1
|
Scaravilli A, Capasso S, Ugga L, Capuano I, Di Risi T, Pontillo G, Riccio E, Tranfa M, Pisani A, Brunetti A, Cocozza S. Clinical and Pathophysiologic Correlates of Basilar Artery Measurements in Fabry Disease. AJNR Am J Neuroradiol 2024; 45:1670-1677. [PMID: 38997124 PMCID: PMC11543084 DOI: 10.3174/ajnr.a8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND AND PURPOSE Alterations of the basilar artery (BA) anatomy have been suggested as a possible MRA feature of Fabry disease (FD). Nonetheless, no information about their clinical or pathophysiologic correlates is available, limiting our comprehension of the real impact of vessel remodeling in FD. MATERIALS AND METHODS Brain MRIs of 53 subjects with FD (mean age, 40.7 [SD, 12.4] years; male/female ratio = 23:30) were collected in this single-center study. Mean BA diameter and its tortuosity index were calculated on MRA. Possible correlations between these metrics and clinical, laboratory, and advanced imaging variables of the posterior circulation were tested. In a subgroup of 20 subjects, a 2-year clinical and imaging follow-up was available, and possible longitudinal changes of these metrics and their ability to predict clinical scores were also probed. RESULTS No significant association was found between MRA metrics and any clinical, laboratory, or advanced imaging variable (P values ranging from -0.006 to 0.32). At the follow-up examination, no changes were observed with time for the mean BA diameter (P = .84) and the tortuosity index (P = .70). Finally, baseline MRA variables failed to predict the clinical status of patients with FD at follow-up (P = .42 and 0.66, respectively). CONCLUSIONS Alterations of the BA in FD lack of any meaningful association with clinical, laboratory, or advanced imaging findings collected in this study. Furthermore, this lack of correlation seems constant across time, suggesting stability over time. Taken together, these results suggest that the role of BA dolichoectasia in FD should be reconsidered.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Serena Capasso
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Ivana Capuano
- Department of Public Health (I.C., E.R., A.P.), University of Naples "Federico II", Naples, Italy
| | | | - Giuseppe Pontillo
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Eleonora Riccio
- Department of Public Health (I.C., E.R., A.P.), University of Naples "Federico II", Naples, Italy
| | - Mario Tranfa
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Antonio Pisani
- Department of Public Health (I.C., E.R., A.P.), University of Naples "Federico II", Naples, Italy
| | - Arturo Brunetti
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Pontillo G, Tranfa M, Scaravilli A, Monti S, Capuano I, Riccio E, Rizzo M, Brunetti A, Palma G, Pisani A, Cocozza S. In vivo demonstration of globotriaosylceramide brain accumulation in Fabry Disease using MR Relaxometry. Neuroradiology 2024; 66:1593-1601. [PMID: 38771548 PMCID: PMC11322198 DOI: 10.1007/s00234-024-03380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE How to measure brain globotriaosylceramide (Gb3) accumulation in Fabry Disease (FD) patients in-vivo is still an open challenge. The objective of this study is to provide a quantitative, non-invasive demonstration of this phenomenon using quantitative MRI (qMRI). METHODS In this retrospective, monocentric cross-sectional study conducted from November 2015 to July 2018, FD patients and healthy controls (HC) underwent an MRI scan with a relaxometry protocol to compute longitudinal relaxation rate (R1) maps to evaluate gray (GM) and white matter (WM) lipid accumulation. In a subgroup of 22 FD patients, clinical (FAbry STabilization indEX -FASTEX- score) and biochemical (residual α-galactosidase activity) variables were correlated with MRI data. Quantitative maps were analyzed at both global ("bulk" analysis) and regional ("voxel-wise" analysis) levels. RESULTS Data were obtained from 42 FD patients (mean age = 42.4 ± 12.9, M/F = 16/26) and 49 HC (mean age = 42.3 ± 16.3, M/F = 28/21). Compared to HC, FD patients showed a widespread increase in R1 values encompassing both GM (pFWE = 0.02) and WM (pFWE = 0.02) structures. While no correlations were found between increased R1 values and FASTEX score, a significant negative correlation emerged between residual enzymatic activity levels and R1 values in GM (r = -0.57, p = 0.008) and WM (r = -0.49, p = 0.03). CONCLUSIONS We demonstrated the feasibility and clinical relevance of non-invasively assessing cerebral Gb3 accumulation in FD using MRI. R1 mapping might be used as an in-vivo quantitative neuroimaging biomarker in FD patients.
Collapse
Affiliation(s)
- Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Serena Monti
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Ivana Capuano
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Eleonora Riccio
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Manuela Rizzo
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Palma
- Institute of Nanotechnology, National Research Council, Lecce, Italy
| | - Antonio Pisani
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
3
|
Zedde M, Romani I, Scaravilli A, Cocozza S, Trojano L, Ragno M, Rifino N, Bersano A, Gerevini S, Pantoni L, Valzania F, Pascarella R. Expanding the Neurological Phenotype of Anderson-Fabry Disease: Proof of Concept for an Extrapyramidal Neurodegenerative Pattern and Comparison with Monogenic Vascular Parkinsonism. Cells 2024; 13:1131. [PMID: 38994983 PMCID: PMC11240674 DOI: 10.3390/cells13131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Anderson-Fabry disease (AFD) is a genetic sphingolipidosis involving virtually the entire body. Among its manifestation, the involvement of the central and peripheral nervous system is frequent. In recent decades, it has become evident that, besides cerebrovascular damage, a pure neuronal phenotype of AFD exists in the central nervous system, which is supported by clinical, pathological, and neuroimaging data. This neurodegenerative phenotype is often clinically characterized by an extrapyramidal component similar to the one seen in prodromal Parkinson's disease (PD). We analyzed the biological, clinical pathological, and neuroimaging data supporting this phenotype recently proposed in the literature. Moreover, we compared the neurodegenerative PD phenotype of AFD with a classical monogenic vascular disease responsible for vascular parkinsonism and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). A substantial difference in the clinical and neuroimaging features of neurodegenerative and vascular parkinsonism phenotypes emerged, with AFD being potentially responsible for both forms of the extrapyramidal involvement, and CADASIL mainly associated with the vascular subtype. The available studies share some limitations regarding both patients' information and neurological and genetic investigations. Further studies are needed to clarify the potential association between AFD and extrapyramidal manifestations.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| | - Ilaria Romani
- Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, 50139 Firenze, Italy;
| | - Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80133 Napoli, Italy; (A.S.); (S.C.)
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80133 Napoli, Italy; (A.S.); (S.C.)
| | - Luigi Trojano
- Dipartimento di Psicologia, Università della Campania ‘Luigi Vanvitelli’, viale Ellittico 31, 81100 Caserta, Italy;
| | - Michele Ragno
- Centro Medico Salute 23, Via O. Licini 5, 63066 Grottammare (AP), Italy;
| | - Nicola Rifino
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; (N.R.); (A.B.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; (N.R.); (A.B.)
| | - Simonetta Gerevini
- Head Diagnostic Dept and Neuroradiology Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy;
| | - Leonardo Pantoni
- Neuroscience Research Center, Department of Biomedical and Clinical Science, University of Milan, 20122 Milano, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
4
|
Fabry Disease and Central Nervous System Involvement: From Big to Small, from Brain to Synapse. Int J Mol Sci 2023; 24:ijms24065246. [PMID: 36982318 PMCID: PMC10049671 DOI: 10.3390/ijms24065246] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder (LSD) secondary to mutations in the GLA gene that causes dysfunctional activity of lysosomal hydrolase α-galactosidase A and results in the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). The endothelial accumulation of these substrates results in injury to multiple organs, mainly the kidney, heart, brain and peripheral nervous system. The literature on FD and central nervous system involvement is scarce when focusing on alterations beyond cerebrovascular disease and is nearly absent in regard to synaptic dysfunction. In spite of that, reports have provided evidence for the CNS’ clinical implications in FD, including Parkinson’s disease, neuropsychiatric disorders and executive dysfunction. We aim to review these topics based on the current available scientific literature.
Collapse
|
5
|
Zedde M, Pascarella R, Cavallieri F, Pezzella FR, Grisanti S, Di Fonzo A, Valzania F. Anderson-Fabry Disease: A New Piece of the Lysosomal Puzzle in Parkinson Disease? Biomedicines 2022; 10:biomedicines10123132. [PMID: 36551888 PMCID: PMC9776280 DOI: 10.3390/biomedicines10123132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Anderson-Fabry disease (AFD) is an inherited lysosomal storage disorder characterized by a composite and multisystemic clinical phenotype and frequent involvement of the central nervous system (CNS). Research in this area has largely focused on the cerebrovascular manifestations of the disease, and very little has been described about further neurological manifestations, which are known in other lysosomal diseases, such as Gaucher disease. In particular, a clinical and neuroimaging phenotype suggesting neurodegeneration as a putative mechanism has never been fully described for AFD, but the increased survival of affected patients with early diagnosis and the possibility of treatment have given rise to some isolated reports in the literature on the association of AFD with a clinical phenotype of Parkinson disease (PD). The data are currently scarce, but it is possible to hypothesize the molecular mechanisms of cell damage that support this association; this topic is worthy of further study in particular in relation to the therapeutic possibilities, which have significantly modified the natural history of the disease but which are not specifically dedicated to the CNS. In this review, the molecular mechanisms underlying this association will be proposed, and the available data with implications for future research and treatment will be rewritten.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Correspondence: or
| | - Rosario Pascarella
- Neuroradiology Unit, Radiology Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesca Romana Pezzella
- Neurology Unit, Stroke Unit, Dipartimento di Neuroscienze, AO San Camillo Forlanini, 00152 Rome, Italy
| | - Sara Grisanti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
6
|
Gabusi I, Pontillo G, Petracca M, Battocchio M, Bosticardo S, Costabile T, Daducci A, Pane C, Riccio E, Pisani A, Brunetti A, Schiavi S, Cocozza S. Structural disconnection and functional reorganization in Fabry disease: a multimodal MRI study. Brain Commun 2022; 4:fcac187. [PMID: 35912136 PMCID: PMC9327118 DOI: 10.1093/braincomms/fcac187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/17/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Central nervous system involvement in Fabry disease, a rare systemic X-linked lysosomal storage disorder, is characterized by the presence of heterogeneous but consistent functional and microstructural changes. Nevertheless, knowledge about the degree and extension of macro-scale brain connectivity modifications is to date missing. In this work, we performed connectomic analyses of diffusion and resting-state functional MRI to investigate changes of both structural and functional brain organization in Fabry disease, as well as to explore the relationship between the two and their clinical correlates. In this retrospective cross-sectional study, 46 patients with Fabry disease (28F, 42.2 ± 13.2years) and 49 healthy controls (21F, 42.3 ± 16.3years) were included. All subjects underwent an MRI examination including anatomical, diffusion and resting-state functional sequences. Images were processed to obtain quantitative structural and functional connectomes, where the connections between regions of interest were weighted by the total intra-axonal signal contribution of the corresponding bundle and by the correlation between blood-oxygen level–dependent time series, respectively. We explored between-group differences in terms of both global network properties, expressed with graph measures and specific connected subnetworks, identified using a network-based statistics approach. As exploratory analyses, we also investigated the possible association between cognitive performance and structural and functional connectome modifications at both global and subnetwork level in a subgroup of patients (n = 11). Compared with healthy controls, patients with Fabry disease showed a significantly reduced global efficiency (P = 0.005) and mean strength (P < 0.001) in structural connectomes, together with an increased modularity (P = 0.005) in functional networks. As for the network-based statistics analysis, a subnetwork with decreased structural connectivity in patients with Fabry disease compared with healthy controls emerged, with eight nodes mainly located at the level of frontal or deep grey-matter areas. When probing the relation between altered global network metrics and neuropsychological tests, correlations emerged between the structural and functional disruption with results at verbal and working memory tests, respectively. Furthermore, structural disruption at subnetwork level was associated with worse executive functioning, with a significant moderation effect of functional changes suggesting a compensation mechanism. Taken together, these results further expand the current knowledge about brain involvement in Fabry disease, showing widespread structural disconnection and functional reorganization, primarily sustained by loss in axonal integrity and correlating with cognitive performance.
Collapse
Affiliation(s)
- Ilaria Gabusi
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona , Verona 37134 , Italy
- Department of Advanced Biomedical Sciences, University “Federico II” , Naples 80131 , Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University “Federico II” , Naples 80131 , Italy
- Department of Electrical Engineering and Information Technology (DIETI), University “Federico II” , Naples 80125 , Italy
| | - Maria Petracca
- Department of Human Neuroscience, Sapienza University of Rome , Rome 00189 , Italy
| | - Matteo Battocchio
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona , Verona 37134 , Italy
- Department of Computer Science, University of Sherbrooke , Sherbrooke, QC J1K 2R1 , Canada
| | - Sara Bosticardo
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona , Verona 37134 , Italy
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk), University Hospital Basel and University of Basel , Basel 4001 , Switzerland
| | - Teresa Costabile
- Department of Clinical and Experimental Medicine, Multiple Sclerosis Centre, II Division of Neurology, ‘'Luigi Vanvitelli” University , Naples 80138 , Italy
| | - Alessandro Daducci
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona , Verona 37134 , Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University “Federico II” , Naples 80131 , Italy
| | - Eleonora Riccio
- Department of Public Health, Nephrology Unit, University “Federico II” , Naples 80131 , Italy
| | - Antonio Pisani
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University “Federico II” , Naples 80131 , Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University “Federico II” , Naples 80131 , Italy
| | - Simona Schiavi
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) Lab, University of Verona , Verona 37134 , Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa , Genoa 16132 , Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University “Federico II” , Naples 80131 , Italy
| |
Collapse
|
7
|
Sieberg CB, Lebel A, Silliman E, Holmes S, Borsook D, Elman I. Left to themselves: Time to target chronic pain in childhood rare diseases. Neurosci Biobehav Rev 2021; 126:276-288. [PMID: 33774086 PMCID: PMC8738995 DOI: 10.1016/j.neubiorev.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Chronic pain is prevalent among patients with rare diseases (RDs). However, little is understood about how biopsychosocial mechanisms may be integrated in the unique set of clinical features and therapeutic challenges inherent in their pain conditions. METHODS This review presents examples of major categories of RDs with particular pain conditions. In addition, we provide translational evidence on clinical and scientific rationale for psychosocially- and neurodevelopmentally-informed treatment of pain in RD patients. RESULTS Neurobiological and functional overlap between various RD syndromes and pain states suggests amalgamation and mutual modulation of the respective conditions. Emotional sequelae could be construed as an emotional homologue of physical pain mediated via overlapping brain circuitry. Given their clearly defined genetic and molecular etiologies, RDs may serve as heuristic models for unraveling pathophysiological processes inherent in chronic pain. CONCLUSIONS Systematic evaluation of chronic pain in patients with RD contributes to sophisticated insight into both pain and their psychosocial correlates, which could transform treatment.
Collapse
Affiliation(s)
- Christine B Sieberg
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital, Boston, MA, 02115, USA; Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | - Alyssa Lebel
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Erin Silliman
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital, Boston, MA, 02115, USA; Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Scott Holmes
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Borsook
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, 02115, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
Cocozza S, Schiavi S, Pontillo G, Battocchio M, Riccio E, Caccavallo S, Russo C, Di Risi T, Pisani A, Daducci A, Brunetti A. Microstructural damage of the cortico-striatal and thalamo-cortical fibers in Fabry disease: a diffusion MRI tractometry study. Neuroradiology 2020; 62:1459-1466. [PMID: 32700105 PMCID: PMC7568710 DOI: 10.1007/s00234-020-02497-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 11/29/2022]
Abstract
Purpose Recent evidences have suggested the possible presence of an involvement of the extrapyramidal system in Fabry disease (FD), a rare X-linked lysosomal storage disorder. We aimed to investigate the microstructural integrity of the main tracts of the cortico-striatal-thalamo-cortical loop in FD patients. Methods Forty-seven FD patients (mean age = 42.3 ± 16.3 years, M/F = 28/21) and 49 healthy controls (mean age = 42.3 ± 13.1 years, M/F = 19/28) were enrolled in this study. Fractional anisotropy (FA), axial (AD), radial (RD), and mean diffusivity (MD) maps were computed for each subject, and connectomes were built using a standard atlas. Diffusion metrics and connectomes were then combined to carry on a diffusion MRI tractometry analysis. The main afferent and efferent pathways of the cortico-striatal-thalamo-cortical loop (namely, bundles connecting the precentral gyrus (PreCG) with the striatum and the thalamus) were evaluated. Results We found the presence of a microstructural involvement of cortico-striatal-thalamo-cortical loop in FD patients, predominantly affecting the left side. In particular, we found significant lower mean FA values of the left cortico-striatal fibers (p = 0.001), coupled to higher MD (p = 0.001) and RD (p < 0.001) values, as well as higher MD (p = 0.01) and RD (p = 0.01) values at the level of the thalamo-cortical fibers. Conclusion We confirmed the presence of an alteration of the extrapyramidal system in FD patients, in line with recent evidences suggesting the presence of brain changes as a possible reflection of the subtle motor symptoms present in this condition. Our results suggest that, along with functional changes, microstructural damage of this pathway is also present in FD patients.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy.
| | | | - Eleonora Riccio
- National Research Council of Italy (IRIB CNR), Institute for Biomedical Research and Innovation, Palermo, Italy
| | - Simona Caccavallo
- Department of Public Health, Nephrology Unit, University "Federico II", Naples, Italy
| | - Camilla Russo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Teodolinda Di Risi
- Department of Public Health, Nephrology Unit, University "Federico II", Naples, Italy.,CEINGE - Advanced Biotechnologies, Naples, Italy
| | - Antonio Pisani
- Department of Public Health, Nephrology Unit, University "Federico II", Naples, Italy
| | | | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| |
Collapse
|
9
|
The GALA project: practical recommendations for the use of migalastat in clinical practice on the basis of a structured survey among Italian experts. Orphanet J Rare Dis 2020; 15:86. [PMID: 32264911 PMCID: PMC7140546 DOI: 10.1186/s13023-020-1318-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/28/2020] [Indexed: 11/30/2022] Open
Abstract
Background Oral migalastat has recently been approved for the treatment of Anderson-Fabry disease (FD) in patients aged ≥16 years with amenable mutations on the basis of two phase III trials, FACETS and ATTRACT. However, with the introduction of migalastat into clinical practice, it is important to correctly identify the patients who may gain the most benefits from this therapy. Due to the relatively recent availability of migalastat, its role in clinical practice still has to be included in guidelines or recommendations. On these bases, a multidisciplinary group of Italian Experts in the treatment of FD has run the GALA project, with the aim to collect the opinions of expert physicians and to propose some starting points for an experience-based use of migalastat. Results Overall, although studies and data from longer-term follow-up with migalastat are still emerging, available evidence is consistent in showing that this molecule does represent a suitable therapy for the treatment of FD, in patients aged ≥16 years and with amenable mutations. The use of migalastat as an oral option appears to be overall safe, and experience thus far indicates potential for improving quality of life, controlling GI symptoms, stabilizing renal function and reducing cardiac hypertrophy. Conclusion Migalastat can be considered either as a first-line therapy – given its efficacy, extensive tissue penetration, convenient oral regimen, and the current limited therapeutic options available – or in patients on enzyme-replacement therapy (ERT) who experience side effects, with poor compliance to chronic i.v. therapy, or with clinical evidence of progression of the disease.
Collapse
|
10
|
Sechi G, Demurtas R, Boadu W, Ortu E. Letter re: Alterations of functional connectivity of the motor cortex in Fabry disease: An RS-fMRI study. Neurology 2019; 89:1842. [PMID: 29061676 DOI: 10.1212/wnl.0000000000004566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Striatonigral involvement in Fabry Disease: A quantitative and volumetric Magnetic Resonance Imaging study. Parkinsonism Relat Disord 2018; 57:27-32. [DOI: 10.1016/j.parkreldis.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
|
12
|
Neuroimaging in Fabry disease: current knowledge and future directions. Insights Imaging 2018; 9:1077-1088. [PMID: 30390274 PMCID: PMC6269338 DOI: 10.1007/s13244-018-0664-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
Abstract Fabry disease (FD) is a rare X-linked disorder characterised by abnormal progressive lysosomal deposition of globotriaosylceramide in a large variety of cell types. The central nervous system (CNS) is often involved in FD, with a wide spectrum of manifestations ranging from mild symptoms to more severe courses related to acute cerebrovascular events. In this review we present the current knowledge on brain imaging for this condition, with a comprehensive and critical description of its most common neuroradiological imaging findings. Moreover, we report results from studies that investigated brain physiopathology underlying this disorder by using advanced imaging techniques, suggesting possible future directions to further explore CNS involvement in FD patients. Teaching Points • Conventional neuroradiological findings in FD are aspecific. • White matter hyperintensities represent the more consistent brain imaging feature of FD • Abnormalities of the vasculature wall of posterior circulation are also consistent features. • The pulvinar sign is not reliable as a finding pathognomonic for FD. • Advanced imaging techniques have increased our knowledge about brain involvement in FD.
Collapse
|
13
|
Körver S, Vergouwe M, Hollak CEM, van Schaik IN, Langeveld M. Development and clinical consequences of white matter lesions in Fabry disease: a systematic review. Mol Genet Metab 2018; 125:205-216. [PMID: 30213639 DOI: 10.1016/j.ymgme.2018.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Fabry disease (FD) is a rare lysosomal storage disorder that might result in, amongst other complications, early stroke and white matter lesions (WMLs). More insight in WMLs in FD could clarify the role of WMLs in the disease presentation and prognosis in FD. In this systematic review we assessed the prevalence, severity, location and course of WMLs in FD. We also systematically reviewed the evidence on the relation between WMLs, disease characteristics and clinical parameters. METHODS We searched Pubmed, EMBASE and CINAHL (inception to Feb 2018) and identified articles reporting on FD and WMLs assessed with MRI. Prevalence and severity were assessed for all patients combined and divided by sex. RESULTS Out of 904 studies a total of 46 studies were included in the analyses. WMLs were present in 46% of patients with FD (581 out of 1276 patients, corrected mean age: 38.8 years, range 11.8-79.3) and increased with age. A total of 16.4% of patients (31 out of 189 patients, corrected mean age: 41.1 years, range 35.8-43.3 years) showed substantial confluent WMLs. Men and women showed comparable prevalence and severity of WMLs. However, men were significantly younger at time of WML assessment. Patients with classical FD had a higher chance on WMLs compared to non-classical patients. Progression of WMLs was seen in 24.6% of patients (49 out of 199 patients) during 38.1 months follow-up. Progression was seen in both men and women, with and without enzyme replacement therapy, but at an earlier age in men. Stroke seemed to be related to WMLs, but cerebrovascular risk factors, cardiac and renal (dys)function did not. Pathology in the brain in FD seemed to extend beyond the WMLs into the normal appearing white matter. CONCLUSIONS A significant group of FD patients has substantial WMLs and male patients develop WMLs earlier compared to female patients. WMLs could be used in clinical trials to evaluate possible treatment effects on the brain. Future studies should focus on longitudinal follow-up using modern imaging techniques, focusing on the clinical consequences of WMLs. In addition, ischemic and non-ischemic pathways resulting in WML development should be studied.
Collapse
Affiliation(s)
- Simon Körver
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Magda Vergouwe
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Ivo N van Schaik
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Mirjam Langeveld
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Carotenuto A, Cocozza S, Quarantelli M, Arcara G, Lanzillo R, Brescia Morra V, Cerillo I, Tedeschi E, Orefice G, Bambini V, Brunetti A, Iodice R. Pragmatic abilities in multiple sclerosis: The contribution of the temporo-parietal junction. BRAIN AND LANGUAGE 2018; 185:47-53. [PMID: 30110668 DOI: 10.1016/j.bandl.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Recent studies showed that multiple sclerosis (MS) patients might experience communicative deficits, specifically in pragmatics (i.e., the ability to integrate the context-dependent aspects of language). A crucial region for pragmatics is the temporo-parietal junction, in particular the so-called Geschwind's area (GA), which is involved in high-level language processes, including the comprehension of narratives, metaphor, and irony. We evaluated the relationship between pragmatic abilities, measured through the Assessment of Pragmatic Abilities and Cognitive Substrates (APACS) test, and the functional connectivity (FC) of the bilateral GAs, assessed through a seed-based analysis of Resting-State fMRI in patients with MS. A positive correlation was observed between APACS scores and the FC for both the right and the left GA and the paracingulate cortex. Our findings suggest that the brain FC for social communication involves connections extending over both hemispheres, including right and left GAs and right and left paracingulate cortex, possibly impaired in patients with MS. This study offers preliminary evidence for future researches enrolling also a control sample to explore the involvement of GA in pragmatics in neurological disorders as well as in healthy conditions.
Collapse
Affiliation(s)
- Antonio Carotenuto
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Mario Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | | | - Roberta Lanzillo
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Ilaria Cerillo
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giuseppe Orefice
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Valentina Bambini
- Center for Neurocognition, Epistemology and Theoretical Syntax (NETS), University School for Advanced Studies IUSS, Pavia, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| |
Collapse
|
15
|
Pontillo G, Cocozza S, Brunetti A, Brescia Morra V, Riccio E, Russo C, Saccà F, Tedeschi E, Pisani A, Quarantelli M. Reduced Intracranial Volume in Fabry Disease: Evidence of Abnormal Neurodevelopment? Front Neurol 2018; 9:672. [PMID: 30174644 PMCID: PMC6107697 DOI: 10.3389/fneur.2018.00672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/26/2018] [Indexed: 11/22/2022] Open
Abstract
Introduction: Lysosomal storage disorders (LSD) are often characterized by abnormal brain development, reflected by a reduction of intracranial volume (ICV). The aim of our study was to perform a volumetric analysis of intracranial tissues in Fabry Disease (FD), investigating possible reductions of ICV as a potential expression of abnormal brain development in this condition. Materials and Methods: Forty-two FD patients (15 males, mean age 43.3 ± 13.0 years) were enrolled along with 38 healthy controls (HC) of comparable age and sex. Volumetric MRI data were segmented using SPM12 to obtain intracranial tissue volumes, from which ICV values were derived. Results: Mean ICV of FD patients was 8.1% smaller compared to the control group (p < 5·10−5). Unlike what typically happens in neurodegenerative disorders, no significant differences emerged when comparing between the two groups the fractional volumes of gray matter, white matter and CSF (i.e., normalized by ICV), consistent with a harmonious volumetric reduction of intracranial structures. Discussion: The present results suggest that in FD patients an abnormality of brain development is present, expanding the current knowledge about central nervous system involvement in FD, further emphasizing the importance of an early diagnosis.
Collapse
Affiliation(s)
- Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Eleonora Riccio
- Nephrology Unit, Department of Public Health, University "Federico II", Naples, Italy
| | - Camilla Russo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Antonio Pisani
- Nephrology Unit, Department of Public Health, University "Federico II", Naples, Italy
| | - Mario Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| |
Collapse
|
16
|
Cerebellum and cognition in progressive MS patients: functional changes beyond atrophy? J Neurol 2018; 265:2260-2266. [PMID: 30056570 DOI: 10.1007/s00415-018-8985-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The cerebellum is a predilection site of pathology in progressive multiple sclerosis (PMS) patients, contributing to cognitive deficits. Aim of this study was to investigate lobular cerebellar functional connectivity (FC) in PMS patients in relation to cognition. METHODS In this cross-sectional study, resting state fMRI analysis was carried out on 29 PMS patients (11 males, mean age 51.2 ± 11.9 years) and 22 age- and sex-matched healthy controls (HC) (11 males, mean age 49.6 ± 8.8 years). Data were analyzed with a seed-based approach, with four different seeds placed at the level of cerebellar Lobule VI, Crus I, Crus II and Lobule VIIb, accounting for cerebellar structural damage. Cognitive status was assessed with the BICAMS battery. Correlations between fMRI data and clinical variables were probed with the Spearman correlation coefficient. RESULTS When testing FC differences between PMS and HC without taking into account cerebellar structural damage, PMS patients showed a reduction of FC between Crus II/Lobule VIIb and the right frontal pole (p = 0.001 and p = 0.002, respectively), with an increased FC between Lobule VIIb and the right precentral gyrus (p < 0.001). After controlling for structural damage, PMS patients still showed a reduced FC between Crus II and right frontal pole (p = 0.005), as well as an increased FC between Lobule VIIb and right precentral gyrus (p = 0.003), with the latter showing an inverse correlation with BVMT scores (r = - 0.393; p = 0.03). CONCLUSION PMS patients show cerebellar FC rearrangements that are partially independent from cerebellar structural damage, and are likely expression of a maladaptive functional rewiring.
Collapse
|
17
|
Cocozza S, Pontillo G, Quarantelli M, Saccà F, Riccio E, Costabile T, Olivo G, Brescia Morra V, Pisani A, Brunetti A, Tedeschi E. Default mode network modifications in Fabry disease: A resting-state fMRI study with structural correlations. Hum Brain Mapp 2018; 39:1755-1764. [PMID: 29315984 PMCID: PMC6866450 DOI: 10.1002/hbm.23949] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 11/09/2022] Open
Abstract
Aim of the study was to evaluate the presence of Default Mode Network (DMN) modifications in Fabry Disease (FD), and their possible correlations with structural alterations and neuropsychological scores. Thirty-two FD patients with a genetically confirmed diagnosis of classical FD (12 males, mean age 43.3 ± 12.2) were enrolled, along with 35 healthy controls (HC) of comparable age and sex (14 males, mean age 42.1 ± 14.5). Resting-State fMRI data were analyzed using a seed-based approach, with six different seeds sampling the main hubs of the DMN. Structural modifications were assessed by means of Voxel-Based Morphometry (VBM) and Tract-Based Spatial Statistics analyses. Between-group differences and correlations with neuropsychological variables were probed voxelwise over the whole brain. Possible correlations between FC modifications and global measures of microstructural alteration were also tested in FD patients with a partial correlation analysis. In the FD group, clusters of increased functional connectivity involving both supratentorial and infratentorial regions emerged, partially correlated to the widespread white matter (WM) damage found in these patients. No gray matter volume differences were found at VBM between the two groups. The connectivity between right inferior frontal gyrus and precuneus was significantly correlated with the Corsi block-tapping test results (p = .0001). Widespread DMN changes are present in FD patients that correlate with WM alterations and cognitive performance. Our results confirm the current view of a cerebral involvement in FD patients not simply associated to major cerebrovascular events, but also related to significant and diffuse microstructural and functional changes.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical SciencesUniversity “Federico II,”NaplesItaly
| | - Giuseppe Pontillo
- Department of Advanced Biomedical SciencesUniversity “Federico II,”NaplesItaly
| | - Mario Quarantelli
- Institute of Biostructure and Bioimaging, National Research CouncilNaplesItaly
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological SciencesUniversity “Federico II,”NaplesItaly
| | - Eleonora Riccio
- Department of Public HealthNephrology Unit, University “Federico II,”NaplesItaly
| | - Teresa Costabile
- Department of Neurosciences and Reproductive and Odontostomatological SciencesUniversity “Federico II,”NaplesItaly
| | - Gaia Olivo
- Department of NeuroscienceUppsala UniversityUppsalaSweden
| | - Vincenzo Brescia Morra
- Department of Neurosciences and Reproductive and Odontostomatological SciencesUniversity “Federico II,”NaplesItaly
| | - Antonio Pisani
- Department of Public HealthNephrology Unit, University “Federico II,”NaplesItaly
| | - Arturo Brunetti
- Department of Advanced Biomedical SciencesUniversity “Federico II,”NaplesItaly
| | - Enrico Tedeschi
- Department of Advanced Biomedical SciencesUniversity “Federico II,”NaplesItaly
| | | |
Collapse
|
18
|
|
19
|
Cocozza S, Pisani A, Brunetti A, Quarantelli M, Tedeschi E. Author response: Alterations of functional connectivity of the motor cortex in Fabry disease: An RS-fMRI study. Neurology 2017; 89:1842-1843. [DOI: 10.1212/wnl.0000000000004561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Siniscalchi A. Use of RS-fMRI in Fabry disease. Neurology 2017; 88:1784-1785. [DOI: 10.1212/wnl.0000000000003925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|