1
|
Rolli J, Pearson K, Wilbanks B, Hrstka SC, Minotti AP, Studer L, Warrington AE, Staff NP, Maher LJ. DNA aptamers that modulate biological activity of model neurons. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102392. [PMID: 39720700 PMCID: PMC11667033 DOI: 10.1016/j.omtn.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024]
Abstract
There is an urgent need for agents that promote health and regeneration of cells and tissues, specifically to treat diseases of the aging nervous system. Age-associated nervous system degeneration and various diseases are driven by many different biochemical stresses, often making it difficult to target any one disease cause. Our laboratory has previously identified DNA aptamers with apparent regenerative properties in murine models of multiple sclerosis by selecting aptamers that bind oligodendrocyte membrane preparations. Here, we selected from vast libraries of molecules (∼1014 unique DNAs) those with the ability to bind cultured human SH-SY5Y neuroblastoma cells as a neuronal model, followed by screening for aptamers capable of eliciting biological responses, with validation of binding in differentiated SH-SY5Y, human induced pluripotent stem cell (iPSC)-derived sensory neurons, and human embryonic stem cell (hESC)-derived cortical neurons. This demonstrates a proof-of-concept workflow to identify biologically active aptamers by cycles of cell selection.
Collapse
Affiliation(s)
- Jenelle Rolli
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Keenan Pearson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Brandon Wilbanks
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | | | - Andrew P. Minotti
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | | | - Nathan P. Staff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Recent Scientific Breakthroughs Applying CRISPR Gene Editing in Neurological Disorders. Dela J Public Health 2021; 7:6-8. [PMID: 35619976 PMCID: PMC9124567 DOI: 10.32481/djph.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Silva TYT, Pedroso JL, França Junior MC, Barsottini OGP. A journey through the history of Neurogenetics. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:929-932. [PMID: 34550174 DOI: 10.1590/0004-282x-anp-2020-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Since the late 19th century, when several inherited neurological disorders were described, the close relationship between Neurology and heredity were well documented by several authors in a pre-genetic era. The term Neurogenetics came to integrate two large sciences and clinical practices: Neurology and Genetics. Neurogenetics is the emerging field that studies the correlation between genetic code and the development and function of the nervous system, including behavioral traits, personality and neurological diseases. In this historical note, a timeline shows the main events and contributors since the first reports of neurogenetic diseases until the current days. In the recent years, neurologists are experiencing much broader use of new genetic diagnosis techniques in clinical practice. Thus, new challenges are arising in diagnostic approach, ethical considerations, and therapeutic options. This article aims to summarize the main historical hallmarks of Neurogenetics, from the pre-DNA era to the present, and the future directions of the field.
Collapse
Affiliation(s)
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo SP, Brazil
| | | | | |
Collapse
|
4
|
Li Y, Jarvis R, Zhu K, Glass Z, Ogurlu R, Gao P, Li P, Chen J, Yu Y, Yang Y, Xu Q. Protein and mRNA Delivery Enabled by Cholesteryl-Based Biodegradable Lipidoid Nanoparticles. Angew Chem Int Ed Engl 2020; 59:14957-14964. [PMID: 32438474 PMCID: PMC7679290 DOI: 10.1002/anie.202004994] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 11/12/2022]
Abstract
Developing safe and efficient delivery systems for therapeutic biomacromolecules is a long-standing challenge. Herein, we report a newly developed combinatorial library of cholesteryl-based disulfide bond-containing biodegradable cationic lipidoid nanoparticles. We have identified a subset of this library which is effective for protein and mRNA delivery in vitro and in vivo. These lipidoids showed comparable transfection efficacies but much lower cytotoxicities compared to the Lpf2k in vitro. In vivo studies in adult mice demonstrated the successful delivery of genome engineering protein and mRNA molecules in the skeletal muscle (via intramuscular injection), lung and spleen (via intravenous injection), and brain (via lateral ventricle infusion).
Collapse
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Rachel Jarvis
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Kuixin Zhu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Roza Ogurlu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peiyang Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peixuan Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jinjin Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Yingjie Yu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Li Y, Jarvis R, Zhu K, Glass Z, Ogurlu R, Gao P, Li P, Chen J, Yu Y, Yang Y, Xu Q. Protein and mRNA Delivery Enabled by Cholesteryl‐Based Biodegradable Lipidoid Nanoparticles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Rachel Jarvis
- Department of Neuroscience Tufts University Boston MA 02111 USA
| | - Kuixin Zhu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Zachary Glass
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Roza Ogurlu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peiyang Gao
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Jinjin Chen
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Yingjie Yu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Yongjie Yang
- Department of Neuroscience Tufts University Boston MA 02111 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
6
|
Oskarsson B, Gendron TF, Staff NP. Amyotrophic Lateral Sclerosis: An Update for 2018. Mayo Clin Proc 2018; 93:1617-1628. [PMID: 30401437 DOI: 10.1016/j.mayocp.2018.04.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons and other neuronal cells, leading to severe disability and eventually death from ventilatory failure. It has a prevalence of 5 in 100,000, with an incidence of 1.7 per 100,000, reflecting short average survival. The pathogenesis is incompletely understood, but defects of RNA processing and protein clearance may be fundamental. Repeat expansions in the chromosome 9 open reading frame 72 gene (C9orf72) are the most common known genetic cause of ALS and are seen in approximately 40% of patients with a family history and approximately 10% of those without. No environmental risk factors are proved to be causative, but many have been proposed, including military service. The diagnosis of ALS rests on a history of painless progressive weakness coupled with examination findings of upper and lower motor dysfunction. No diagnostic test is yet available, but electromyography and genetic tests can support the diagnosis. Care for patients is best provided by a multidisciplinary team, and most interventions are directed at managing symptoms. Two medications with modest benefits have Food and Drug Administration approval for the treatment of ALS: riluzole, a glutamate receptor antagonist, and, new in 2017, edaravone, a free radical scavenger. Many other encouraging treatment strategies are being explored in clinical trials for ALS; herein we review stem cell and antisense oligonucleotide gene therapies.
Collapse
|