1
|
Elsherif Y, Elsherif O, Karimi M, Ibrahim IA, Abukhadijah HJ. Post-COVID-19 Neutropenia in an Infant With Thalassemia Minor: Case Report. Clin Case Rep 2025; 13:e9668. [PMID: 39980892 PMCID: PMC11839831 DOI: 10.1002/ccr3.9668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 02/22/2025] Open
Abstract
This case of an 11-month-old female who developed severe neutropenia following COVID-19 infection underscores the need for heightened vigilance and monitoring of hematological parameters in infants post-COVID-19. The exact mechanism of COVID-19-induced neutropenia is not fully understood, but it may involve cytokine-induced suppression of hematopoiesis and bone marrow repression due to the inflammatory response. Given the potential for serious clinical implications, including increased susceptibility to infections, it is crucial to effectively identify and manage neutropenia in this vulnerable population. Further research is necessary to elucidate the underlying mechanisms and optimize treatment strategies for COVID-19-related hematological complications in infants.
Collapse
Affiliation(s)
| | | | | | - Ismail A. Ibrahim
- Faculty of Health SciencesFenerbahce UniversityIstanbulTurkey
- Faculty of Health SciencesLomza State University of Applied SciencesŁomżaPoland
| | | |
Collapse
|
2
|
Greene S, Soldatos A, Toro C, Zein WM, Snow J, Lehky TJ, Malicdan MCV, Introne WJ. Chedíak-Higashi Syndrome: Hair-to-toe spectrum. Semin Pediatr Neurol 2024; 52:101168. [PMID: 39622608 PMCID: PMC11730025 DOI: 10.1016/j.spen.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024]
Abstract
Chedíak-Higashi Syndrome (CHS) is a rare autosomal recessive disorder caused by mutations in the Lysosomal Trafficking Regulator (LYST) gene, leading to defective lysosomal function in immune cells, melanocytes, and neurons. Clinically, CHS is characterized by a spectrum of symptoms, including immunodeficiency, partial oculocutaneous albinism, bleeding tendencies, neurodevelopmental deficits and progressive neurodegenerative symptoms. The severity of CHS correlates with the type of LYST mutation: the classic form, linked to nonsense or frameshift mutations, presents early in childhood with severe immune dysfunction, recurrent infections, and a high risk of hemophagocytic lymphohistiocytosis (HLH), a life-threatening hyperinflammatory state. Without timely treatment, including hematopoietic stem cell transplantation (HSCT), prognosis is poor, with high mortality in early life. Atypical forms, associated with missense mutations, manifest later with milder immunologic symptoms but inevitably progress to neurological impairment, including cognitive decline and motor dysfunction. Diagnosing CHS is complex due to its rarity, phenotypic variability, and overlap with other disorders. A thorough approach, incorporating clinical evaluation, peripheral blood smear for giant granules in leukocytes, and genetic testing for LYST mutations, is crucial for accurate diagnosis. Management of CHS requires a multidisciplinary approach, focusing on HSCT for immunologic and hematologic stabilization and symptomatic and supportive care for neurological symptoms. Even those patients who undergo stabilizing HSCT eventually develop neurological difficulties. This review provides an in-depth exploration of CHS, covering its epidemiology, clinical presentation, molecular genetics, diagnostic challenges, and current management strategies, while emphasizing the necessity of a comprehensive, multidisciplinary approach to improve patient outcomes.
Collapse
Affiliation(s)
- Sunny Greene
- Department of Medical Education, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Camilo Toro
- National Institutes of Health Undiagnosed Disease Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wadih M Zein
- Ophthalmic Clinical Genetics Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Snow
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tanya J Lehky
- EMG Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - May Christine V Malicdan
- National Institutes of Health Undiagnosed Disease Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J Introne
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Parisi X, Bledsoe JR. Discerning clinicopathological features of congenital neutropenia syndromes: an approach to diagnostically challenging differential diagnoses. J Clin Pathol 2024; 77:586-604. [PMID: 38589208 DOI: 10.1136/jcp-2022-208686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The congenital neutropenia syndromes are rare haematological conditions defined by impaired myeloid precursor differentiation or function. Patients are prone to severe infections with high mortality rates in early life. While some patients benefit from granulocyte colony-stimulating factor treatment, they may still face an increased risk of bone marrow failure, myelodysplastic syndrome and acute leukaemia. Accurate diagnosis is crucial for improved outcomes; however, diagnosis depends on familiarity with a heterogeneous group of rare disorders that remain incompletely characterised. The clinical and pathological overlap between reactive conditions, primary and congenital neutropenias, bone marrow failure, and myelodysplastic syndromes further clouds diagnostic clarity.We review the diagnostically useful clinicopathological and morphological features of reactive causes of neutropenia and the most common primary neutropenia disorders: constitutional/benign ethnic neutropenia, chronic idiopathic neutropenia, cyclic neutropenia, severe congenital neutropenia (due to mutations in ELANE, GFI1, HAX1, G6PC3, VPS45, JAGN1, CSF3R, SRP54, CLPB and WAS), GATA2 deficiency, Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome, Shwachman-Diamond Syndrome, the lysosomal storage disorders with neutropenia: Chediak-Higashi, Hermansky-Pudlak, and Griscelli syndromes, Cohen, and Barth syndromes. We also detail characteristic cytogenetic and molecular factors at diagnosis and in progression to myelodysplastic syndrome/leukaemia.
Collapse
Affiliation(s)
- Xenia Parisi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Sharma P, Serra-Vinardell J, Introne WJ, Malicdan MCV. Role of lysosomal trafficking regulator in autophagic lysosome reformation in neurons: a disease perspective. Neural Regen Res 2024; 19:957-958. [PMID: 37862187 PMCID: PMC10749611 DOI: 10.4103/1673-5374.385298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Serra-Vinardell
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J. Introne
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Morimoto M, Nicoli ER, Kuptanon C, Roney JC, Serra-Vinardell J, Sharma P, Adams DR, Gallin JI, Holland SM, Rosenzweig SD, Barbot J, Ciccone C, Huizing M, Toro C, Gahl WA, Introne WJ, Malicdan MCV. Spectrum of LYST mutations in Chediak-Higashi syndrome: a report of novel variants and a comprehensive review of the literature. J Med Genet 2024; 61:212-223. [PMID: 37788905 DOI: 10.1136/jmg-2023-109420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterised by partial oculocutaneous albinism, a bleeding diathesis, immunological dysfunction and neurological impairment. Bi-allelic loss-of-function variants in LYST cause CHS. LYST encodes the lysosomal trafficking regulator, a highly conserved 429 kDa cytoplasmic protein with an unknown function. METHODS To further our understanding of the pathogenesis of CHS, we conducted clinical evaluations on individuals with CHS enrolled in our natural history study. Using genomic DNA Sanger sequencing, we identified novel pathogenic LYST variants. Additionally, we performed an extensive literature review to curate reported LYST variants and classified these novel and reported variants according to the American College of Medical Genetics/Association for Molecular Pathology variant interpretation guidelines. RESULTS Our investigation unveiled 11 novel pathogenic LYST variants in eight patients with a clinical diagnosis of CHS, substantiated by the presence of pathognomonic giant intracellular granules. From these novel variants, together with a comprehensive review of the literature, we compiled a total of 147 variants in LYST, including 61 frameshift variants (41%), 44 nonsense variants (30%), 23 missense variants (16%), 13 splice site variants or small genomic deletions for which the coding effect is unknown (9%), 5 in-frame variants (3%) and 1 start-loss variant (1%). Notably, a genotype-phenotype correlation emerged, whereby individuals harbouring at least one missense or in-frame variant generally resulted in milder disease, while those with two nonsense or frameshift variants generally had more severe disease. CONCLUSION The identification of novel pathogenic LYST variants and improvements in variant classification will provide earlier diagnoses and improved care to individuals with CHS.
Collapse
Affiliation(s)
- Marie Morimoto
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elena-Raluca Nicoli
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chulaluck Kuptanon
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph C Roney
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jenny Serra-Vinardell
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Prashant Sharma
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Adams
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Office of the Clinical Director, National Institutes of Health, Bethesda, Maryland, USA
| | - John I Gallin
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jose Barbot
- Unidade de Hematologia, Serviço de Pediatria, Centro Hospitalar do Porto, Porto, Portugal
| | - Carla Ciccone
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marjan Huizing
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wendy J Introne
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Human Biochemical Genetics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Chediak-Higashi syndrome is a rare autosomal recessive disorder characterized by congenital immunodeficiency, bleeding diathesis, pyogenic infection, partial oculocutaneous albinism, and progressive neurodegeneration. Treatment is hematopoietic stem cell transplantation or bone marrow transplantation; however, this does not treat the neurologic aspect of the disease. Mutations in the lysosomal trafficking regulator (LYST) gene were identified to be causative of Chediak-Higashi, but despite many analyses, there is little functional information about the LYST protein. This review serves to provide an update on the clinical manifestations and cellular defects of Chediak-Higashi syndrome. RECENT FINDINGS More recent papers expand the neurological spectrum of disease in CHS, to include hereditary spastic paraplegia and parkinsonism. Granule size and distribution in NK cells have been investigated in relation to the location of mutations in LYST. Patients with mutations in the ARM/HEAT domain had markedly enlarged granules, but fewer in number. By contrast, patients with mutations in the BEACH domain had more numerous granules that were normal in size to slightly enlarged, but demonstrated markedly impaired polarization. The role of LYST in autophagosome formation has been highlighted in recent studies; LYST was defined to have a prominent role in autophagosome lysosome reformation for the maintenance of lysosomal homeostasis in neurons, while in retinal pigment epithelium cells, LYST deficiency was shown to lead to phagosome accumulation. SUMMARY Despite CHS being a rare disease, investigation into LYST provides an understanding of basic vesicular fusion and fission. Understanding of these mechanisms may provide further insight into the function of LYST.
Collapse
Affiliation(s)
- Mackenzie L. Talbert
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - May Christine V. Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J. Introne
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Kuptanon C, Morimoto M, Nicoli ER, Stephen J, Yarnell DS, Dorward H, Owen W, Parikh S, Ozbek NY, Malbora B, Ciccone C, Gunay-Aygun M, Gahl WA, Introne WJ, Malicdan MCV. cDNA sequencing increases the molecular diagnostic yield in Chediak-Higashi syndrome. Front Genet 2023; 14:1072784. [PMID: 36968585 PMCID: PMC10031035 DOI: 10.3389/fgene.2023.1072784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Chediak-Higashi syndrome (CHS) is rare autosomal recessive disorder caused by bi-allelic variants in the Lysosomal Trafficking Regulator (LYST) gene. Diagnosis is established by the detection of pathogenic variants in LYST in combination with clinical evidence of disease. Conventional molecular genetic testing of LYST by genomic DNA (gDNA) Sanger sequencing detects the majority of pathogenic variants, but some remain undetected for several individuals clinically diagnosed with CHS. In this study, cDNA Sanger sequencing was pursued as a complementary method to identify variant alleles that are undetected by gDNA Sanger sequencing and to increase molecular diagnostic yield. Methods: Six unrelated individuals with CHS were clinically evaluated and included in this study. gDNA Sanger sequencing and cDNA Sanger sequencing were performed to identify pathogenic LYST variants. Results: Ten novel LYST alleles were identified, including eight nonsense or frameshift variants and two in-frame deletions. Six of these were identified by conventional gDNA Sanger sequencing; cDNA Sanger sequencing was required to identify the remaining variant alleles. Conclusion: By utilizing cDNA sequencing as a complementary technique to identify LYST variants, a complete molecular diagnosis was obtained for all six CHS patients. In this small CHS cohort, the molecular diagnostic yield was increased, and canonical splice site variants identified from gDNA Sanger sequencing were validated by cDNA sequencing. The identification of novel LYST alleles will aid in diagnosing patients and these molecular diagnoses will also lead to genetic counseling, access to services and treatments and clinical trials in the future.
Collapse
Affiliation(s)
- Chulaluk Kuptanon
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marie Morimoto
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Elena-Raluca Nicoli
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Joshi Stephen
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - David S. Yarnell
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Heidi Dorward
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - William Owen
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Suhag Parikh
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Namik Yasar Ozbek
- Division of Pediatric Hematology and Oncology, University of Yeni Yuzyil, Gaziosmanpasa Hospital, Istanbul, Türkiye
| | - Baris Malbora
- Department of Pediatric Hematology/Oncology, Ankara City Hospital, The University of Health Sciences, Ankara, Türkiye
| | - Carla Ciccone
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Meral Gunay-Aygun
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - William A. Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Wendy J. Introne
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - May Christine V. Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: May Christine V. Malicdan,
| |
Collapse
|
8
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
9
|
Kulcsarova K, Baloghova J, Necpal J, Skorvanek M. Skin Conditions and Movement Disorders: Hiding in Plain Sight. Mov Disord Clin Pract 2022; 9:566-583. [PMID: 35844274 PMCID: PMC9274368 DOI: 10.1002/mdc3.13436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Skin manifestations are well-recognized non-motor symptoms of Parkinson's disease (PD) and other hypokinetic and hyperkinetic movement disorders. Skin conditions are usually well visible during routine clinical examination and their recognition may play a major role in diagnostic work-up. In this educational review we: (1) briefly outline skin conditions related to Parkinson's disease, including therapy-related skin complications and their management; (2) discuss the role of skin biopsies in early diagnosis of PD and differential diagnosis of parkinsonian syndromes; and focus more on areas which have not been reviewed in the literature before, including (3) skin conditions related to atypical parkinsonism, and (4) skin conditions related to hyperkinetic movement disorders. In case of rare hyperkinetic movement disorders, specific dermatological manifestations, like presence of angiokeratomas, telangiectasias, Mongolian spots, lipomas, ichthyosis, progeroid skin changes and others may point to a very specific group of disorders and help guide further investigations.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, Medical FacultyUniversity of Pavol Jozef SafarikPavolSlovak Republic
- Department of NeurologyUniversity Hospital L. PasteurKosiceSlovak Republic
| | - Janette Baloghova
- Department of DermatovenerologyMedical Faculty, University of Pavol Jozef SafarikKosiceSlovak Republic
- Department of DermatovenerologyUniversity Hospital L. PasteurKosiceSlovak Republic
| | - Jan Necpal
- Department of NeurologyZvolen HospitalZvolenSlovak Republic
| | - Matej Skorvanek
- Department of Neurology, Medical FacultyUniversity of Pavol Jozef SafarikPavolSlovak Republic
- Department of NeurologyUniversity Hospital L. PasteurKosiceSlovak Republic
| |
Collapse
|
10
|
Benítez-Burraco A, Fernández-Urquiza M, Jiménez-Romero S. Language impairment with a microduplication in 1q42.3q43. CLINICAL LINGUISTICS & PHONETICS 2021; 35:610-635. [PMID: 32856472 DOI: 10.1080/02699206.2020.1812119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Deletions and duplications of the distal region of the long arm of chromosome 1 are associated with brain abnormalities and developmental delay. Because duplications are less frequent than deletions, no detailed account of the cognitive profile of the affected people is available, particularly, regarding their language (dis)abilities. In this paper we report on the cognitive and language capacities of a girl with one of the smallest interstitial duplications ever described in this region, affecting to 1q42.3q43 (arr[hg19] 1q42.3q43(235,963,632-236,972,276)x3), and advance potential candidate genes for the observed deficits. The proband's speech is severely impaired, exhibiting dysarthric-like features, with speech problems also resulting from a phonological deficit boiling down to a verbal auditory memory deficit. Lexical and grammatical knowledge are also impaired, impacting negatively on both expressive and receptive abilities, seemingly as a consequence of the phonological deficit. Still, her pragmatic abilities seem to be significantly spared, granting her a good command on the principles governing conversational exchanges. Genetic analyses point to several genes of interest. These include one gene within the duplicated region (LYST), one predicted functional partner (CMIP), and three genes outside the 1q42.3q43 region, which are all highly expressed in the cerebellum: DDIT4 and SLC29A1, found strongly downregulated in the proband compared to her healthy parents, and CNTNAP3, found strongly upregulated. The genes highlighted in the paper emerge as potential candidates for the phonological and speech deficits exhibited by the proband and ultimately, for her problems with language.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain
| | | | | |
Collapse
|
11
|
Sharma P, Nicoli ER, Serra-Vinardell J, Morimoto M, Toro C, Malicdan MCV, Introne WJ. Chediak-Higashi syndrome: a review of the past, present, and future. ACTA ACUST UNITED AC 2021; 31:31-36. [PMID: 33424983 DOI: 10.1016/j.ddmod.2019.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since the initial description of Chediak-Higashi syndrome (CHS), over 75 years ago, several studies have been conducted to underscore the role of the lysosomal trafficking regulator (LYST) gene in the pathogenesis of disease. CHS is a rare autosomal recessive disorder, which is caused by biallelic mutations in the highly conserved LYST gene. The disease is characterized by partial oculocutaneous albinism, prolonged bleeding, immune and neurologic dysfunction, and risk for the development of hemophagocytic lympohistiocytosis (HLH). The presence of giant secretory granules in leukocytes is the classical diagnostic feature, which distinguishes CHS from closely related Griscelli and Hermansky-Pudlak syndromes. While the exact mechanism of the formation of the giant granules in CHS patients is not understood, dysregulation of LYST function in regulating lysosomal biogenesis has been proposed to play a role. In this review, we discuss the clinical characteristics of the disease and highlight the functional consequences of enlarged lysosomes and lysosome-related organelles (LROs) in CHS.
Collapse
Affiliation(s)
- Prashant Sharma
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elena-Raluca Nicoli
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Serra-Vinardell
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marie Morimoto
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - May Christine V Malicdan
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J Introne
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Morales-Briceño H, Mohammad SS, Post B, Fois AF, Dale RC, Tchan M, Fung VSC. Clinical and neuroimaging phenotypes of genetic parkinsonism from infancy to adolescence. Brain 2019; 143:751-770. [DOI: 10.1093/brain/awz345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractGenetic early-onset parkinsonism presenting from infancy to adolescence (≤21 years old) is a clinically diverse syndrome often combined with other hyperkinetic movement disorders, neurological and imaging abnormalities. The syndrome is genetically heterogeneous, with many causative genes already known. With the increased use of next-generation sequencing in clinical practice, there have been novel and unexpected insights into phenotype-genotype correlations and the discovery of new disease-causing genes. It is now recognized that mutations in a single gene can give rise to a broad phenotypic spectrum and that, conversely different genetic disorders can manifest with a similar phenotype. Accurate phenotypic characterization remains an essential step in interpreting genetic findings in undiagnosed patients. However, in the past decade, there has been a marked expansion in knowledge about the number of both disease-causing genes and phenotypic spectrum of early-onset cases. Detailed knowledge of genetic disorders and their clinical expression is required for rational planning of genetic and molecular testing, as well as correct interpretation of next-generation sequencing results. In this review we examine the relevant literature of genetic parkinsonism with ≤21 years onset, extracting data on associated movement disorders as well as other neurological and imaging features, to delineate syndromic patterns associated with early-onset parkinsonism. Excluding PRKN (parkin) mutations, >90% of the presenting phenotypes have a complex or atypical presentation, with dystonia, abnormal cognition, pyramidal signs, neuropsychiatric disorders, abnormal imaging and abnormal eye movements being the most common features. Furthermore, several imaging features and extraneurological manifestations are relatively specific for certain disorders and are important diagnostic clues. From the currently available literature, the most commonly implicated causes of early-onset parkinsonism have been elucidated but diagnosis is still challenging in many cases. Mutations in ∼70 different genes have been associated with early-onset parkinsonism or may feature parkinsonism as part of their phenotypic spectrum. Most of the cases are caused by recessively inherited mutations, followed by dominant and X-linked mutations, and rarely by mitochondrially inherited mutations. In infantile-onset parkinsonism, the phenotype of hypokinetic-rigid syndrome is most commonly caused by disorders of monoamine synthesis. In childhood and juvenile-onset cases, common genotypes include PRKN, HTT, ATP13A2, ATP1A3, FBX07, PINK1 and PLA2G6 mutations. Moreover, Wilson’s disease and mutations in the manganese transporter are potentially treatable conditions and should always be considered in the differential diagnosis in any patient with early-onset parkinsonism.
Collapse
Affiliation(s)
- Hugo Morales-Briceño
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Shekeeb S Mohammad
- Neurology Department, Children’s Westmead Hospital, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Bart Post
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Centre Nijmegen (ParC) Nijmegen, The Netherlands
| | - Alessandro F Fois
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Russell C Dale
- Neurology Department, Children’s Westmead Hospital, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Michel Tchan
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
- Department of Genetic Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Victor S C Fung
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
14
|
Bhardwaj N, Gowda VK, Srinivas SM, Nanjundappa N. Association of Anti N-methyl-D-aspartate (NMDA) Receptor Encephalitis with Chediak-Higashi Syndrome. Indian Pediatr 2019. [DOI: 10.1007/s13312-019-1577-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Shirazi TN, Snow J, Ham L, Raglan GB, Wiggs EA, Summers AC, Toro C, Introne WJ. The neuropsychological phenotype of Chediak-Higashi disease. Orphanet J Rare Dis 2019; 14:101. [PMID: 31060595 PMCID: PMC6503440 DOI: 10.1186/s13023-019-1049-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/19/2019] [Indexed: 01/23/2023] Open
Abstract
Background/objectives Chediak-Higashi Disease (CHD) is a rare autosomal disorder, purported to have cognitive and neurological impairments. Prior descriptions of cognitive impairment, however, are solely based on subjective, unstructured observations rather than on formal neuropsychological measures. Methods Four pediatric and 14 adult patients with diagnostically confirmed CHD were administered a neuropsychological battery assessing memory, attention, processing speed, psychomotor speed, language fluency, executive function, and general intelligence. Nine of the adult patients received follow-up evaluations to elucidate the longitudinal progression or stability of cognition over time. Results Pediatric CHD patients performed within the average range. Adult patients, however, performed below average on nearly all measures administered, and endorsed subjective reports of learning difficulties and poor academic performance in childhood. In particular, patients struggled with memory and psychomotor speed tasks, with 75% or more of patients scoring in the bottom 2.3 percentile in these two domains. No significant declines in cognition were observed among the patients who completed follow-up evaluations (M = 39.90, SD = 8.03 months between visits). Exploratory analyses suggested that adult patients who had classic CHD and previously received bone marrow transplants (BMTs; n = 3) exhibited moderately greater cognitive impairment than adult patients who had atypical CHD and had not received BMTs (n = 10). Conclusions Adult patients with CHD uniformly exhibit deficits in multiple domains, but in psychomotor speed and memory, in particular. Based on their neuropsychological profile, their ability to hold jobs and succeed in school may require support and special accommodations. The source of cognitive deficits is probably multifactorial including central nervous system involvement in CHD, and, for those transplanted, BMT-related side effects and complications. Absence of cognitive decline at three-year follow-up is encouraging but does not exclude progression at a slower time-scale. Future work should elucidate the possible effects and timing of BMT on cognition, as well as the mechanisms driving neuropsychological impairment in CHD.
Collapse
Affiliation(s)
- Talia N Shirazi
- National Institute of Mental Health, 10 Center Drive, MSC 1274, Bethesda, MD, 20892, USA
| | - Joseph Snow
- National Institute of Mental Health, 10 Center Drive, MSC 1274, Bethesda, MD, 20892, USA.
| | - Lillian Ham
- National Institute of Mental Health, 10 Center Drive, MSC 1274, Bethesda, MD, 20892, USA
| | - Greta B Raglan
- National Institute of Mental Health, 10 Center Drive, MSC 1274, Bethesda, MD, 20892, USA
| | - Edythe A Wiggs
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Angela C Summers
- National Institute of Mental Health, 10 Center Drive, MSC 1274, Bethesda, MD, 20892, USA
| | - Camilo Toro
- National Human Genome Research Institute, Bethesda, MD, USA
| | | |
Collapse
|
16
|
Abstract
Lysosomal storage diseases (LSDs) are a group of over 70 diseases that are characterized by lysosomal dysfunction, most of which are inherited as autosomal recessive traits. These disorders are individually rare but collectively affect 1 in 5,000 live births. LSDs typically present in infancy and childhood, although adult-onset forms also occur. Most LSDs have a progressive neurodegenerative clinical course, although symptoms in other organ systems are frequent. LSD-associated genes encode different lysosomal proteins, including lysosomal enzymes and lysosomal membrane proteins. The lysosome is the key cellular hub for macromolecule catabolism, recycling and signalling, and defects that impair any of these functions cause the accumulation of undigested or partially digested macromolecules in lysosomes (that is, 'storage') or impair the transport of molecules, which can result in cellular damage. Consequently, the cellular pathogenesis of these diseases is complex and is currently incompletely understood. Several LSDs can be treated with approved, disease-specific therapies that are mostly based on enzyme replacement. However, small-molecule therapies, including substrate reduction and chaperone therapies, have also been developed and are approved for some LSDs, whereas gene therapy and genome editing are at advanced preclinical stages and, for a few disorders, have already progressed to the clinic.
Collapse
|
17
|
Baskin PK, Mink JW, Gross RA. Correcting honest pervasive errors in the scientific literature. Neurology 2017; 89:11-13. [DOI: 10.1212/wnl.0000000000004106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
|
19
|
Neurologic involvement in patients with atypical Chediak-Higashi disease. Neurology 2017; 88:721. [DOI: 10.1212/wnl.0000000000003675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 11/15/2022] Open
|