1
|
Asteggiano C, Paoletti M, Vegezzi E, Deligianni X, Santini F, Bergsland N, Papinutto N, Todisco M, Cosentino G, Cortese A, Obici L, Palladini G, Pichiecchio A. Quantitative MRI Assessment Using Variable Echo Time Imaging of Peripheral Nerve Injury in ATTRv Amyloidosis Patients. Eur J Neurol 2025; 32:e70172. [PMID: 40265689 PMCID: PMC12015971 DOI: 10.1111/ene.70172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND AND PURPOSE Early detection of peripheral nerve damage in patients with hereditary transthyretin amyloidosis (ATTRv) has become essential for the prompt initiation of effective, recently approved therapies. In our study, we propose a new variable echo time (vTE) MRI sequence as a non-invasive method to detect nerve injury in ATTRv patients and to establish a novel potential imaging marker of neuropathy that correlates with disease severity and abnormal results of NCS. METHODS In this cohort study, twenty patients with clinically confirmed ATTRv polyneuropathy (PNP) and twenty-one healthy volunteers underwent 3 T MRI. vTE was performed on the right thigh to include the proximal tract of the sciatic nerve. The cross-sectional area of the whole sciatic nerve, inner epineurium, and endoneurial fascicles was segmented, and the corresponding pseudo-T2* was extrapolated from the two acquired echoes of the vTE. RESULTS Significantly higher fascicles pT2* (p = < 0.001), total cross-sectional area (CSA: p = 0.017) and fascicular area (p = < 0.001) were found in the ATTRv group compared to healthy controls. Fascicles pT2* also correlated with previously validated clinical outcome measures such as Polyneuropathy Disability Scoring System (PND score p = < 0. 001), Neuropathy Impairment Score (NIS p = 0.030) and NIS items related to the lower limbs, and with nerve conduction parameters, demonstrating the ability to discriminate ATTRv patients with different degrees of PNP from HC. CONCLUSION In conclusion, the vTE sequence provides novel and reliable imaging markers capable of detecting early nerve microstructural changes related to disease onset and severity.
Collapse
Affiliation(s)
- Carlo Asteggiano
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Advanced Imaging and Artificial Intelligence CenterIRCCS Mondino FoundationPaviaItaly
| | - Matteo Paoletti
- Advanced Imaging and Artificial Intelligence CenterIRCCS Mondino FoundationPaviaItaly
| | | | - Xeni Deligianni
- Basel Muscle MRI. Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Francesco Santini
- Basel Muscle MRI. Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of NeurologyJacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Nico Papinutto
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Giuseppe Cosentino
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Translational Neurophysiology Research UnitIRCCS Mondino FoundationPaviaItaly
| | - Andrea Cortese
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Laura Obici
- Amyloidosis Research and Treatment CenterFoundation IRCCS Policlinico San MatteoPaviaItaly
| | - Giovanni Palladini
- Amyloidosis Research and Treatment CenterFoundation IRCCS Policlinico San MatteoPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Anna Pichiecchio
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Advanced Imaging and Artificial Intelligence CenterIRCCS Mondino FoundationPaviaItaly
| |
Collapse
|
2
|
Jacobi H, Weiler M, Sam G, Heiland S, Hayes JM, Bendszus M, Wick W, Hayes JC. Peripheral Nerve Involvement in Friedreich's Ataxia Characterized by Quantitative Magnetic Resonance Neurography. Eur J Neurol 2025; 32:e70121. [PMID: 40130461 PMCID: PMC11933833 DOI: 10.1111/ene.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Friedreich's ataxia (FRDA) affects both the central and peripheral nervous system. Peripheral nerve involvement manifests predominantly as a progressive sensory neuropathy caused by dorsal root ganglionopathy. An additional direct involvement of peripheral nerves leading to abnormal myelination is increasingly discussed. Here, we characterize lower extremity peripheral nerve involvement in FRDA by quantitative magnetic resonance neurography (MRN). METHODS Sixteen genetically confirmed FRDA patients and 16 age-/sex-matched controls were prospectively enrolled. Patients underwent neurologic examinations and nerve conduction studies (NCS). Large-coverage MRN of sciatic and tibial nerves was conducted utilizing dual-echo turbo-spin-echo sequences with spectral fat saturation for T2-relaxometry, and two gradient-echo sequences with and without off-resonance saturation rapid frequency pulses for magnetization transfer contrast imaging. Microstructural and morphometric MRN markers including T2-relaxation time (T2app), proton spin density (ρ), magnetization transfer ratio (MTR), and cross-sectional area (CSA) were calculated to characterize nerve lesions. RESULTS Tibial nerve ρ and T2app were markedly decreased in FRDA at the thigh (ρ: 368.4 ± 11.0 a.u.; T2app: 59.5 ± 1.8 ms) and lower leg (ρ: 337.3 ± 12.6 a.u.; T2app: 53.9 ± 1.4 ms) versus controls (thigh, ρ: 458.9 ± 9.5 a.u., p < 0.0001; T2app: 66.3 ± 0.8 ms, p = 0.0019; lower leg, ρ: 449.9 ± 12.1 a.u., p < 0.0001; T2app: 62.4 ± 1.2 ms, p < 0.0001) and correlated well with clinical scores, disease duration, and NCS. MTR and CSA did not differentiate between FRDA and controls. CONCLUSION Our study results provide a profound characterization of peripheral nerve involvement in FRDA. The identified good correlation between ρ and T2app with clinical symptom scores and NCS suggests that parameters of T2 relaxometry may become relevant biomarkers to monitor disease progression and therapeutic responses in potential future clinical trials.
Collapse
Affiliation(s)
- Heike Jacobi
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Markus Weiler
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Georges Sam
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Sabine Heiland
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- Division of Experimental Radiology, Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborUSA
| | - Martin Bendszus
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Wolfgang Wick
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit NeurooncologyGerman Cancer Research Center/DKTKHeidelbergGermany
| | - Jennifer C. Hayes
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- Department of RadiologyUniversity of MichiganAnn ArborUSA
| |
Collapse
|
3
|
Poncelet A, Hegenbart U, Schönland SO, Sam G, Purrucker JC, Hund E, Aus dem Siepen F, Göldner K, Hayes JM, Heiland S, Bendszus M, Weiler M, Hayes JC. T2-relaxometry in a large cohort of hereditary transthyretin amyloidosis with polyneuropathy. Amyloid 2024; 31:309-317. [PMID: 39223740 DOI: 10.1080/13506129.2024.2398453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Previously, T2-relaxation time (T2app) and proton spin density (ρ) detected nerve injury in a small group of ATTRv amyloidosis. Here, we aim to quantify peripheral nerve impairment in a large cohort of symptomatic and asymptomatic ATTRv amyloidosis and correlate T2-relaxometry markers with clinical parameters and nerve conduction studies (NCS). METHODS Eighty participants with pathologic variants of the transthyretin gene (TTRv) and 40 controls prospectively underwent magnetic resonance neurography. T2-relaxometry was performed, allowing to calculate tibial ρ, T2app and cross-sectional-area (CSA). Detailed clinical examinations and NCS of tibial and peroneal nerves were performed. RESULTS Forty participants were classified as asymptomatic TTRv-carriers, 40 as symptomatic patients with polyneuropathy. ρ, T2app and CSA were significantly higher in symptomatic ATTRv amyloidosis (484.2 ± 14.8 a.u.; 70.6 ± 1.8 ms; 25.7 ± 0.9 mm2) versus TTRv-carriers (413.1 ± 9.4 a.u., p < 0.0001; 62.3 ± 1.3 ms, p = 0.0002; 19.0 ± 0.8 mm2, p < 0.0001) and versus controls (362.6 ± 7.5 a.u., p < 0.0001; 59.5 ± 1.0 ms, p < 0.0001; 15.4 ± 0.5 mm2, p < 0.0001). Only ρ and CSA differentiated TTRv-carriers from controls. ρ and CSA correlated with NCS in TTRv-carriers, while T2app correlated with NCS in symptomatic ATTRv amyloidosis. Both ρ and T2app correlated with clinical score. CONCLUSION ρ and CSA can detect early nerve injury and correlate with electrophysiology in asymptomatic TTRv-carriers. T2app increases only in symptomatic ATTRv amyloidosis in whom it correlates with clinical scores and electrophysiology. Our results suggest that T2-relaxometry can provide biomarkers for disease- and therapy-monitoring in the future.
Collapse
Affiliation(s)
- Anysia Poncelet
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Hegenbart
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Department V, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Department V, Heidelberg University Hospital, Heidelberg, Germany
| | - Georges Sam
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan C Purrucker
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ernst Hund
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Fabian Aus dem Siepen
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Division of Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Kira Göldner
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Sabine Heiland
- Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Weiler
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer C Hayes
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Chompoopong P, Mauermann ML, Siddiqi H, Peltier A. Amyloid Neuropathy: From Pathophysiology to Treatment in Light-Chain Amyloidosis and Hereditary Transthyretin Amyloidosis. Ann Neurol 2024; 96:423-440. [PMID: 38923548 DOI: 10.1002/ana.26965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
Amyloid neuropathy is caused by deposition of insoluble β-pleated amyloid sheets in the peripheral nervous system. It is most common in: (1) light-chain amyloidosis, a clonal non-proliferative plasma cell disorder in which fragments of immunoglobulin, light or heavy chain, deposit in tissues, and (2) hereditary transthyretin (ATTRv) amyloidosis, a disorder caused by autosomal dominant mutations in the TTR gene resulting in mutated protein that has a higher tendency to misfold. Amyloid fibrils deposit in the endoneurium of peripheral nerves, often extensive in the dorsal root ganglia and sympathetic ganglia, leading to atrophy of Schwann cells in proximity to amyloid fibrils and blood-nerve barrier disruption. Clinically, amyloid neuropathy is manifested as a length-dependent sensory predominant neuropathy associated with generalized autonomic failure. Small unmyelinated nerves are involved early and prominently in early-onset Val30Met ATTRv, whereas other ATTRv and light-chain amyloidosis often present with large- and small-fiber involvement. Nerve conduction studies, quantitative sudomotor axon testing, and intraepidermal nerve fiber density are useful tools to evaluate denervation. Amyloid deposition can be demonstrated by tissue biopsy of the affected organ or surrogate site, as well as bone-avid radiotracer cardiac imaging. Treatment of light-chain amyloidosis has been revolutionized by monoclonal antibodies and stem cell transplantation with improved 5-year survival up to 77%. Novel gene therapy and transthyretin stabilizers have revolutionized treatment of ATTRv, improving the course of neuropathy (less change in the modified Neuropathy Impairment Score + 7 from baseline) and quality of life. With great progress in amyloidosis therapies, early diagnosis and presymptomatic testing for ATTRv family members has become paramount. ANN NEUROL 2024;96:423-440.
Collapse
Affiliation(s)
| | | | - Hasan Siddiqi
- Department of Medicine, Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda Peltier
- Department of Medicine, Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Huang Y, Chen T, Hu Y, Li Z. Muscular MRI and magnetic resonance neurography in spinal muscular atrophy. Clin Radiol 2024; 79:673-680. [PMID: 38945793 DOI: 10.1016/j.crad.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease caused by the degeneration of the α-motor neurons in the anterior horn of the spinal cord. SMA is clinically characterized by progressive and symmetrical muscle weakness and muscle atrophy and ends up with systemic multisystem abnormalities. Quantitative MRI (qMRI) has the advantages of non-invasiveness, objective sensitivity, and high reproducibility, and has important clinical value in evaluating the severity of neuromuscular diseases and monitoring the efficacy of treatment. This article summarizes the clinical use of muscular MRI and magnetic resonance neurography in assessing the progress of SMA.
Collapse
Affiliation(s)
- Y Huang
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China
| | - T Chen
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China; Department of Radiology, Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Y Hu
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China; Department of Radiology, Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Z Li
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China.
| |
Collapse
|
6
|
Foesleitner O, Hayes JC, Weiler M, Sam G, Wildemann B, Wick W, Bendszus M, Heiland S, Jäger LB. Evolution of peripheral nerve changes in early multiple sclerosis-a longitudinal MR neurography study. Front Neurol 2024; 15:1335408. [PMID: 38765263 PMCID: PMC11100769 DOI: 10.3389/fneur.2024.1335408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Objectives Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system. Increasing evidence indicates additional peripheral nerve involvement in early and chronic disease stages. To investigate the evolution of peripheral nerve changes in patients first diagnosed with MS using quantitative MR neurography. Materials and methods This prospective study included 19 patients with newly diagnosed MS according to the revised McDonald criteria (16 female, mean 30.2 ± 7.1 years) and 19 age-/sex-matched healthy volunteers. High-resolution 3 T MR neurography of the sciatic nerve using a quantitative T2-relaxometry sequence was performed, which yielded the biomarkers of T2 relaxation time (T2app) and proton spin density (PSD). Follow-up scans of patients were performed after median of 12 months (range 7-16). Correlation analyses considered clinical symptoms, intrathecal immunoglobulin synthesis, nerve conduction study, and lesion load on brain and spine MRI. Results Patients showed increased T2app and decreased PSD compared to healthy controls at initial diagnosis and follow-up (p < 0.001 each). Compared to the initial scan, T2app further increased in patients at follow-up (p = 0.003). PSD further declined by at least 10% in 9/19 patients and remained stable in another 9/19 patients. Correlation analyses did not yield significant results. Conclusion Peripheral nerve involvement in MS appears at initial diagnosis and continues to evolve within 1 year follow-up with individual dynamics. Quantitative MRN provides non-invasive biomarkers to detect and monitor peripheral nerve changes in MS.
Collapse
Affiliation(s)
- Olivia Foesleitner
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer C. Hayes
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Georges Sam
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Brigitte Wildemann
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Bettina Jäger
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Preisner F, Pitarokoili K, Lueling B, Motte J, Fisse AL, Grüter T, Godel T, Schwarz D, Heiland S, Gold R, Bendszus M, Kronlage M. Quantitative magnetic resonance neurography in chronic inflammatory demyelinating polyradiculoneuropathy: A longitudinal study over 6 years. Ann Clin Transl Neurol 2024; 11:593-606. [PMID: 38111964 PMCID: PMC10963304 DOI: 10.1002/acn3.51978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE To evaluate magnetic resonance neurography (MRN) for the longitudinal assessment of patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS Prospective examination of twelve CIDP patients by neurological assessment, MRN, and nerve conduction studies in 2016 and 6 years later in 2022. Imaging parameters were compared with matched healthy controls and correlated with clinical and electrophysiological markers. The MRN protocol included T2-weighted imaging, diffusion tensor imaging (DTI), T2 relaxometry, and magnetization transfer imaging (MTI). RESULTS Nerve cross-sectional area (CSA) was increased in CIDP patients compared to controls (plexus: p = 0.003; sciatic nerve: p < 0.001). Over 6 years, nerve CSA decreased in CIDP patients, most pronounced at the lumbosacral plexus (p = 0.015). Longitudinally, changes in CSA correlated with changes in the inflammatory neuropathy cause and treatment validated overall disability sum score (INCAT/ODSS) (p = 0.006). High initial nerve CSA was inversely correlated with changes in the INCAT/ODSS over 6 years (p < 0.05). The DTI parameter fractional anisotropy (FA) showed robust correlations with electrodiagnostic testing both cross-sectionally and longitudinally (p < 0.05). MTI as a newly added imaging technique revealed a significantly reduced magnetization transfer ratio (MTR) in CIDP patients (p < 0.01), suggesting underlying changes in macromolecular tissue composition, and correlated significantly with electrophysiological parameters of demyelination (p < 0.05). INTERPRETATION This study provides evidence that changes in nerve CSA and FA reflect the clinical and electrophysiological course of CIDP patients. Initial nerve hypertrophy might predict a rather benign course or better therapy response.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Benjamin Lueling
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Jeremias Motte
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Anna Lena Fisse
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Thomas Grüter
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Tim Godel
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| | - Daniel Schwarz
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| | - Sabine Heiland
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| | - Ralf Gold
- Department of Neurology, St. Josef HospitalRuhr University of Bochum44791BochumGermany
| | - Martin Bendszus
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| | - Moritz Kronlage
- Department of Neuroradiology, Neurological ClinicHeidelberg University Hospital69120HeidelbergGermany
| |
Collapse
|
8
|
Durelle C, Delmont E, Michel C, Trabelsi A, Hostin MA, Ogier A, Bendahan D, Attarian S. Quantification of muscle involvement in familial amyloid polyneuropathy using MRI. Eur J Neurol 2023; 30:3286-3295. [PMID: 37422895 DOI: 10.1111/ene.15970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a rare genetic disease with autosomal-dominant inheritance. In this study, we aimed to quantify fatty infiltration (fat fraction [FF]) and magnetization transfer ratio (MTR) in individual muscles of patients with symptomatic and asymptomatic TTR-FAP using magnetic resonance imaging. Secondarily, we aimed to assess correlations with clinical and electrophysiological variables. METHODS A total of 39 patients with a confirmed mutation in the TTR gene (25 symptomatic and 14 asymptomatic) and 14 healthy volunteers were included. A total of 16 muscles were manually delineated in the nondominant lower limb from T1-weighted anatomical images. The corresponding masks were propagated on the MTR and FF maps. Detailed neurological and electrophysiological examinations were conducted in each group. RESULTS The MTR was decreased (42.6 AU; p = 0.001) and FF was elevated (14%; p = 0.003) in the lower limbs of the symptomatic group, with preferential posterior and lateral involvement. In the asymptomatic group, elevated FF was quantified in the gastrocnemius lateralis muscle (11%; p = 0.021). FF was significantly correlated with disease duration (r = 0.49, p = 0.015), neuropathy impairment score for the lower limb (r = 0.42, p = 0.041), Overall Neuropathy Limitations Scale score (r = 0.49, p = 0.013), polyneuropathy disability score (r = 0.57, p = 0.03) and the sum of compound muscle action potential (r = 0.52, p = 0.009). MTR was strongly correlated to FF (r = 0.78, p < 0.0001), and a few muscles with an FF within the normal range had a reduced MTR. CONCLUSION These observations suggest that FF and MTR could be interesting biomarkers in TTR-FAP. In asymptomatic patients, FF in the gastrocnemius lateralis muscle could be a good indicator of the transition from an asymptomatic to a symptomatic form of the disease. MTR could be an early biomarker of muscle alterations.
Collapse
Affiliation(s)
- Clémence Durelle
- Centre de référence des maladies neuromusculaires et de la SLA, hôpitaux universitaires de Marseille, Marseille, France
| | - Emilien Delmont
- Centre de référence des maladies neuromusculaires et de la SLA, hôpitaux universitaires de Marseille, Marseille, France
| | - Constance Michel
- Centre de résonance magnétique biologique et médicale (Crmbm), Marseille, France
| | - Amira Trabelsi
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institute Fresnel, Marseille, France
| | - Marc-Adrien Hostin
- Centre de résonance magnétique biologique et médicale (Crmbm), Marseille, France
| | - Augustin Ogier
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - David Bendahan
- Centre de résonance magnétique biologique et médicale (Crmbm), Marseille, France
| | - Shahram Attarian
- Centre de référence des maladies neuromusculaires et de la SLA, hôpitaux universitaires de Marseille, Marseille, France
| |
Collapse
|
9
|
Gasparotti R, Salvalaggio A, Corbo D, Agazzi G, Cacciavillani M, Lozza A, Fenu S, De Vigili G, Tagliapietra M, Fabrizi GM, Pareyson D, Obici L, Briani C. Magnetic resonance neurography and diffusion tensor imaging of the sciatic nerve in hereditary transthyretin amyloidosis polyneuropathy. J Neurol 2023; 270:4827-4840. [PMID: 37329346 PMCID: PMC10511361 DOI: 10.1007/s00415-023-11813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
The therapeutic advance in hereditary transthyretin amyloidosis (ATTRv amyloidosis) requires quantitative biomarkers of nerve involvement in order to foster early diagnosis and monitor therapy response. We aimed at quantitatively assessing Magnetic Resonance Neurography (MRN) and Diffusion Tensor Imaging (DTI) properties of the sciatic nerve in subjects with ATTRv-amyloidosis-polyneuropathy (ATTRv-PN) and pre-symptomatic carriers (ATTRv-C). Twenty subjects with pathogenic variants of the TTR gene (mean age 62.20 ± 12.04 years), 13 ATTRv-PN, and 7 ATTRv-C were evaluated and compared with 20 healthy subjects (mean age 60.1 ± 8.27 years). MRN and DTI sequences were performed at the right thigh from the gluteal region to the popliteal fossa. Cross-sectional-area (CSA), normalized signal intensity (NSI), and DTI metrics, including fractional anisotropy (FA), mean (MD), axial (AD), and radial diffusivity (RD) of the right sciatic nerve were measured. Increased CSA, NSI, RD, and reduced FA of sciatic nerve differentiated ATTRv-PN from ATTRv-C and healthy subjects at all levels (p < 0.01). NSI differentiated ATTRv-C from controls at all levels (p < 0.05), RD at proximal and mid-thigh (1.04 ± 0.1 vs 0.86 ± 0.11 p < 0.01), FA at mid-thigh (0.51 ± 0.02 vs 0.58 ± 0.04 p < 0.01). According to receiver operating characteristic (ROC) curve analysis, cutoff values differentiating ATTRv-C from controls (and therefore identifying subclinical sciatic involvement) were defined for FA, RD, and NSI. Significant correlations between MRI measures, clinical involvement and neurophysiology were found. In conclusion, the combination of quantitative MRN and DTI of the sciatic nerve can reliably differentiate ATTRv-PN, ATTRv-C, and healthy controls. More important, MRN and DTI were able to non-invasively identify early subclinical microstructural changes in pre-symptomatic carriers, thus representing a potential tool for early diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Roberto Gasparotti
- Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili Hospital, P.Le Spedali Civili 1, 25123, Brescia, Italy.
| | - Alessandro Salvalaggio
- Department of Neurosciences, University of Padova, Via Giustiniani 5, 35128, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Daniele Corbo
- Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili Hospital, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgio Agazzi
- Neuroradiology Unit, ASST Santi Paolo e Carlo Hospital, Milan, Italy
| | | | - Alessandro Lozza
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Fenu
- Rare Neurological Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Grazia De Vigili
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Matteo Tagliapietra
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gian Maria Fabrizi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Davide Pareyson
- Rare Neurological Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Obici
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Briani
- Department of Neurosciences, University of Padova, Via Giustiniani 5, 35128, Padua, Italy
| |
Collapse
|
10
|
Lapp HS, Freigang M, Hagenacker T, Weiler M, Wurster CD, Günther R. Biomarkers in 5q-associated spinal muscular atrophy-a narrative review. J Neurol 2023; 270:4157-4178. [PMID: 37289324 PMCID: PMC10421827 DOI: 10.1007/s00415-023-11787-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
5q-associated spinal muscular atrophy (SMA) is a rare genetic disease caused by mutations in the SMN1 gene, resulting in a loss of functional SMN protein and consecutive degeneration of motor neurons in the ventral horn. The disease is clinically characterized by proximal paralysis and secondary skeletal muscle atrophy. New disease-modifying drugs driving SMN gene expression have been developed in the past decade and have revolutionized SMA treatment. The rise of treatment options led to a concomitant need of biomarkers for therapeutic guidance and an improved disease monitoring. Intensive efforts have been undertaken to develop suitable markers, and numerous candidate biomarkers for diagnostic, prognostic, and predictive values have been identified. The most promising markers include appliance-based measures such as electrophysiological and imaging-based indices as well as molecular markers including SMN-related proteins and markers of neurodegeneration and skeletal muscle integrity. However, none of the proposed biomarkers have been validated for the clinical routine yet. In this narrative review, we discuss the most promising candidate biomarkers for SMA and expand the discussion by addressing the largely unfolded potential of muscle integrity markers, especially in the context of upcoming muscle-targeting therapies. While the discussed candidate biomarkers hold potential as either diagnostic (e.g., SMN-related biomarkers), prognostic (e.g., markers of neurodegeneration, imaging-based markers), predictive (e.g., electrophysiological markers) or response markers (e.g., muscle integrity markers), no single measure seems to be suitable to cover all biomarker categories. Hence, a combination of different biomarkers and clinical assessments appears to be the most expedient solution at the time.
Collapse
Affiliation(s)
- H S Lapp
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - M Freigang
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - T Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Science (C-TNBS), University Medicine Essen, Essen, Germany
| | - M Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - C D Wurster
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Foesleitner O, Knop KC, Lindenau M, Preisner F, Bäumer P, Heiland S, Bendszus M, Kronlage M. Quantitative MR Neurography in Multifocal Motor Neuropathy and Amyotrophic Lateral Sclerosis. Diagnostics (Basel) 2023; 13:diagnostics13071237. [PMID: 37046455 PMCID: PMC10093201 DOI: 10.3390/diagnostics13071237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Background: The aim of this study was to assess the phenotype of multifocal motor neuropathy (MMN) and amyotrophic lateral sclerosis (ALS) in quantitative MR neurography. Methods: In this prospective study, 22 patients with ALS, 8 patients with MMN, and 10 healthy volunteers were examined with 3T MR neurography, using a high-resolution fat-saturated T2-weighted sequence, diffusion-tensor imaging (DTI), and a multi-echo T2-relaxometry sequence. The quantitative biomarkers fractional anisotropy (FA), radial and axial diffusivity (RD, AD), mean diffusivity (MD), cross-sectional area (CSA), T2-relaxation time, and proton spin density (PSD) were measured in the tibial nerve at the thigh and calf, and in the median, radial, and ulnar nerves at the mid-upper arm. Results: MMN showed a characteristic imaging pattern of decreased FA (p = 0.018), increased RD (p = 0.014), increased CSA (p < 0.001), increased T2-relaxation time (p < 0.001), and increased PSD (p = 0.025) in the upper arm nerves compared to ALS and controls. ALS patients did not differ from controls in any imaging marker, nor were there any group differences in the tibial nerve (p > 0.05). Conclusions: MMN shows a characteristic pattern of quantitative DTI and T2-relaxometry parameters in the upper-arm nerves, primarily indicating demyelination. Peripheral nerve changes in ALS seem to be below the detection level of current state-of-the-art quantitative MR neurography.
Collapse
|
12
|
Quantification and Proximal-to-Distal Distribution Pattern of Tibial Nerve Lesions in Relapsing-Remitting Multiple Sclerosis : Assessment by MR Neurography. Clin Neuroradiol 2022; 33:383-392. [PMID: 36264352 DOI: 10.1007/s00062-022-01219-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Recent studies suggest an involvement of the peripheral nervous system (PNS) in multiple sclerosis (MS). Here, we characterize the proximal-to-distal distribution pattern of peripheral nerve lesions in relapsing-remitting MS (RRMS) by quantitative magnetic resonance neurography (MRN). METHODS A total of 35 patients with RRMS were prospectively included and underwent detailed neurologic and electrophysiologic examinations. Additionally, 30 age- and sex-matched healthy controls were recruited. 3T MRN with anatomical coverage from the proximal thigh down to the tibiotalar joint was conducted using dual-echo 2‑dimensional relaxometry sequences with spectral fat saturation. Quantification of PNS involvement was performed by evaluating microstructural (proton spin density (ρ), T2-relaxation time (T2app)), and morphometric (cross-sectional area, CSA) MRN markers in every axial slice. RESULTS In patients with RRMS, tibial nerve lesions at the thigh and the lower leg were characterized by a decrease in T2app and an increase in ρ compared to controls (T2app thigh: p < 0.0001, T2app lower leg: p = 0.0040; ρ thigh: p < 0.0001; ρ lower leg: p = 0.0098). An additional increase in nerve CSA was only detectable at the thigh, while the semi-quantitative marker T2w-signal was not altered in RRMS in both locations. A slight proximal-to-distal gradient was observed for T2app and T2-signal, but not for ρ. CONCLUSION PNS involvement in RRMS is characterized by a decrease in T2app and an increase in ρ, occurring with proximal predominance at the thigh and the lower leg. Our results indicate microstructural alterations in the extracellular matrix of peripheral nerves in RRMS and may contribute to a better understanding of the pathophysiologic relevance of PNS involvement.
Collapse
|
13
|
Dual-Echo Turbo Spin Echo and 12-Echo Multi Spin Echo Sequences as Equivalent Techniques for Obtaining T2-Relaxometry Data: Application in Symptomatic and Asymptomatic Hereditary Transthyretin Amyloidosis as a Surrogate Disease. Invest Radiol 2022; 57:301-307. [PMID: 34839307 DOI: 10.1097/rli.0000000000000837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Multi spin echo (MSE) sequences are often used for obtaining T2-relaxometry data as they provide defined echo times (TEs). Due to their time-consuming acquisition, they are frequently replaced by turbo spin echo (TSE) sequences that in turn bear the risk of systematic errors when analyzing small structures or lesions. With this study, we aim to test whether T2-relaxometry data derived from either dual-echo TSE or 12-echo MSE sequences are equivalent for quantifying peripheral nerve lesions. Hereditary transthyretin (ATTRv) amyloidosis was chosen as a surrogate disease, as it allows the inclusion of both asymptomatic carriers of the underlying variant transthyretin gene (varTTR) and symptomatic ATTRv amyloidosis patients. MATERIALS AND METHODS Overall, 50 participants with genetically confirmed varTTR (20 clinically symptomatic ATTRv amyloidosis; 4 females, 16 males; mean age, 61.8 years; range, 33-76 years; and 30 asymptomatic varTTR-carriers; 18 females, 12 males; mean age, 43.1 years; range, 21-62 years), and 30 healthy volunteers (13 females, 17 males, mean age 41.3 years, range 22-73) were prospectively included and underwent magnetic resonance neurography at 3 T. T2-relaxometry was performed by acquiring an axial 2-dimensional dual-echo TSE sequence with spectral fat saturation (TE1/TE2, 12/73 milliseconds; TR, 5210 milliseconds; acquisition time, 7 minutes, 30 seconds), and an axial 2-dimensional MSE sequence with spectral fat saturation and with 12 different TE (TE1, 10 milliseconds to TE12, 120 milliseconds; ΔTE, 10 milliseconds; TR, 3000 milliseconds; acquisition time, 11 minutes, 23 seconds) at the right mid to lower thigh. Sciatic nerve regions of interest were manually drawn in ImageJ on 10 central slices per participant and sequence, and the apparent T2-relaxation time (T2app) and proton spin density (ρ) were calculated individually from TSE and MSE relaxometry data. RESULTS Linear regression showed that T2app values obtained from the dual-echo TSE (T2appTSE), and those calculated from the 12-echo MSE (T2appMSE) were mathematically connected by a factor of 1.3 throughout all groups (controls: 1.26 ± 0.02; varTTR-carriers: 1.25 ± 0.02; symptomatic ATTRv amyloidosis: 1.28 ± 0.02), whereas a factor of 0.5 was identified between respective ρ values (controls: 0.47 ± 0.01; varTTR-carriers: 0.47 ± 0.01; symptomatic ATTRv amyloidosis: 0.50 ± 0.02). T2app calculated from both TSE and MSE, distinguished between symptomatic ATTRv (T2appTSE 66.38 ± 2.6; T2appMSE 84.6 ± 3.3) and controls (T2appTSE 58.1 ± 1.0, P = 0.0028; T2appMSE 72.8 ± 0.7, P < 0.0001), whereas differences between varTTR-carriers (T2appTSE 61.8 ± 1.5; T2appMSE 76.7 ± 1.3) and ATTRv amyloidosis were observed only for T2appMSE (P = 0.0082). The ρ value differentiated well between healthy controls (ρTSE 365.1 ± 7.2; ρMSE 170.4 ± 3.8) versus varTTR-carriers (ρTSE 415.7 ± 9.8, P = 0.0027; ρMSE 193.7 ± 5.3, P = 0.0398) and versus symptomatic ATTRv amyloidosis (ρTSE 487.8 ± 17.9; ρMSE 244.7 ± 13.1, P < 0.0001, respectively), but also between varTTR-carriers and ATTRv amyloidosis (ρTSEP = 0.0001; ρMSEP < 0.0001). CONCLUSIONS Dual-echo TSE and 12-echo MSE sequences provide equally robust and reliable T2-relaxometry data when calculating T2app and ρ. Due to their shorter acquisition time and higher resolution, TSE sequences may be preferred in future magnetic resonance imaging protocols. As a secondary result, ρ can be confirmed as a sensitive biomarker to detect early nerve lesions as it differentiated best among healthy controls, asymptomatic varTTR-carriers, and symptomatic ATTRv amyloidosis, whereas T2app might be beneficial in already manifest ATTRv amyloidosis.
Collapse
|
14
|
Kollmer J, Weiler M, Sam G, Faber J, Hayes JM, Heiland S, Bendszus M, Wick W, Jacobi H. Quantitative magnetic resonance neurographic characterization of peripheral nerve involvement in manifest and pre‐ataxic spinocerebellar ataxia type 3. Eur J Neurol 2022; 29:1782-1790. [DOI: 10.1111/ene.15305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer Kollmer
- Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
| | - Markus Weiler
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
| | - Georges Sam
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
| | - Jennifer Faber
- Department of Neurology Bonn University Hospital Bonn Germany
- German Center for Neurodegenerative Diseases Bonn Germany
| | - John M. Hayes
- Department of Neurology University of Michigan Ann Arbor USA
| | - Sabine Heiland
- Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
- Division of Experimental Radiology Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
| | - Martin Bendszus
- Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany
| | - Wolfgang Wick
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
- Clinical Cooperation Unit Neurooncology German Cancer Research Center/DKTK Heidelberg Germany
| | - Heike Jacobi
- Department of Neurology Heidelberg University Hospital Heidelberg Germany
| |
Collapse
|
15
|
Preisner F, Behnisch R, Schwehr V, Godel T, Schwarz D, Foesleitner O, Bäumer P, Heiland S, Bendszus M, Kronlage M. Quantitative MR-Neurography at 3.0T: Inter-Scanner Reproducibility. Front Neurosci 2022; 16:817316. [PMID: 35250457 PMCID: PMC8888927 DOI: 10.3389/fnins.2022.817316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Quantitative MR-neurography (MRN) is increasingly applied, however, the impact of the MR-scanner on the derived parameters is unknown. Here, we used different 3.0T MR scanners and applied comparable MR-sequences in order to quantify the inter-scanner reproducibility of various MRN parameters of the sciatic nerve. Methods Ten healthy volunteers were prospectively examined at three different 3.0T MR scanners and underwent MRN of their sciatic nerve using comparable imaging protocols including diffusion tensor imaging (DTI) and T2 relaxometry. Subsequently, inter-scanner agreement was assessed for seven different parameters by calculating the intraclass correlation coefficients (ICCs) and the standard error of measurement (SEM). Results Assessment of inter-scanner reliability revealed good to excellent agreement for T2 (ICC: 0.846) and the quantitative DTI parameters, such as fractional anisotropy (FA) (ICC: 0.876), whereas moderate agreement was observed for proton spin density (PD) (ICC: 0.51). Analysis of variance identified significant inter-scanner differences for several parameters, such as FA (p < 0.001; p = 0.02), T2 (p < 0.01) and PD (p = 0.02; p < 0.01; p = 0.02). Calculated SEM values were mostly within the range of one standard deviation of the absolute mean values, for example 0.033 for FA, 4.12 ms for T2 and 27.8 for PD. Conclusion This study quantifies the measurement imprecision for peripheral nerve DTI and T2 relaxometry, which is associated with the use of different MR scanners. The here presented values may serve as an orientation of the possible scanner-associated fluctuations of MRN biomarkers, which can occur under similar conditions.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rouven Behnisch
- Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - Véronique Schwehr
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Godel
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olivia Foesleitner
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Kronlage
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Moritz Kronlage,
| |
Collapse
|
16
|
Kollmer J, Bendszus M. Magnetic Resonance Neurography: Improved Diagnosis of Peripheral Neuropathies. Neurotherapeutics 2021; 18:2368-2383. [PMID: 34859380 PMCID: PMC8804110 DOI: 10.1007/s13311-021-01166-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral neuropathies account for the most frequent disorders seen by neurologists, and causes are manifold. The traditional diagnostic gold-standard consists of clinical neurologic examinations supplemented by nerve conduction studies. Due to well-known limitations of standard diagnostics and atypical clinical presentations, establishing the correct diagnosis can be challenging but is critical for appropriate therapies. Magnetic resonance neurography (MRN) is a relatively novel technique that was developed for the high-resolution imaging of the peripheral nervous system. In focal neuropathies, whether traumatic or due to nerve entrapment, MRN has improved the diagnostic accuracy by directly visualizing underlying nerve lesions and providing information on the exact lesion localization, extension, and spatial distribution, thereby assisting surgical planning. Notably, the differentiation between distally located, complete cross-sectional nerve lesions, and more proximally located lesions involving only certain fascicles within a nerve can hold difficulties that MRN can overcome, when basic technical requirements to achieve sufficient spatial resolution are implemented. Typical MRN-specific pitfalls are essential to understand in order to prevent overdiagnosing neuropathies. Heavily T2-weighted sequences with fat saturation are the most established sequences for MRN. Newer techniques, such as T2-relaxometry, magnetization transfer contrast imaging, and diffusion tensor imaging, allow the quantification of nerve lesions and have become increasingly important, especially when evaluating diffuse, non-focal neuropathies. Innovative studies in hereditary, metabolic or inflammatory polyneuropathies, and motor neuron diseases have contributed to a better understanding of the underlying pathomechanism. New imaging biomarkers might be used for an earlier diagnosis and monitoring of structural nerve injury under causative treatments in the future.
Collapse
Affiliation(s)
- Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Rother C, Bumb JM, Weiler M, Brault A, Sam G, Hayes JM, Pietsch A, Karimian-Jazi K, Jende JME, Heiland S, Kiefer F, Bendszus M, Kollmer J. Characterization and quantification of alcohol-related polyneuropathy by magnetic resonance neurography. Eur J Neurol 2021; 29:573-582. [PMID: 34564924 DOI: 10.1111/ene.15127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND We characterized and quantified peripheral nerve damage in alcohol-dependent patients (ADP) by magnetic resonance neurography (MRN) in correlation with clinical and electrophysiologic findings. METHODS Thirty-one adult patients with a history of excessive alcohol consumption and age-/sex-matched healthy controls were prospectively examined. After detailed neurologic and electrophysiologic testing, the patient group was subdivided into ADP with alcohol-related polyneuropathy (ALN) and without ALN (Non-ALN). 3T MRN with anatomical coverage from the proximal thigh down to the tibiotalar joint was performed using dual-echo 2-dimensional relaxometry sequences with spectral fat saturation. Detailed quantification of nerve injury by morphometric (cross-sectional area [CSA]) and microstructural MRN markers (proton spin density [ρ], apparent T2-relaxation-time [T2app ]) was conducted in all study participants. RESULTS MRN detected nerve damage in ADP with and without ALN. A proximal-to-distal gradient was identified for nerve T2-weighted (T2w)-signal and T2app in ADP, indicating a proximal predominance of nerve lesions. While all MRN markers differentiated significantly between ADP and controls, microstructural markers were able to additionally differentiate between subgroups: tibial nerve ρ at thigh level was increased in ALN (p < 0.0001) and in Non-ALN (p = 0.0052) versus controls, and T2app was higher in ALN versus controls (p < 0.0001) and also in ALN versus Non-ALN (p = 0.0214). T2w-signal and CSA were only higher in ALN versus controls. CONCLUSIONS MRN detects and quantifies peripheral nerve damage in ADP in vivo even in the absence of clinically overt ALN. Microstructural markers (T2app , ρ) are most suitable for differentiating between ADP with and without manifest ALN, and may help to elucidate the underlying pathomechanism in ALN.
Collapse
Affiliation(s)
- Christian Rother
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Malte Bumb
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Brault
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Georges Sam
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Adriana Pietsch
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Internal Medicine, Spital Walenstadt, Walenstadt, Switzerland
| | | | - Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
18
|
Preisner F, Behnisch R, Foesleitner O, Schwarz D, Wehrstein M, Meredig H, Friedmann-Bette B, Heiland S, Bendszus M, Kronlage M. Reliability and reproducibility of sciatic nerve magnetization transfer imaging and T2 relaxometry. Eur Radiol 2021; 31:9120-9130. [PMID: 34104997 PMCID: PMC8589742 DOI: 10.1007/s00330-021-08072-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Objectives To assess the interreader and test-retest reliability of magnetization transfer imaging (MTI) and T2 relaxometry in sciatic nerve MR neurography (MRN). Materials and methods In this prospective study, 21 healthy volunteers were examined three times on separate days by a standardized MRN protocol at 3 Tesla, consisting of an MTI sequence, a multi-echo T2 relaxometry sequence, and a high-resolution T2-weighted sequence. Magnetization transfer ratio (MTR), T2 relaxation time, and proton spin density (PSD) of the sciatic nerve were assessed by two independent observers, and both interreader and test-retest reliability for all readout parameters were reported by intraclass correlation coefficients (ICCs) and standard error of measurement (SEM). Results For the sciatic nerve, overall mean ± standard deviation MTR was 26.75 ± 3.5%, T2 was 64.54 ± 8.2 ms, and PSD was 340.93 ± 78.8. ICCs ranged between 0.81 (MTR) and 0.94 (PSD) for interreader reliability and between 0.75 (MTR) and 0.94 (PSD) for test-retest reliability. SEM for interreader reliability was 1.7% for MTR, 2.67 ms for T2, and 21.3 for PSD. SEM for test-retest reliability was 1.7% for MTR, 2.66 ms for T2, and 20.1 for PSD. Conclusions MTI and T2 relaxometry of the sciatic nerve are reliable and reproducible. The values of measurement imprecision reported here may serve as a guide for correct interpretation of quantitative MRN biomarkers in future studies. Key Points • Magnetization transfer imaging (MTI) and T2 relaxometry of the sciatic nerve are reliable and reproducible. • The imprecision that is unavoidably associated with different scans or different readers can be estimated by the here presented SEM values for the biomarkers T2, PSD, and MTR. • These values may serve as a guide for correct interpretation of quantitative MRN biomarkers in future studies and possible clinical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08072-9.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Rouven Behnisch
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Olivia Foesleitner
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Michaela Wehrstein
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Hagen Meredig
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Birgit Friedmann-Bette
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Moritz Kronlage
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Felisaz PF, Belatti E, Deligianni X, Bergsland N, Santini F, Paoletti M, Solazzo F, Germani G, Cortese A, Vegezzi E, Bieri O, Bastianello S, Pichiecchio A. Variable echo time imaging for detecting the short T2* components of the sciatic nerve: a validation study. MAGMA (NEW YORK, N.Y.) 2021; 34:411-419. [PMID: 32964300 PMCID: PMC8154754 DOI: 10.1007/s10334-020-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/02/2022]
Abstract
OBJECTIVE The aim of this study was to develop and validate an MRI protocol based on a variable echo time (vTE) sensitive to the short T2* components of the sciatic nerve. MATERIALS AND METHODS 15 healthy subjects (M/F: 9/6; age: 21-62) were scanned at 3T targeting the sciatic nerve at the thigh bilaterally, using a dual echo variable echo time (vTE) sequence (based on a spoiled gradient echo acquisition) with echo times of 0.98/5.37 ms. Apparent T2* (aT2*) values of the sciatic nerves were calculated with a mono-exponential fit and used for data comparison. RESULTS There were no significant differences in aT2* related to side, sex, age, and BMI, even though small differences for side were reported. Good-to-excellent repeatability and reproducibility were found for geometry of ROIs (Dice indices: intra-rater 0.68-0.7; inter-rater 0.70-0.72) and the related aT2* measures (intra-inter reader ICC 0.95-0.97; 0.66-0.85) from two different operators. Side-related signal-to-noise-ratio non-significant differences were reported, while contrast-to-noise-ratio measures were excellent both for side and echo. DISCUSSION Our study introduces a novel MR sequence sensitive to the short T2* components of the sciatic nerve and may be used for the study of peripheral nerve disorders.
Collapse
Affiliation(s)
- Paolo Florent Felisaz
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
- Department of Radiology, Desio Hospital, ASST Monza, Desio, Italy
| | - Eugenio Belatti
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Matteo Paoletti
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Solazzo
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Giancarlo Germani
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Andrea Cortese
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
- Department for Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Elisa Vegezzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Stefano Bastianello
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | - Anna Pichiecchio
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| |
Collapse
|
20
|
Chalian M, Hoang D, Rozen S, Chhabra A. Role of magnetic resonance neurography in intercostal neuralgia; diagnostic utility and efficacy. Br J Radiol 2021; 94:20200603. [PMID: 33960822 DOI: 10.1259/bjr.20200603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the utility and efficacy of MR neurography (MRN) in the diagnostic work-up for intercostal neuralgia and to assess the treatment course and outcomes in MRN-imaged clinically suspected intercostal neuropathy cases of chronic chest and abdominal wall pain syndromes. METHODS Following a retrospective cross-sectional study, a consecutive series of patients who underwent MRN of torso for suspected intercostal neuralgia were included. Patient demographics, pain location/level/duration, previous work-up for the same indication, MRN imaging results, and MRN cost per patient were recorded. An inter-reader reliability assessment was performed on the MRN findings using Cohen's weighted κ analysis. Post-MRN treatment choice, as well as success rates of MRN directed perineural injections and surgical management were also evaluated. RESULTS A total of 28 patients (mean ± SD age, 48.3 ± 18.0 years, female/male = 3.0) were included. Pain and/or numbness in the right upper quadrant were the most common complaints. The mean maximum pain level experienced was 7.4 ± 2.5 on a 1 (lowest pain level) - 10 (highest pain level) visual analog scale. The duration of pain before MRN work-up was 36.9 ± 37.9 months. The patients had seen an average of 5 ± 2.8 physicians for such syndromes. 20 (71%) patients had one or multiple other imaging studies for prior work-up. MRN identified positive intercostal nerve abnormality in 19 cases with clinical symptoms of intercostal neuralgia. From the inter-reader reliability assessment, a Cohen's weighted κ value of 0.78 was obtained. The costs of work-up was about one-third with MRN for diagnostic purposes with less financial and psychological harm. Among the MRN-positive cases, 9/19 patients received perineural injections, of which 6 reported improvement after their first round, lasting an average of 41.1 ± 83 days. Among the nine MRN-negative cases, two received perineural injections, of which none reported improvement. Surgical management was mostly successful with a positive outcome in six out of seven operated cases (85.7%). CONCLUSION MRN is useful in diagnostic algorithm of intercostal neuralgia and MRN-positive cases demonstrate favorable treatment response to perineural injections and subsequent surgical management. ADVANCES IN KNOWLEDGE The use of MRN in intercostal neuralgia is an application that has not been previously explored in the literature. This study demonstrates that MRN offers superior visualization of pathology in intercostal neuralgia and confirms that treatment directed at MRN identified neuropathy results in good outcomes while maintaining cost efficiency.
Collapse
Affiliation(s)
- Majid Chalian
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA, USA
| | - Diana Hoang
- Department of Radiology, Musculoskeletal Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shai Rozen
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Avneesh Chhabra
- Department of Radiology, Musculoskeletal Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopedics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Zeng C, Zhang C, Li YH, Feng X, Zhang MJ, Xiao RH, Yang HF. Recent Advances of Magnetic Resonance Neuroimaging in Trigeminal Neuralgia. Curr Pain Headache Rep 2021; 25:37. [PMID: 33821366 DOI: 10.1007/s11916-021-00957-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 11/26/2022]
Abstract
Trigeminal neuralgia (TN) is a disease of unclear pathogenesis. It has a low incidence and is not fatal, but it can cause afflicted patients' depression or suicide. In the past, neurovascular compression was considered to be the main cause of TN, but recent studies have found that neurovascular contact is also common in asymptomatic patients and the asymptomatic side in symptomatic patients. This indicates that the neurovascular contact is not, or is only to a lesser extent, a factor in the development of TN. Thus, the study of the peripheral branches of the trigeminal nerve is necessary to understand the etiology of TN. With the development of imaging technology and the emergence of various imaging modalities, it is possible to study the etiology of TN and the pathological changes of related structures by magnetic resonance neuroimaging. This article reviews the recent advances in magnetic resonance neuroimaging of the trigeminal nerve.
Collapse
Affiliation(s)
- Chen Zeng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China
| | - Chuan Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China
| | - Ye-Han Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China
| | - Xu Feng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China
| | - Man-Jing Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China
| | - Ru-Hui Xiao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China
| | - Han-Feng Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China.
| |
Collapse
|
22
|
Thaisetthawatkul P, Dyck PJB. Peripheral Nervous System Involvement. Hematol Oncol Clin North Am 2020; 34:1091-1098. [DOI: 10.1016/j.hoc.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Kollmer J, Kessler T, Sam G, Hayes JM, Lentz SI, Heiland S, Bendszus M, Wick W, Weiler M. Magnetization transfer ratio: a quantitative imaging biomarker for 5q spinal muscular atrophy. Eur J Neurol 2020; 28:331-340. [PMID: 32918834 DOI: 10.1111/ene.14528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE We quantified peripheral nerve lesions in adults with 5q-linked spinal muscular atrophy (SMA) type 3 by analysing the magnetization transfer ratio (MTR) of the sciatic nerve, and tested its potential as a novel biomarker for macromolecular changes. METHODS Eighteen adults with SMA 3 (50% SMA 3a, 50% SMA 3b) and 18 age-/sex-matched healthy controls prospectively underwent magnetization transfer contrast imaging in a 3-Tesla magnetic resonance scanner. Two axial three-dimensional gradient echo sequences, with and without an off-resonance saturation rapid frequency pulse, were performed at the right distal thigh. Sciatic nerve regions of interest were manually traced on 10 consecutive axial slices in the images generated without off-resonance saturation, and then transferred to corresponding slices generated by the sequence with the off-resonance saturation pulse. Subsequently, MTR and cross-sectional areas (CSAs) of the sciatic nerve were analysed. In addition, detailed neurologic, physiotherapeutic and electrophysiologic examinations were conducted in all patients. RESULTS Sciatic nerve MTR and CSA reliably differentiated between healthy controls and SMA 3, 3a or 3b. MTR was lower in the SMA 3 (P < 0.0001), SMA 3a (P < 0.0001) and SMA 3b groups (P = 0.0020) than in respective controls. In patients with SMA 3, MTR correlated with all clinical scores, and arm nerve compound motor action potentials (CMAPs). CSA was lower in the SMA 3 (P < 0.0001), SMA 3a (P < 0.0001) and SMA 3b groups (P = 0.0006) than in controls, but did not correlate with clinical scores or electrophysiologic results. CONCLUSIONS Magnetization transfer ratio is a novel imaging marker that quantifies macromolecular nerve changes in SMA 3, and positively correlates with clinical scores and CMAPs.
Collapse
Affiliation(s)
- J Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - T Kessler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - G Sam
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - J M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - S I Lentz
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - S Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - W Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - M Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
24
|
Kokotis P, Manios E, Schmelz M, Fotiou D, Dialoupi I, Gavriatopoulou M, Roussou M, Lykka A, Dimopoulos MA, Kastritis E. Involvement of small nerve fibres and autonomic nervous system in AL amyloidosis: comprehensive characteristics and clinical implications. Amyloid 2020; 27:103-110. [PMID: 31971444 DOI: 10.1080/13506129.2020.1713081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Peripheral nerve involvement in immunoglobulin light chain (AL) amyloidosis is common, characterised by severe progressive mixed neuropathy with autonomic dysfunction but there is limited data on the implications and the characteristics of small nerve fibres dysfunction (SNFD). The aim of our prospective study was to evaluate SNFD and its clinical implications in newly diagnosed AL patients. Twenty-three consecutive patients (10 male, mean age 61.78 years) and 21 age- and gender-matched healthy controls (8 male, mean age 61.28 years) underwent clinical evaluation and standard nerve conduction studies (NCS), baroreflex sensitivity (BRS) test, quantitative sensory testing (QST) and skin biopsy at the lower leg for measuring the density of the nerve fibres innervating the epidermis (IENFD). Axonal degeneration of the large nerve fibres was revealed in 15 out of 23 patients while SNFD was indicated by QST and skin biopsy in 56% and 61% of the patients respectively. BRS index significantly correlated with the IENFD and the QST results while low IENFD was associated with significantly poorer survival. Our study provides new insights and also an initial evaluation of new tools for assessment of the involvement of autonomic and small nerve fibres in AL amyloidosis. These findings also appear to have prognostic implications.
Collapse
Affiliation(s)
- Panagiotis Kokotis
- Laboratory of Clinical Neurophysiology, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Manios
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Martin Schmelz
- Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Dialoupi
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Roussou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Lykka
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Kollmer J, Hegenbart U, Kimmich C, Hund E, Purrucker JC, Hayes JM, Lentz SI, Sam G, Jende JME, Schönland SO, Bendszus M, Heiland S, Weiler M. Magnetization transfer ratio quantifies polyneuropathy in hereditary transthyretin amyloidosis. Ann Clin Transl Neurol 2020; 7:799-807. [PMID: 32333729 PMCID: PMC7261747 DOI: 10.1002/acn3.51049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Objective To quantify peripheral nerve lesions in symptomatic and asymptomatic hereditary transthyretin amyloidosis with polyneuropathy (ATTRv‐PNP) by analyzing the magnetization transfer ratio (MTR) of the sciatic nerve, and to test its potential as a novel biomarker for macromolecular changes. Methods Twenty‐five patients with symptomatic ATTRv‐PNP, 30 asymptomatic carriers of the mutant transthyretin gene (mutTTR), and 20 age‐/sex‐matched healthy controls prospectively underwent magnetization transfer contrast imaging at 3 Tesla. Two axial three‐dimensional gradient echo sequences with and without an off‐resonance saturation rapid frequency pulse were conducted at the right distal thigh. Sciatic nerve regions of interest were manually drawn on 10 consecutive axial slices in the images without off‐resonance saturation, and then transferred to the corresponding slices that were generated by the sequence with the off‐resonance saturation pulse. Subsequently, the MTR and cross‐sectional area (CSA) of the sciatic nerve were evaluated. Detailed neurologic and electrophysiologic examinations were conducted in all ATTRv‐PNP patients and mutTTR‐carriers. Results Sciatic nerve MTR and CSA reliably differentiated between ATTRv‐PNP, mutTTR‐carriers, and controls. MTR was lower in ATTRv‐PNP (26.4 ± 0.7; P < 0.0001) and in mutTTR‐carriers (32.6 ± 0.8; P = 0.0005) versus controls (39.4 ± 2.1), and was also lower in ATTRv‐PNP versus mutTTR‐carriers (P = 0.0009). MTR correlated negatively with the NIS‐LL and positively with CMAPs and SNAPs. CSA was higher in ATTRv‐PNP (34.3 ± 1.7 mm3) versus mutTTR‐carriers (26.0 ± 1.1 mm3; P = 0.0005) and versus controls (20.4 ± 1.2 mm3; P < 0.0001). CSA was also higher in mutTTR‐carriers versus controls. Interpretation MTR is a novel imaging marker that can quantify macromolecular changes in ATTRv‐PNP and differentiate between symptomatic ATTRv‐PNP and asymptomatic mutTTR‐carriers and correlates with electrophysiology.
Collapse
Affiliation(s)
- Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Hegenbart
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany.,Medical Department V, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Kimmich
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany.,Medical Department V, Heidelberg University Hospital, Heidelberg, Germany
| | - Ernst Hund
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan C Purrucker
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Stephen I Lentz
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - Georges Sam
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany.,Medical Department V, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Weiler
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
26
|
Kollmer J, Hilgenfeld T, Ziegler A, Saffari A, Sam G, Hayes JM, Pietsch A, Jost M, Heiland S, Bendszus M, Wick W, Weiler M. Quantitative MR neurography biomarkers in 5q-linked spinal muscular atrophy. Neurology 2019; 93:e653-e664. [PMID: 31292223 DOI: 10.1212/wnl.0000000000007945] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To characterize and quantify peripheral nerve lesions and muscle degeneration in clinically, genetically, and electrophysiologically well-classified, nonpediatric patients with 5q-linked spinal muscular atrophy (SMA) by high-resolution magnetic resonance neurography (MRN). METHODS Thirty-one adult patients with genetically confirmed 5q-linked SMA types II, IIIa, and IIIb and 31 age- and sex-matched healthy volunteers were prospectively investigated. All patients received neurologic, physiotherapeutic, and electrophysiologic assessments. MRN at 3.0T with anatomic coverage from the lumbosacral plexus and proximal thigh down to the tibiotalar joint was performed with dual-echo 2D relaxometry sequences with spectral fat saturation and a 3D T2-weighted inversion recovery sequence. Detailed quantification of nerve injury by morphometric and microstructural MRN markers and qualitative classification of fatty muscle degeneration were conducted. RESULTS Established clinical scores and compound muscle action potentials discriminated well between the 3 SMA types. MRN revealed that peroneal and tibial nerve cross-sectional area (CSA) at the thigh and lower leg level as well as spinal nerve CSA were markedly decreased throughout all 3 groups, indicating severe generalized peripheral nerve atrophy. While peroneal and tibial nerve T2 relaxation time was distinctly increased at all analyzed anatomic regions, the proton spin density was clearly decreased. Marked differences in fatty muscle degeneration were found between the 3 groups and for all analyzed compartments. CONCLUSIONS MRN detects and quantifies peripheral nerve involvement in SMA types II, IIIa, and IIIb with high sensitivity in vivo. Quantitative MRN parameters (T2 relaxation time, proton spin density, CSA) might serve as novel imaging biomarkers in SMA to indicate early microstructural nerve tissue changes in response to treatment.
Collapse
Affiliation(s)
- Jennifer Kollmer
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany.
| | - Tim Hilgenfeld
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Andreas Ziegler
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Afshin Saffari
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Georges Sam
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - John M Hayes
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Adriana Pietsch
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Marie Jost
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Sabine Heiland
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Martin Bendszus
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Wolfgang Wick
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany
| | - Markus Weiler
- From the Department of Neuroradiology (J.K., T.H., A.P., M.J., S.H., M.B.), Division of Child Neurology and Metabolic Medicine (A.Z., A.S.), Center for Child and Adolescent Medicine, Department of Neurology (G.S., W.W., M.W.), and Department of Neuroradiology (S.H.), Division of Experimental Radiology, Heidelberg University Hospital, Germany; Department of Neurology (J.M.H.), University of Michigan, Ann Arbor; Medical Faculty (M.J.), University of Tübingen; and German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) (W.W.), Heidelberg, Germany.
| |
Collapse
|
27
|
Petropoulos IN, Ponirakis G, Khan A, Gad H, Almuhannadi H, Brines M, Cerami A, Malik RA. Corneal confocal microscopy: ready for prime time. Clin Exp Optom 2019; 103:265-277. [PMID: 30834591 DOI: 10.1111/cxo.12887] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Corneal confocal microscopy is a non-invasive ophthalmic imaging modality, which was initially used for the diagnosis and management of corneal diseases. However, over the last 20 years it has come to the forefront as a rapid, non-invasive, reiterative, cost-effective imaging biomarker for neurodegeneration. The human cornea is endowed with the densest network of sensory unmyelinated axons, anywhere in the body. A robust body of evidence shows that corneal confocal microscopy is a reliable and reproducible method to quantify corneal nerve morphology. Changes in corneal nerve morphology precede or relate to clinical manifestations of peripheral and central neurodegenerative conditions. Moreover, in clinical intervention trials, corneal nerve regeneration occurs early and predicts functional gains in trials of neuroprotection. In view of these findings, it is timely to summarise the knowledge in this area of research and to explain why the case for corneal confocal microscopy is sufficiently compelling to argue for its inclusion as a Food and Drug Administration endpoint in clinical trials of peripheral and central neurodegenerative conditions.
Collapse
Affiliation(s)
| | - Georgios Ponirakis
- Division of Research, Qatar Foundation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Adnan Khan
- Division of Research, Qatar Foundation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hoda Gad
- Division of Research, Qatar Foundation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hamad Almuhannadi
- Division of Research, Qatar Foundation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | | | - Rayaz A Malik
- Division of Research, Qatar Foundation, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
28
|
Rattay TW, Just J, Röben B, Hengel H, Schüle R, Synofzik M, Söhn AS, Winter N, Dammeier N, Schöls L, Grimm A. Nerve ultrasound characterizes AMN polyneuropathy as inhomogeneous and focal hypertrophic. Orphanet J Rare Dis 2018; 13:194. [PMID: 30390710 PMCID: PMC6215661 DOI: 10.1186/s13023-018-0939-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Objective High-resolution nerve ultrasound (HRUS) is a painless tool to quickly evaluate peripheral nerve morphology in vivo. This study set out to characterize peripheral nerve involvement in X-linked adrenomyeloneuropathy (AMN) by HRUS. Methods Thirteen adults with genetically proven AMN were examined using the Ultrasound pattern sum score (UPSS) to evaluate morphological abnormalities of peripheral nerves, vagal nerves, as well as cervical nerve roots. Ultrasound results were correlated with clinical findings and nerve conduction studies. Results UPSS was increased in six out of 13 patients. Nerve enlargement was mostly inhomogeneous and regional. The median, ulnar, and vagal nerves presented with more prominent alterations than nerves of the lower limbs. The proximal-to-distal ratio was significantly enlarged for the median nerve. HRUS findings matched nerve conduction studies, but identified one patient with enlarged nerves and yet normal conduction velocities. Sonographic findings did not correlate with disease duration or disease severity as assessed by the spastic paraplegia rating scale. Conclusion HRUS reveals significant multifocal regional nerve swellings with reduced echo intensity as the morphological equivalent of electrophysiological peripheral nerve affection in AMN patients. Ultrasound and NCS characteristics in AMN seem to differ from other demyelinating neuropathies like CIDP or CMT1a. Trial registration German clinical-trial-register (DRKS) (DRKS-ID 00005253) Registered 15 October 2013. Electronic supplementary material The online version of this article (10.1186/s13023-018-0939-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tim W Rattay
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jennifer Just
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Benjamin Röben
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Holger Hengel
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Matthis Synofzik
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Anne S Söhn
- Institute of Medical Genetics and Applied Genomics, Tübingen University Hospital, Tübingen, Germany
| | - Natalie Winter
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Nele Dammeier
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Ludger Schöls
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany. .,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Alexander Grimm
- Center for Neurology, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| |
Collapse
|