381. [PMID: 31057477 PMCID: PMC6482155 DOI: 10.3389/fneur.2019.00381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Cryptotanshinone (CTs), an active component isolated from the root of Salvia miltiorrhiza (SM), has been shown to exert potent neuroprotective property. We here established an oxygen-glucose deprivation/recovery (OGD/R)-injured Neurovascular Unit (NVU) model in vitro to observe the neuroprotective effects of CTs on cerebral ischemia/reperfusion injury (CIRI), and explore the underlying mechanisms. CTs was observed to significantly inhibit the OGD/R-induced neuronal apoptosis, and decease the activation of Caspase-3 and the degradation of poly-ADP-ribose polymerase (PARP), as well as the increase of Bax/Bcl-2 ratio in neurons under OGD/R condition. The inhibitory effects of CTs on neuron apoptosis were associated with the blocking of mitogen-activated protein kinase (MAPK) signaling pathway. CTs also remarkably ameliorated OGD/R-induced reduction of transepithelial electrical resistance (TEER) values and the increase of transendothelial permeability coefficient (Pe) of sodium fluorescein (SF) by upregulating the expression of ZO-1, Claudin-5, and Occludin in brain microvascular endothelial cells (BMECs), which might be related to the down-regulation of matrix metalloproteinase (MMP)-9 expression. Based on these findings, CTs may play a neuroprotective role in OGD/R injure in NVU models in vitro by inhibiting cell apoptosis and alleviating the damage of blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Hongye Zhao
- Department of Physiology and Key Laboratory of Brain Diseases of Liaoning Province, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Physiology, School of Basic Medical Sciences, Qiqihar Medical University, Qiqihar, China
| | - Tiezheng Zheng
- Department of Physiology and Key Laboratory of Brain Diseases of Liaoning Province, School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaohan Yang
- Department of Physiology and Key Laboratory of Brain Diseases of Liaoning Province, School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Shuhong Liu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Liying Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Changkai Sun
- Department of Physiology and Key Laboratory of Brain Diseases of Liaoning Province, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering & Research Center for the Control Engineering of Translational Precision Medicine, Dalian University of Technology, Dalian, China
| |
Collapse
|
9
|
The global burden of cerebral small vessel disease related to neurological deficit severity and clinical outcomes of acute ischemic stroke after IV rt-PA treatment. Neurol Sci 2019; 40:1157-1166. [DOI: 10.1007/s10072-019-03790-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/22/2019] [Indexed: 12/18/2022]
|
10
|
Yang Z, Huang C, Wu Y, Chen B, Zhang W, Zhang J. Autophagy Protects the Blood-Brain Barrier Through Regulating the Dynamic of Claudin-5 in Short-Term Starvation. Front Physiol 2019; 10:2. [PMID: 30713499 PMCID: PMC6345697 DOI: 10.3389/fphys.2019.00002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/07/2019] [Indexed: 01/14/2023] Open
Abstract
The blood-brain barrier (BBB) is essential for the exchange of nutrient and ions to maintain the homeostasis of central nervous system (CNS). BBB dysfunction is commonly associated with the disruption of endothelial tight junctions and excess permeability, which results in various CNS diseases. Therefore, maintaining the structural integrity and proper function of the BBB is essential for the homeostasis and physiological function of the CNS. Here, we showed that serum starvation disrupted the function of endothelial barrier as evidenced by decreased trans-endothelial electrical resistance, increased permeability, and redistribution of tight junction proteins such as Claudin-5 (Cldn5). Further analyses revealed that autophagy was activated and protected the integrity of endothelial barrier by scavenging ROS and inhibiting the redistribution of Cldn5 under starvation, as evidenced by accumulation of autophagic vacuoles and increased expression of LC3II/I, ATG5 and LAMP1. In addition, autophagosome was observed to package and eliminate the aggregated Cldn5 in cytosol as detected by immunoelectron microscopy (IEM) and stimulated emission depletion (STED) microscope. Moreover, Akt-mTOR-p70S6K pathway was found to be involved in the protective autophagy induced by starvation. Our data demonstrated that autophagy played an essential role in maintaining the integrity of endothelial barrier by regulating the localization of Cldn5 under starvation.
Collapse
Affiliation(s)
- Zhenguo Yang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunnian Huang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongfu Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bing Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenqing Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Peng X, Zhao J, Liu J, Li S. Advances in biomarkers of cerebral small vessel disease. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebral small vessel disease (CSVD) refers to a type of syndrome caused by lesions in perforating arteries, small veins, small arteries, or capillaries, resulting in clinical, imaging, or pathological alterations. The occurrence and development of CSVD are related to various cerebrovascular risk factors, such as metabolism and genetic factors. CSVD is diagnosed based on brain imaging biomarkers; however, biomarkers capable of predicting and diagnosing CSVD early in its progression have not been found. Exploring biomarkers closely related to disease progression is of great significance for early diagnosis, prognosis, prevention, and treatment of CSVD. This article examines the research progress of CSVD biomarkers, from inflammatory biomarkers, coagulation and fibrinolysis markers, biomarkers of endothelial dysfunction, biomarkers related to cerebrospinal fluid, and gene markers.
Collapse
|
12
|
Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab 2018; 38:2129-2149. [PMID: 30198826 PMCID: PMC6282213 DOI: 10.1177/0271678x18800589] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comorbidities are a hallmark of stroke that both increase the incidence of stroke and worsen outcome. Hypertension is prevalent in the stroke population and the most important modifiable risk factor for stroke. Hypertensive disorders promote stroke through increased shear stress, endothelial dysfunction, and large artery stiffness that transmits pulsatile flow to the cerebral microcirculation. Hypertension also promotes cerebral small vessel disease through several mechanisms, including hypoperfusion, diminished autoregulatory capacity and localized increase in blood-brain barrier permeability. Preeclampsia, a hypertensive disorder of pregnancy, also increases the risk of stroke 4-5-fold compared to normal pregnancy that predisposes women to early-onset cognitive impairment. In this review, we highlight how comorbidities and concomitant disorders are not only risk factors for ischemic stroke, but alter the response to acute ischemia. We focus on hypertension as a comorbidity and its effects on the cerebral circulation that alters the pathophysiology of ischemic stroke and should be considered in guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- 1 Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - David S Liebeskind
- 2 Neurovascular Imaging Research Core and Stroke Center, Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Siu-Lung Chan
- 1 Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
13
|
Freeze WM, Jacobs HIL, Schreuder FHBM, van Oostenbrugge RJ, Backes WH, Verhey FR, Klijn CJM. Blood-Brain Barrier Dysfunction in Small Vessel Disease Related Intracerebral Hemorrhage. Front Neurol 2018; 9:926. [PMID: 30483207 PMCID: PMC6240684 DOI: 10.3389/fneur.2018.00926] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/12/2018] [Indexed: 02/03/2023] Open
Abstract
Background and Purpose: Hypertensive vasculopathy and cerebral amyloid angiopathy are the two most common forms of cerebral small vessel disease. Both forms are associated with the development of primary intracerebral hemorrhage, but the pathophysiological mechanisms underlying spontaneous vessel rupture remain unknown. This work constitutes a systematic review on blood-brain barrier dysfunction in the etiology of spontaneous intracerebral hemorrhage due to cerebral small vessel disease. Methods: We searched Medline (1946–2018) and Embase (1974–2018) for animal and human studies reporting on blood-brain barrier dysfunction associated with intracerebral hemorrhage or cerebral microbleeds. Results: Of 26 eligible studies, 10 were animal studies and 16 were in humans. The authors found indications for blood-brain barrier dysfunction in all four animal studies addressing hypertensive vasculopathy-related intracerebral hemorrhage (n = 32 hypertensive animals included in all four studies combined), and in four of six studies on cerebral amyloid angiopathy-related intracerebral hemorrhage (n = 47). Of the studies in humans, five of six studies in patients with cerebral amyloid angiopathy-related intracerebral hemorrhage (n = 117) and seven out of nine studies examining intracerebral hemorrhage with mixed or unspecified underlying etiology (n = 489) found indications for blood-brain barrier dysfunction. One post-mortem study in hypertensive vasculopathy-related intracerebral hemorrhage (n = 82) found no evidence for blood-brain barrier abnormalities. Conclusions: Signs of blood-brain barrier dysfunction were found in 20 out of 26 studies. Blood-brain barrier integrity deserves further investigation with a view to identification of potential treatment targets for spontaneous intracerebral hemorrhage.
Collapse
Affiliation(s)
- Whitney M Freeze
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health & Neuroscience, Maastricht University, Maastricht, Netherlands.,Department of Radiology & Nuclear Medicine, School for Mental Health & Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - Heidi I L Jacobs
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health & Neuroscience, Maastricht University, Maastricht, Netherlands.,Division of Nuclear Medicine & Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Floris H B M Schreuder
- Department of Neurology, Center for Neuroscience, Donders Institute for Brain Cognition & Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Robert J van Oostenbrugge
- Department of Neurology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, School for Mental Health & Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - Frans R Verhey
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health & Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Center for Neuroscience, Donders Institute for Brain Cognition & Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Li Y, Li M, Zuo L, Shi Q, Qin W, Yang L, Jiang T, Hu W. Compromised Blood-Brain Barrier Integrity Is Associated With Total Magnetic Resonance Imaging Burden of Cerebral Small Vessel Disease. Front Neurol 2018; 9:221. [PMID: 29681883 PMCID: PMC5897516 DOI: 10.3389/fneur.2018.00221] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/21/2018] [Indexed: 11/17/2022] Open
Abstract
Objective Several studies have demonstrated that compromised blood–brain barrier (BBB) integrity may play a pivotal role in the pathogenesis of individual cerebral small vessel disease (cSVD) markers, but the association between BBB permeability and total magnetic resonance imaging (MRI) cSVD burden remains unclear. This study aimed to investigate the relationship between BBB permeability and total MRI cSVD burden. Methods Consecutive participants without symptomatic stroke history presented for physical examination were enrolled in this cross-sectional study. The presence of lacunes, white matter hyperintensities (WMH), cerebral microbleeds, and enlarged perivascular spaces was recorded in an ordinal score (range 0–4). We used dynamic contrast-enhanced-MRI and Patlak pharmacokinetic model to quantify BBB permeability in the normal-appearing white matter (NAWM), WMH, cortical gray matter (CGM), and deep gray matter (DGM). Results All 99 participants averaged 70.33 years old (49–90 years). Multivariable linear regression analyses adjusted for age, sex, and vascular risk factors showed that leakage rate and area under the leakage curve in the NAWM, WMH, CGM, and DGM were positively associated with total MRI cSVD burden (all P < 0.01). Moreover, fractional blood plasma volumes in the NAWM, CGM, and DGM were negatively associated with total MRI cSVD burden (all P < 0.05). Conclusion This study verified that compromised BBB integrity is associated with total MRI cSVD burden, suggesting that BBB dysfunction may be a critical contributor to the pathogenesis of cSVD. Longitudinal studies are required to determine whether there is a causal relationship between BBB permeability and total MRI cSVD burden.
Collapse
Affiliation(s)
- Yue Li
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Man Li
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Long Zuo
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qinglei Shi
- Diagnosis Imaging, Siemens Healthcare Ltd., Beijing, China
| | - Wei Qin
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lei Yang
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenli Hu
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|