1
|
Rheims S, Chorfa F, Michel V, Hirsch E, Maillard L, Valton L, Bartolomei F, Derambure P, Navarro V, Biberon J, Crespel A, Nica A, Martin ML, Mazzola L, Petit J, Rossero V, Boulogne S, Leclercq M, Bezin L, Mercier C, Roy P, Ryvlin P. Efficacy of naloxone in reducing hypoxemia and duration of immobility following focal to bilateral tonic-clonic seizures. Epilepsia Open 2025. [PMID: 40290094 DOI: 10.1002/epi4.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVE Evaluating the efficacy of an opioid antagonist, naloxone (NLX), to reduce the severity of post-ictal hypoxemia and immobility after focal to bilateral tonic-clonic seizures (FBTCS). METHODS ENALEPSY is a double-blind placebo (PCB)-controlled trial conducted in patients with focal epilepsy undergoing long-term video-EEG monitoring (LTM). Patients with a FBTCS during LTM were randomized 1:1 to receive intravenous NLX or PCB within the 2 min following the end of FBTCS. After database lock, a discrepancy between the allocated arm and the received treatment was detected, resulting in a 4:1 NLX:PCB ratio. To further explore the efficacy of NLX, we used historical control (HC) data collected in patients included in the REPO2MSE study whose characteristics matched those of patients randomized in ENALEPSY. The efficacy of NLX was then assessed versus PCB and versus HC. The primary endpoint was the delay between the end of the seizure and recovery of SpO2 ≥ 90%. Secondary efficacy outcomes included desaturation nadir and duration of the post-ictal immobility. RESULTS 33 patients contributed to the NLX group, 7 to the PCB group, and 43 to the HC group. The proportion of FBTCS type 1 or 3 was 84% in NLX, 100% in PCB, and 84% in HC. NLX did not improve the delay of recovery of SpO2 ≥ 90% or the desaturation nadir. By contrast, the duration of the post-ictal immobility differed across groups. The time to mobility recovery within the first 5 min post-ictal was very similar in the PCB (200.3 ± 215.8 s) and HC (194.4 ± 192.0 s) groups, and significantly shorter in the NLX group (128.9 ± 151.1 s) when compared to HC (Hazard Ratio, 1.84; 95% CI, 1.11-3.05; p = 0.021). SIGNIFICANCE NLX did not prevent post-ictal respiratory dysfunction but might reduce the duration of post-ictal immobility. Confirmation of this effect and its impact on SUDEP risk will require additional studies. PLAIN LANGUAGE SUMMARY Release of endogenous opioids might participate in the severity of post-ictal hypoxemia and immobility after focal to bilateral tonic-clonic seizures (FBTCS). We conducted a multicenter double-blind randomized placebo-controlled trial evaluating the efficacy of an opioid antagonist, naloxone (NLX), administered within 2 min following the end of FBTCS. The efficacy of NLX was further explored with a comparison with historical control. NLX did not improve the delay of recovery or the severity of post-ictal hypoxemia. Post-ictal immobility was significantly shorter in the NLX group when compared to historical control. The impact of these results on SUDEP prevention will require additional studies.
Collapse
Affiliation(s)
- Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292/Lyon 1 University, Lyon, France
| | - Fatima Chorfa
- Department of Biostatistics, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | | | - Edouard Hirsch
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Louis Maillard
- Neurology Department, University Hospital of Nancy, Nancy, France
| | - Luc Valton
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
- Brain and Cognition Research Centre (CerCo), CNRS, UMR5549, Toulouse, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Philippe Derambure
- Department of Clinical Neurophysiology, Lille University Medical Center, EA 1046, University of Lille2, Lille, France
| | - Vincent Navarro
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- Paris Brain Institute (ICM; INSERM, CNRS) ERN EpiCare, Paris, France
| | - Julien Biberon
- Department of Clinical Neurophysiology, University Hospital of Tours, Tours, France
| | | | - Anca Nica
- Department of Neurology, University Hospital of Rennes, Rennes, France
| | | | - Laure Mazzola
- Department of Neurology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Jerome Petit
- La Teppe Epilepsy Center, Tain l'Hermitage, France
| | - Vincent Rossero
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292/Lyon 1 University, Lyon, France
| | - Sébastien Boulogne
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292/Lyon 1 University, Lyon, France
| | - Mathilde Leclercq
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| | - Laurent Bezin
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292/Lyon 1 University, Lyon, France
| | - Catherine Mercier
- Department of Biostatistics, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Pascal Roy
- Department of Biostatistics, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
2
|
Boglietti E, Haddad D, Bezin L, Rheims S. Pathophysiology of SUDEP: How far are we from understanding? Rev Neurol (Paris) 2025:S0035-3787(25)00491-6. [PMID: 40204591 DOI: 10.1016/j.neurol.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Sudden and unexpected death in epilepsy patients (SUDEP) is the leading cause of death in patients suffering from drug-resistant epilepsy. A significant number of studies have been conducted in both patients and animal models to examine the initial cascade of events that directly cause death as well as the factors that contribute to the long-term risk of SUDEP. This review aims to discuss the main pathophysiological hypotheses that are currently considered in both clinical and pre-clinical models of SUDEP. Studies have highlighted that SUDEP is typically triggered by a seizure, with central fatal apnea as the primary cause of death. Findings also suggest that chronic impairments in respiratory regulation may contribute to SUDEP risk, with serotonin dysfunction playing a key role in the associated respiratory abnormalities. These insights on SUDEP pathophysiology contribute to better risk assessment, though gaps remain in understanding the precise mechanisms linking SUDEP and transient peri-ictal respiratory dysfunction.
Collapse
Affiliation(s)
- E Boglietti
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - D Haddad
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - L Bezin
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - S Rheims
- Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France; Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.
| |
Collapse
|
3
|
Vilella L, Miyake CY, Chaitanya G, Hampson JP, Omidi SJ, Ochoa-Urrea M, Talavera B, Mancera O, Hupp NJ, Hampson JS, Rani MRS, Lacuey N, Tao S, Sainju RK, Friedman D, Nei M, Scott CA, Gehlbach B, Schuele SU, Ogren JA, Harper RM, Diehl B, Bateman LM, Devinsky O, Richerson GB, Zhang GQ, Lhatoo SD. Incidence and Types of Cardiac Arrhythmias in the Peri-Ictal Period in Patients Having a Generalized Convulsive Seizure. Neurology 2024; 103:e209501. [PMID: 38870452 PMCID: PMC11759939 DOI: 10.1212/wnl.0000000000209501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/23/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Generalized convulsive seizures (GCSs) are the main risk factor of sudden unexpected death in epilepsy (SUDEP), which is likely due to peri-ictal cardiorespiratory dysfunction. The incidence of GCS-induced cardiac arrhythmias, their relationship to seizure severity markers, and their role in SUDEP physiopathology are unknown. The aim of this study was to analyze the incidence of seizure-induced cardiac arrhythmias, their association with electroclinical features and seizure severity biomarkers, as well as their specific occurrences in SUDEP cases. METHODS This is an observational, prospective, multicenter study of patients with epilepsy aged 18 years and older with recorded GCS during inpatient video-EEG monitoring for epilepsy evaluation. Exclusion criteria were status epilepticus and an obscured video recording. We analyzed semiologic and cardiorespiratory features through video-EEG (VEEG), electrocardiogram, thoracoabdominal bands, and pulse oximetry. We investigated the presence of bradycardia, asystole, supraventricular tachyarrhythmias (SVTs), premature atrial beats, premature ventricular beats, nonsustained ventricular tachycardia (NSVT), atrial fibrillation (Afib), ventricular fibrillation (VF), atrioventricular block (AVB), exaggerated sinus arrhythmia (ESA), and exaggerated sinus arrhythmia with bradycardia (ESAWB). A board-certified cardiac electrophysiologist diagnosed and classified the arrhythmia types. Bradycardia, asystole, SVT, NSVT, Afib, VF, AVB, and ESAWB were classified as arrhythmias of interest because these were of SUDEP pathophysiology value. The main outcome was the occurrence of seizure-induced arrhythmias of interest during inpatient VEEG monitoring. Moreover, yearly follow-up was conducted to identify SUDEP cases. Binary logistic generalized estimating equations were used to determine clinical-demographic and peri-ictal variables that were predictive of the presence of seizure-induced arrhythmias of interest. The z-score test for 2 population proportions was used to test whether the proportion of seizures and patients with postconvulsive ESAWB or bradycardia differed between SUDEP cases and survivors. RESULTS This study includes data from 249 patients (mean age 37.2 ± 23.5 years, 55% female) who had 455 seizures. The most common arrhythmia was ESA, with an incidence of 137 of 382 seizures (35.9%) (106/224 patients [47.3%]). There were 50 of 352 seizure-induced arrhythmias of interest (14.2%) in 41 of 204 patients (20.1%). ESAWB was the commonest in 22 of 394 seizures (5.6%) (18/225 patients [8%]), followed by SVT in 18 of 397 seizures (4.5%) (17/228 patients [7.5%]). During follow-up (48.36 ± 31.34 months), 8 SUDEPs occurred. Seizure-induced bradycardia (3.8% vs 12.5%, z = -16.66, p < 0.01) and ESAWB (6.6% vs 25%; z = -3.03, p < 0.01) were over-represented in patients who later died of SUDEP. There was no association between arrhythmias of interest and seizure severity biomarkers (p > 0.05). DISCUSSION Markers of seizure severity are not related to seizure-induced arrhythmias of interest, suggesting that other factors such as occult cardiac abnormalities may be relevant for their occurrence. Seizure-induced ESAWB and bradycardia were more frequent in SUDEP cases, although this observation was based on a very limited number of SUDEP patients. Further case-control studies are needed to evaluate the yield of arrhythmias of interest along with respiratory changes as potential SUDEP biomarkers.
Collapse
Affiliation(s)
- Laura Vilella
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Christina Y Miyake
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Ganne Chaitanya
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Johnson P Hampson
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Shirin Jamal Omidi
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Manuela Ochoa-Urrea
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Blanca Talavera
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Oscar Mancera
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Norma J Hupp
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Jaison S Hampson
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - M R Sandhya Rani
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Nuria Lacuey
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Shiqiang Tao
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Rup K Sainju
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Daniel Friedman
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Maromi Nei
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Catherine A Scott
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Brian Gehlbach
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Stephan U Schuele
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Jennifer A Ogren
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Ronald M Harper
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Beate Diehl
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Lisa M Bateman
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Orrin Devinsky
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - George B Richerson
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Guo-Qiang Zhang
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| | - Samden D Lhatoo
- From the Departament de Medicina (L.V.), Universitat Autònoma de Barcelona, Spain; NINDS Center for SUDEP Research (CSR) (L.V., G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., R.K.S., D.F., M.N., C.A.S., B.G., S.U.S., R.M.H., B.D., L.M.B., O.D., G.B.R., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; Department of Neurology (L.V.), Hospital del Mar, Barcelona, Spain; Division of Cardiology (C.Y.M.), Department of Pediatrics, Texas Children's Hospital, and Department of Molecular Physiology and Biophysics (C.Y.M.), Baylor College of Medicine, Houston, TX; Department of Neurology (G.C., J.P.H., S.J.O., M.O.-U., B.T., O.M., N.J.H., J.S.H., M.R.S.R., N.L., S.T., G.-Q.Z., S.D.L.), McGovern Medical School, University of Texas Health Science Center at Houston; University of Iowa Carver College of Medicine (R.K.S., B.G., G.B.R.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Institute of Neurology (C.A.S., B.D.), University College London, United Kingdom; Department of Neurology (S.U.S.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (R.M.H.), and Department of Neurobiology (J.A.O.), University of California, Los Angeles; and Cedars-Sinai Medical Center (L.M.B.), Los Angeles, CA
| |
Collapse
|
4
|
Benghanem S, Pruvost-Robieux E, Neligan A, Walker MC. Status epilepticus: what's new for the intensivist. Curr Opin Crit Care 2024; 30:131-141. [PMID: 38441162 DOI: 10.1097/mcc.0000000000001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PURPOSE OF REVIEW Status epilepticus (SE) is a common neurologic emergency affecting about 36.1/100 000 person-years that frequently requires intensive care unit (ICU) admission. There have been advances in our understanding of epidemiology, pathophysiology, and EEG monitoring of SE, and there have been large-scale treatment trials, discussed in this review. RECENT FINDINGS Recent changes in the definitions of SE have helped guide management protocols and we have much better predictors of outcome. Observational studies have confirmed the efficacy of benzodiazepines and large treatment trials indicate that all routinely used second line treatments (i.e., levetiracetam, valproate and fosphenytoin) are equally effective. Better understanding of the pathophysiology has indicated that nonanti-seizure medications aimed at underlying pathological processes should perhaps be considered in the treatment of SE; already immunosuppressant treatments are being more widely used in particular for new onset refractory status epilepticus (NORSE) and Febrile infection-related epilepsy syndrome (FIRES) that sometimes revealed autoimmune or paraneoplastic encephalitis. Growing evidence for ICU EEG monitoring and major advances in automated analysis of the EEG could help intensivist to assess the control of electrographic seizures. SUMMARY Research into the morbi-mortality of SE has highlighted the potential devastating effects of this condition, emphasizing the need for rapid and aggressive treatment, with particular attention to cardiorespiratory and neurological complications. Although we now have a good evidence-base for the initial status epilepticus management, the best treatments for the later stages are still unclear and clinical trials of potentially disease-modifying therapies are long overdue.
Collapse
Affiliation(s)
- Sarah Benghanem
- Medical Intensive Care Unit, Cochin hospital, APHP.Centre
- University of Paris cite - Medical School
- INSERM 1266, psychiatry and neurosciences institute of Paris (IPNP)
| | - Estelle Pruvost-Robieux
- University of Paris cite - Medical School
- INSERM 1266, psychiatry and neurosciences institute of Paris (IPNP)
- Neurophysiology and epileptology department, Sainte Anne hospital, Paris, France
| | - Aidan Neligan
- Homerton University Hospital NHS Foundation Trust, Homerton Row
- UCL Queen Square Institute of Neurology, Queen Square, London
- Centre for Preventive Neurology, Wolfson Institute of Population Health, QMUL, UK
| | | |
Collapse
|
5
|
Pale U, Teijeiro T, Rheims S, Ryvlin P, Atienza D. Combining general and personal models for epilepsy detection with hyperdimensional computing. Artif Intell Med 2024; 148:102754. [PMID: 38325932 DOI: 10.1016/j.artmed.2023.102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 02/09/2024]
Abstract
Epilepsy is a highly prevalent chronic neurological disorder with great negative impact on patients' daily lives. Despite this there is still no adequate technological support to enable epilepsy detection and continuous outpatient monitoring in everyday life. Hyperdimensional (HD) computing is a promising method for epilepsy detection via wearable devices, characterized by a simpler learning process and lower memory requirements compared to other methods. In this work, we demonstrate additional avenues in which HD computing and the manner in which its models are built and stored can be used to better understand, compare and create more advanced machine learning models for epilepsy detection. These possibilities are not feasible with other state-of-the-art models, such as random forests or neural networks. We compare inter-subject model similarity of different classes (seizure and non-seizure), study the process of creating general models from personal ones, and finally posit a method of combining personal and general models to create hybrid models. This results in an improved epilepsy detection performance. We also tested knowledge transfer between models trained on two different datasets. The attained insights are highly interesting not only from an engineering perspective, to create better models for wearables, but also from a neurological perspective, to better understand individual epilepsy patterns.
Collapse
Affiliation(s)
- Una Pale
- Embedded Systems Laboratory (ESL), Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.
| | - Tomas Teijeiro
- Embedded Systems Laboratory (ESL), Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland; Basque Center for Applied Mathematics (BCAM), Spain
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France; Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292 and Lyon 1 University, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David Atienza
- Embedded Systems Laboratory (ESL), Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland
| |
Collapse
|
6
|
Zhao C, Tang Y, Xiao Y, Jiang P, Zhang Z, Gong Q, Zhou D. Asymmetrical cortical surface area decrease in epilepsy patients with postictal generalized electroencephalography suppression. Cereb Cortex 2024; 34:bhae026. [PMID: 38342683 DOI: 10.1093/cercor/bhae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
Postictal generalized electroencephalographic suppression is a possible electroencephalographic marker for sudden unexpected death in epilepsy. We aimed to investigate the cortical surface area abnormalities in epilepsy patients with postictal generalized electroencephalographic suppression. We retrospectively included 30 epilepsy patients with postictal generalized electroencephalographic suppression (PGES+), 21 epilepsy patients without postictal generalized electroencephalographic suppression (PGES-), and 30 healthy controls. Surface-based analysis on high-resolution T1-weighted images was conducted and cortical surface areas were compared among the three groups, alongside correlation analyses with seizure-related clinical variables. Compared with PGES- group, we identified reduced surface area in the bilateral insula with more extensive distribution in the right hemisphere in PGES+ group. The reduced right insular surface area was associated with younger seizure-onset age. When compared with healthy controls, PGES- group presented reduced surface area in the left caudal middle frontal gyrus; PGES+ group presented more widespread surface area reductions in the right posterior cingulate gyrus, left postcentral gyrus, middle frontal gyrus, and middle temporal gyrus. Our results suggested cortical microstructural impairment in patients with postictal generalized electroencephalographic suppression. The significant surface area reductions in the insular cortex supported the autonomic network involvement in the pathology of postictal generalized electroencephalographic suppression, and its right-sided predominance suggested the potential shared abnormal brain network for postictal generalized electroencephalographic suppression and sudden unexpected death in epilepsy.
Collapse
Affiliation(s)
- Chenyang Zhao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingying Tang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuan Xiao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ping Jiang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Ziyi Zhang
- West China School of Public Health, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
7
|
Smith J, Richerson G, Kouchi H, Duprat F, Mantegazza M, Bezin L, Rheims S. Are we there yet? A critical evaluation of sudden and unexpected death in epilepsy models. Epilepsia 2024; 65:9-25. [PMID: 37914406 DOI: 10.1111/epi.17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Although animal models have helped to elaborate meaningful hypotheses about the pathophysiology of sudden and unexpected death in epilepsy (SUDEP), specific prevention strategies are still lacking, potentially reflecting the limitations of these models and the intrinsic difficulties of investigating SUDEP. The interpretation of preclinical data and their translation to diagnostic and therapeutic developments in patients thus require a high level of confidence in their relevance to model the human situation. Preclinical models of SUDEP are heterogeneous and include rodent and nonrodent species. A critical aspect is whether the animals have isolated seizures exclusively induced by a specific trigger, such as models where seizures are elicited by electrical stimulation, pharmacological intervention, or DBA mouse strains, or whether they suffer from epilepsy with spontaneous seizures, with or without spontaneous SUDEP, either of nongenetic epilepsy etiology or from genetically based developmental and epileptic encephalopathies. All these models have advantages and potential disadvantages, but it is important to be aware of these limitations to interpret data appropriately in a translational perspective. The majority of models with spontaneous seizures are of a genetic basis, whereas SUDEP cases with a genetic basis represent only a small proportion of the total number. In almost all models, cardiorespiratory arrest occurs during the course of the seizure, contrary to that in patients observed at the time of death, potentially raising the issue of whether we are studying models of SUDEP or models of periseizure death. However, some of these limitations are impossible to avoid and can in part be dependent on specific features of SUDEP, which may be difficult to model. Several preclinical tools are available to address certain gaps in SUDEP pathophysiology, which can be used to further validate current preclinical models.
Collapse
Affiliation(s)
- Jonathon Smith
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - George Richerson
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Hayet Kouchi
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - Fabrice Duprat
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Laurent Bezin
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| |
Collapse
|
8
|
Sainju RK, Dragon DN, Winnike HB, Vilella L, Li X, Lhatoo S, Eyck PT, Wendt LH, Richerson GB, Gehlbach BK. Interictal respiratory variability predicts severity of hypoxemia after generalized convulsive seizures. Epilepsia 2023; 64:2373-2384. [PMID: 37344924 PMCID: PMC10538446 DOI: 10.1111/epi.17691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE Severe respiratory dysfunction induced by generalized convulsive seizures (GCS) is now thought to be a common mechanism for sudden unexpected death in epilepsy (SUDEP). In a mouse model of seizure-induced death, increased interictal respiratory variability was reported in mice that later died of respiratory arrest after GCS. We studied respiratory variability in epilepsy patients as a predictive tool for severity of postictal hypoxemia, a potential biomarker for SUDEP risk. We then explored the relationship between respiratory variability and central CO2 drive, measured by the hypercapnic ventilatory response (HCVR). METHODS We reviewed clinical, video-electroencephalography, and respiratory (belts, airflow, pulse oximeter, and HCVR) data of epilepsy patients. Mean, SD, and coefficient of variation (CV) of interbreath interval (IBI) were calculated. Primary outcomes were: (1) nadir of capillary oxygen saturation (SpO2 ) and (2) duration of oxygen desaturation. Poincaré plots of IBI were created. Covariates were evaluated in univariate models, then, based on Akaike information criteria (AIC), multivariate regression models were created. RESULTS Of 66 GCS recorded in 131 subjects, 30 had interpretable respiratory data. In the multivariate model with the lowest AIC value, duration of epilepsy was a significant predictor of duration of oxygen desaturation. Duration of tonic phase and CV of IBI during the third postictal minute correlated with SpO2 nadir, whereas CV of IBI during non-rapid eye movement sleep had a negative correlation. Poincaré plots showed that long-term variability was significantly greater in subjects with ≥200 s of postictal oxygen desaturation after GCS compared to those with <200 s desaturation. Finally, HCVR slope showed a negative correlation with measures of respiratory variability. SIGNIFICANCE These results indicate that interictal respiratory variability predicts severity of postictal oxygen desaturation, suggesting its utility as a potential biomarker. They also suggest that interictal respiratory control may be abnormal in some patients with epilepsy.
Collapse
Affiliation(s)
- Rup K. Sainju
- Department of Neurology University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Deidre N. Dragon
- Department of Neurology University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Harold B. Winnike
- Institute for Clinical and Translational Science University of Iowa, Iowa City, IA
| | - Laura Vilella
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaojin Li
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Samden Lhatoo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science University of Iowa, Iowa City, IA
| | - Linder H Wendt
- Institute for Clinical and Translational Science University of Iowa, Iowa City, IA
| | - George B. Richerson
- Department of Neurology University of Iowa Hospitals and Clinics, Iowa City, IA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa, IA
- VA Medical Center, Iowa City, IA
| | - Brian K. Gehlbach
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA
| |
Collapse
|
9
|
Lamrani Y, Tran TPY, Toffa DH, Robert M, Bérubé AA, Nguyen DK, Bou Assi E. Unexpected cardiorespiratory findings postictally and at rest weeks prior to SUDEP. Front Neurol 2023; 14:1129395. [PMID: 37034071 PMCID: PMC10080096 DOI: 10.3389/fneur.2023.1129395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Mechanisms underlying sudden unexpected death in epilepsy (SUDEP) are unclear, but autonomic disorders are thought to play a critical role. However, those dysfunctions have mainly been reported in the peri-ictal context of generalized tonic-clonic seizures. Here, we explored whether heart rate variability (HRV), heart rate (HR), and breathing rate (BR) changes could be observed perictally during focal seizures with or without impaired awareness as well as interictally to assess the risk of SUDEP. We report the case of a 33-year-old patient with drug-resistant bilateral temporal lobe epilepsy who died at home probably from an unwitnessed nocturnal seizure ("probable SUDEP"). Methods Ictal and interictal HRV as well as postictal cardiorespiratory analyses were conducted to assess autonomic functions and overall SUDEP risk. The SUDEP patient was compared to two living male patients from our local database matched for age, sex, and location of the epileptic focus. Results Interictal HRV analysis showed that all sleep HRV parameters and most awake HRV parameters of the SUDEP patient were significantly lower than those of our two control subjects with bitemporal lobe epilepsy without SUDEP (p < 0.01). In two focal with impaired awareness seizures (FIAS) of the SUDEP patient, increased postictal mean HR and reduced preictal mean high frequency signals (HF), known markers of increased seizure severity in convulsive seizures, were seen postictally. Furthermore, important autonomic instability and hypersensitivity were seen through fluctuations in LF/HF ratio following two seizures of the SUDEP patient, with a rapid transition between sympathetic and parasympathetic activity. In addition, a combination of severe hypopnea (202 s) and bradycardia (10 s), illustrating autonomic dysfunction, was found after one of the SUDEP patient's FIAS. Discussion The unusual cardiorespiratory and HRV patterns found in this case indicated autonomic abnormalities that were possibly predictive of an increased risk of SUDEP. It will be interesting to perform similar analyses in other SUDEP cases to see whether our findings are anecdotal or instead suggestive of reliable biomarkers of high SUDEP risk in focal epilepsy, in particular focal with or without impaired awareness seizures.
Collapse
Affiliation(s)
- Yassine Lamrani
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- *Correspondence: Yassine Lamrani,
| | - Thi Phuoc Yen Tran
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Dènahin Hinnoutondji Toffa
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Manon Robert
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Arline-Aude Bérubé
- Division of Neurology, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
| | - Dang Khoa Nguyen
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- Division of Neurology, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
| | - Elie Bou Assi
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
10
|
Rheims S, Sperling MR, Ryvlin P. Drug-resistant epilepsy and mortality-Why and when do neuromodulation and epilepsy surgery reduce overall mortality. Epilepsia 2022; 63:3020-3036. [PMID: 36114753 PMCID: PMC10092062 DOI: 10.1111/epi.17413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 01/11/2023]
Abstract
Patients with drug-resistant epilepsy have an increased mortality rate, with the majority of deaths being epilepsy related and 40% due to sudden unexpected death in epilepsy (SUDEP). The impact of epilepsy surgery on mortality has been investigated since the 1970s, with increased interest in this field during the past 15 years. We systematically reviewed studies investigating mortality rate in patients undergoing epilepsy surgery or neuromodulation therapies. The quality of available evidence proved heterogenous and often limited by significant methodological issues. Perioperative mortality following epilepsy surgery was found to be <1%. Meta-analysis of studies that directly compared patients who underwent surgery to those not operated following presurgical evaluation showed that the former have a two-fold lower risk of death and a three-fold lower risk of SUDEP compared to the latter (odds ratio [OR] 0.40, 95% confidence interval [CI]: 0.29-0.56; p < .0001 for overall mortality and OR 0.32, 95% CI: 0.18-0.57; p < .001 for SUDEP). Limited data are available regarding the risk of death and SUDEP in patients undergoing neuromodulation therapies, although some evidence indicates that vagus nerve stimulation might be associated with a lower risk of SUDEP. Several key questions remain to be addressed in future studies, considering the need to better inform patients about the long-term benefit-risk ratio of epilepsy surgery. Dedicated long-term prospective studies will thus be required to provide more personalized information on the impact of surgery and/or neuromodulation on the risk of death and SUDEP.
Collapse
Affiliation(s)
- Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292 and Lyon 1 University, Lyon, France
| | - Mickael R Sperling
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Vaudois University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
11
|
Zavileyskiy LG, Aleshin VA, Kaehne T, Karlina IS, Artiukhov AV, Maslova MV, Graf AV, Bunik VI. The Brain Protein Acylation System Responds to Seizures in the Rat Model of PTZ-Induced Epilepsy. Int J Mol Sci 2022; 23:ijms232012302. [PMID: 36293175 PMCID: PMC9603846 DOI: 10.3390/ijms232012302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Abnormal energy expenditure during seizures and metabolic regulation through post-translational protein acylation suggest acylation as a therapeutic target in epilepsy. Our goal is to characterize an interplay between the brain acylation system components and their changes after seizures. In a rat model of pentylenetetrazole (PTZ)-induced epilepsy, we quantify 43 acylations in 29 cerebral cortex proteins; levels of NAD+; expression of NAD+-dependent deacylases (SIRT2, SIRT3, SIRT5); activities of the acyl-CoA-producing/NAD+-utilizing complexes of 2-oxoacid dehydrogenases. Compared to the control group, acylations of 14 sites in 11 proteins are found to differ significantly after seizures, with six of the proteins involved in glycolysis and energy metabolism. Comparing the single and chronic seizures does not reveal significant differences in the acylations, pyruvate dehydrogenase activity, SIRT2 expression or NAD+. On the contrary, expression of SIRT3, SIRT5 and activity of 2-oxoglutarate dehydrogenase (OGDH) decrease in chronic seizures vs. a single seizure. Negative correlations between the protein succinylation/glutarylation and SIRT5 expression, and positive correlations between the protein acetylation and SIRT2 expression are shown. Our findings unravel involvement of SIRT5 and OGDH in metabolic adaptation to seizures through protein acylation, consistent with the known neuroprotective role of SIRT5 and contribution of OGDH to the Glu/GABA balance perturbed in epilepsy.
Collapse
Affiliation(s)
- Lev G. Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily A. Aleshin
- Department of Biokinetics, A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Irina S. Karlina
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Artem V. Artiukhov
- Department of Biokinetics, A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| | - Maria V. Maslova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anastasia V. Graf
- Department of Biokinetics, A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biokinetics, A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-939-4484
| |
Collapse
|
12
|
Talavera B, Hupp NJ, Melius S, Lhatoo SD, Lacuey N. Protocols for multimodal polygraphy for cardiorespiratory monitoring in the epilepsy monitoring unit. Part I: Clinical acquisition. Epilepsy Res 2022; 185:106990. [PMID: 35930940 DOI: 10.1016/j.eplepsyres.2022.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Multimodal polygraphy including cardiorespiratory monitoring in the Epilepsy Monitoring is becoming increasingly important. In addition to simultaneous recording of video and EEG, the combination of these techniques not only improves seizure detection, it enhances patient safety and provides information on autonomic clinical symptoms, which may be contributory to localization of seizure foci. However, there are currently no consensus guidelines, nor adequate information on devices available for multimodal polygraphy for cardiorespiratory monitoring in the Epilepsy Monitoring Unit. Our purpose here is to provide protocols and information on devices for such monitoring. Suggested parameters include respiratory inductance plethysmography (thoraco-abdominal belts for respiratory rate), pulse oximetry and four-lead electrocardiography. Detailed knowledge of devices, their operability and acquisition optimization enables accurate interpretation of signal and differentiation of abnormalities from artifacts. Multimodal polygraphy brings new opportunities for identification of peri-ictal cardiorespiratory abnormalities, and may identify high SUDEP risk individuals.
Collapse
Affiliation(s)
- Blanca Talavera
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA.
| | - Norma J Hupp
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Stephen Melius
- Memorial Hermann, Texas Medical Center, Houston, TX, USA
| | - Samden D Lhatoo
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Nuria Lacuey
- Texas Institute of Restorative Neurotechnologies (TIRN), University of Texas Health Science Center (UTHealth), Houston, TX, USA
| |
Collapse
|
13
|
Leitner DF, Kanshin E, Askenazi M, Faustin A, Friedman D, Devore S, Ueberheide B, Wisniewski T, Devinsky O. Raphe and ventrolateral medulla proteomics in epilepsy and sudden unexpected death in epilepsy. Brain Commun 2022; 4:fcac186. [PMID: 35928051 PMCID: PMC9344977 DOI: 10.1093/braincomms/fcac186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
Brainstem nuclei dysfunction is implicated in sudden unexpected death in epilepsy. In animal models, deficient serotonergic activity is associated with seizure-induced respiratory arrest. In humans, glia are decreased in the ventrolateral medullary pre-Botzinger complex that modulate respiratory rhythm, as well as in the medial medullary raphe that modulate respiration and arousal. Finally, sudden unexpected death in epilepsy cases have decreased midbrain volume. To understand the potential role of brainstem nuclei in sudden unexpected death in epilepsy, we evaluated molecular signalling pathways using localized proteomics in microdissected midbrain dorsal raphe and medial medullary raphe serotonergic nuclei, as well as the ventrolateral medulla in brain tissue from epilepsy patients who died of sudden unexpected death in epilepsy and other causes in diverse epilepsy syndromes and non-epilepsy control cases (n = 15-16 cases per group/region). Compared with the dorsal raphe of non-epilepsy controls, we identified 89 proteins in non-sudden unexpected death in epilepsy and 219 proteins in sudden unexpected death in epilepsy that were differentially expressed. These proteins were associated with inhibition of EIF2 signalling (P-value of overlap = 1.29 × 10-8, z = -2.00) in non-sudden unexpected death in epilepsy. In sudden unexpected death in epilepsy, there were 10 activated pathways (top pathway: gluconeogenesis I, P-value of overlap = 3.02 × 10-6, z = 2.24) and 1 inhibited pathway (fatty acid beta-oxidation, P-value of overlap = 2.69 × 10-4, z = -2.00). Comparing sudden unexpected death in epilepsy and non-sudden unexpected death in epilepsy, 10 proteins were differentially expressed, but there were no associated signalling pathways. In both medullary regions, few proteins showed significant differences in pairwise comparisons. We identified altered proteins in the raphe and ventrolateral medulla of epilepsy patients, including some differentially expressed in sudden unexpected death in epilepsy cases. Altered signalling pathways in the dorsal raphe of sudden unexpected death in epilepsy indicate a shift in cellular energy production and activation of G-protein signalling, inflammatory response, stress response and neuronal migration/outgrowth. Future studies should assess the brain proteome in relation to additional clinical variables (e.g. recent tonic-clonic seizures) and in more of the reciprocally connected cortical and subcortical regions to better understand the pathophysiology of epilepsy and sudden unexpected death in epilepsy.
Collapse
Affiliation(s)
- Dominique F Leitner
- Comprehensive Epilepsy Center, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, Grossman
School of Medicine, New York University, 223 East 34th
Street, New York, NY 10016, USA
| | - Manor Askenazi
- Biomedical Hosting LLC, Arlington, MA
02140, USA
- Department of Biochemistry and Molecular Pharmacology, Grossman School of
Medicine, New York University, 223 East 34th Street, New
York, NY 10016, USA
| | - Arline Faustin
- Center for Cognitive Neurology, Department of Neurology, Grossman School of
Medicine, New York University, 223 East 34th Street, New
York, NY 10016, USA
- Department of Pathology, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| | - Daniel Friedman
- Comprehensive Epilepsy Center, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| | - Sasha Devore
- Comprehensive Epilepsy Center, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, Grossman
School of Medicine, New York University, 223 East 34th
Street, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, Grossman School of
Medicine, New York University, 223 East 34th Street, New
York, NY 10016, USA
- Center for Cognitive Neurology, Department of Neurology, Grossman School of
Medicine, New York University, 223 East 34th Street, New
York, NY 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of
Medicine, New York University, 223 East 34th Street, New
York, NY 10016, USA
- Department of Pathology, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
- Department of Psychiatry, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Grossman School of Medicine, New York
University, 223 East 34th Street, New York, NY
10016, USA
| |
Collapse
|
14
|
Arslan GA, Erkent I, Saygi S, Tezer FI. Changes of oxygen saturation in patients with pure temporal lobe epilepsy. Seizure 2022; 100:30-35. [PMID: 35728344 DOI: 10.1016/j.seizure.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Ictal hypoxemia is accepted as one of the mechanisms underlying sudden unexpected death in epilepsy (SUDEP). Although ictal hypoxemia is more common in generalized seizures, it also occurs in focal seizures with or without generalization. In this study, we aimed to show the relationship between clinical and electroencephalographic findings of seizures in patients with temporal lobe epilepsy (TLE) with periictal oxygen saturation. METHODS The data of 55 adult patients who were hospitalized in the Video EEG Monitoring Unit (VEMU) and operated on for drug-resistant TLE between January 2017 and December 2020 were examined. Forty-five seizures from 21 patients with ictal peripheral arterial saturation information and that were seizure-free for at least a year during the follow-up were included in the study. RESULTS The median patient age was 28 (IQR 25-39.5) years (women: 9, men: 12). Age at epilepsy onset was negatively correlated with saturation at seizure onset. Moreover, the age at VEMU admission was also negatively correlated with saturation at seizure onset and the lowest levels of saturation. The saturation at the end of the seizures and the lowest saturation measured in the periictal period with generalization of EEG were significantly lower than those without generalization. The onset of ictal EEG with the rhythmic theta pattern was significantly associated with the lowest level of saturation (<90%), postictal generalized electroencephalographic suppression (PGES), and the presence of generalization. CONCLUSION According to the study, rhythmic ictal theta activity, older age, nocturnal seizure, and generalization in ictal EEG might increase the potential risk of SUDEP. Further studies including a greater number of subjects and different epilepsy syndromes may provide more comprehensive information about potential biomarkers for SUDEP.
Collapse
Affiliation(s)
- Gokce Ayhan Arslan
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| | - Irem Erkent
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| | - Serap Saygi
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| | - F Irsel Tezer
- Hacettepe University Medicine Faculty, Department of Neurology, Ankara, Turkey.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Sudden unexpected death in epilepsy (SUDEP) is a major contributor to premature mortality in people with epilepsy. This review provides an update on recent findings on the epidemiology of SUDEP, clinical risk factors and potential mechanisms. RECENT FINDINGS The overall risk rate of SUDEP is approximately 1 per 1000 patients per year in the general epilepsy population and that children and older adults have a similar incidence. Generalized convulsive seizures (GCS), perhaps through their effects on brainstem cardiopulmonary networks, can cause significant postictal respiratory and autonomic dysfunction though other mechanisms likely exist as well. Work in animal models of SUDEP has identified multiple neurotransmitter systems, which may be future targets for pharmacological intervention. There are also chronic functional and structural changes in autonomic function in patients who subsequently die from SUDEP suggesting that some SUDEP risk is dynamic. Modifiable risks for SUDEP include GCS seizure frequency, medication adherence and nighttime supervision. SUMMARY Current knowledge of SUDEP risk factors has identified multiple targets for SUDEP prevention today as we await more specific therapeutic targets that are emerging from translational research studies.
Collapse
Affiliation(s)
- Daniel Friedman
- NYU Grossman School of Medicine, Department of Neurology, 223 East 34th Street, New York, New York, USA
| |
Collapse
|
16
|
Yang X, Yang X, Liu B, Sun A, Zhao X. Risk factors for postictal generalized EEG suppression in generalized convulsive seizure: a systematic review and meta-analysis. Seizure 2022; 98:19-26. [DOI: 10.1016/j.seizure.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022] Open
|
17
|
Smith AN, Abraham J, Shankar R. Oxygen for seizures, more questions than answers: A scoping review. Acta Neurol Scand 2021; 144:719-729. [PMID: 34309004 DOI: 10.1111/ane.13508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ictal hypoxaemia is a feature seen in epileptic seizures, characterized by low oxygen saturations, increasing seizure prolongation risk and possibly contributing to sudden unexpected death in epilepsy (SUDEP). High flow oxygen is recommended in the management of seizures by UK's National Institute of Health and Care excellence (NICE); however, the evidence supporting this recommendation is unclear. AIMS To identify the efficacy of oxygen in the seizure treatment. METHOD A scoping review was conducted using PRISMA-ScR guidance. PsycINFO, EMBASE and MEDLINE were searched along with the references section of identified literature. Articles were critically appraised for study, patient, seizure, oxygen therapy and outcome characteristics, summarized and quality-assessed using Sackett's criteria. RESULTS Literature search identified 623 articles of which five met the pre-criteria for full review. One animal study demonstrated favourable effects of oxygen administration. Three human studies also reported favourable effects of oxygen administration, while one reported outcomes that were not statistically significant. Study design concerns in all identified literature confounded the ability to assess efficacy. All five publications were assigned Sackett's score of 2b. CONCLUSION There is a significant lack of evidence to support the efficacy of oxygen administration in epileptic seizures. Future research is needed.
Collapse
Affiliation(s)
| | - Julie Abraham
- Royal Cornwall Hospital Truro, University of Exeter Medical School, Cornwall, UK
| | - Rohit Shankar
- Cornwall Intellectual Disability Epilepsy Research (CIDER), University of Plymouth Medical School, Truro, UK
| |
Collapse
|
18
|
Siahaan YMT, Ketaren RJ, Hartoyo V, Hariyanto TI. Epilepsy and the risk of severe coronavirus disease 2019 outcomes: A systematic review, meta-analysis, and meta-regression. Epilepsy Behav 2021; 125:108437. [PMID: 34839246 PMCID: PMC8590948 DOI: 10.1016/j.yebeh.2021.108437] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with epilepsy experience seizures, which have been reported to increase and worsen during the coronavirus disease (COVID-19) pandemic. However, the association between epilepsy and COVID-19 outcomes remains unclear. The aim of this study was to analyze whether patients with epilepsy have an increased risk of having poor COVID-19 outcomes. METHODS We comprehensively evaluated potential articles extracted from the medRxiv, Europe PMC, and PubMed databases until June 30, 2021, using selected keywords. All published studies on epilepsy and COVID-19 were selected. We used the Review Manager 5.4 and Comprehensive Meta-Analysis 3 software for statistical analysis. RESULTS Thirteen studies with 67,131 patients with COVID-19 were included in the analysis. Evaluation of the collated data revealed an association between epilepsy and increased severity of COVID-19 (OR, 1.69; 95%CI: 1.11-2.59; p = 0.010; I2 = 29%; random-effect modeling) and mortality from COVID-19 (OR, 1.71; 95%CI: 1.14-2.56; p = 0.010; I2 = 53%; random-effect modeling). The results also showed that the association between epilepsy and increased risk of developing severe COVID-19 is influenced by sex and neurodegenerative disease. CONCLUSIONS The findings of this study suggest that patients with epilepsy are at risk of having poor COVID-19 outcomes. Patients with epilepsy need special attention and should be prioritized for administration of the COVID-19 vaccine. Registration details: PROSPERO (CRD42021264979).
Collapse
Affiliation(s)
- Yusak Mangara Tua Siahaan
- Department of Neurology, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Retno Jayantri Ketaren
- Department of Neurology, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Vinson Hartoyo
- Department of Neurology, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | | |
Collapse
|
19
|
Burtscher J, Syed MMK, Keller MA, Lashuel HA, Millet GP. Fatal attraction - The role of hypoxia when alpha-synuclein gets intimate with mitochondria. Neurobiol Aging 2021; 107:128-141. [PMID: 34428721 DOI: 10.1016/j.neurobiolaging.2021.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation and mitochondrial dysfunction are main pathological hallmarks of Parkinson's disease (PD) and several other neurodegenerative diseases, collectively known as synucleinopathies. However, increasing evidence suggests that they may not be sufficient to cause PD. Here we propose the role of hypoxia as a missing link that connects the complex interplay between alpha-synuclein biochemistry and pathology, mitochondrial dysfunctions and neurodegeneration in PD. We review the partly conflicting literature on alpha-synuclein binding to membranes and mitochondria and its impact on mitochondrial functions. From there, we focus on adverse changes in cellular environments, revolving around hypoxic stress, that may trigger or facilitate PD progression. Inter-dependent structural re-arrangements of mitochondrial membranes, including increased cytoplasmic exposure of mitochondrial cardiolipins and changes in alpha-synuclein localization and conformation are discussed consequences of such conditions. Enhancing cellular resilience could be an integral part of future combination-based therapies of PD. This may be achieved by boosting the capacity of cellular and specifically mitochondrial processes to regulate and adapt to altered proteostasis, redox, and inflammatory conditions and by inducing protective molecular and tissue re-modelling.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Leitner DF, Faustin A, Verducci C, Friedman D, William C, Devore S, Wisniewski T, Devinsky O. Neuropathology in the North American sudden unexpected death in epilepsy registry. Brain Commun 2021; 3:fcab192. [PMID: 34514397 PMCID: PMC8417454 DOI: 10.1093/braincomms/fcab192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Sudden unexpected death in epilepsy is the leading category of epilepsy-related death and the underlying mechanisms are incompletely understood. Risk factors can include a recent history and high frequency of generalized tonic-clonic seizures, which can depress brain activity postictally, impairing respiration, arousal and protective reflexes. Neuropathological findings in sudden unexpected death in epilepsy cases parallel those in other epilepsy patients, with no implication of novel structures or mechanisms in seizure-related deaths. Few large studies have comprehensively reviewed whole brain examination of such patients. We evaluated 92 North American Sudden unexpected death in epilepsy Registry cases with whole brain neuropathological examination by board-certified neuropathologists blinded to the adjudicated cause of death, with an average of 16 brain regions examined per case. The 92 cases included 61 sudden unexpected death in epilepsy (40 definite, 9 definite plus, 6 probable, 6 possible) and 31 people with epilepsy controls who died from other causes. The mean age at death was 34.4 years and 65.2% (60/92) were male. The average age of death was younger for sudden unexpected death in epilepsy cases than for epilepsy controls (30.0 versus 39.6 years; P = 0.006), and there was no difference in sex distribution respectively (67.3% male versus 64.5%, P = 0.8). Among sudden unexpected death in epilepsy cases, earlier age of epilepsy onset positively correlated with a younger age at death (P = 0.0005) and negatively correlated with epilepsy duration (P = 0.001). Neuropathological findings were identified in 83.7% of the cases in our cohort. The most common findings were dentate gyrus dysgenesis (sudden unexpected death in epilepsy 50.9%, epilepsy controls 54.8%) and focal cortical dysplasia (FCD) (sudden unexpected death in epilepsy 41.8%, epilepsy controls 29.0%). The neuropathological findings in sudden unexpected death in epilepsy paralleled those in epilepsy controls, including the frequency of total neuropathological findings as well as the specific findings in the dentate gyrus, findings pertaining to neurodevelopment (e.g. FCD, heterotopias) and findings in the brainstem (e.g. medullary arcuate or olivary dysgenesis). Thus, like prior studies, we found no neuropathological findings that were more common in sudden unexpected death in epilepsy cases. Future neuropathological studies evaluating larger sudden unexpected death in epilepsy and control cohorts would benefit from inclusion of different epilepsy syndromes with detailed phenotypic information, consensus among pathologists particularly for more subjective findings where observations can be inconsistent, and molecular approaches to identify markers of sudden unexpected death in epilepsy risk or pathogenesis.
Collapse
Affiliation(s)
- Dominique F Leitner
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Arline Faustin
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Chloe Verducci
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Daniel Friedman
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Christopher William
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
- Department of Pathology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Sasha Devore
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
- Department of Pathology, NYU Langone Health and School of Medicine, New York, NY, USA
- Department of Psychiatry, NYU Langone Health and School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Langone Health and School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Purnell B, Murugan M, Jani R, Boison D. The Good, the Bad, and the Deadly: Adenosinergic Mechanisms Underlying Sudden Unexpected Death in Epilepsy. Front Neurosci 2021; 15:708304. [PMID: 34321997 PMCID: PMC8311182 DOI: 10.3389/fnins.2021.708304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Adenosine is an inhibitory modulator of neuronal excitability. Neuronal activity results in increased adenosine release, thereby constraining excessive excitation. The exceptionally high neuronal activity of a seizure results in a surge in extracellular adenosine to concentrations many-fold higher than would be observed under normal conditions. In this review, we discuss the multifarious effects of adenosine signaling in the context of epilepsy, with emphasis on sudden unexpected death in epilepsy (SUDEP). We describe and categorize the beneficial, detrimental, and potentially deadly aspects of adenosine signaling. The good or beneficial characteristics of adenosine signaling in the context of seizures include: (1) its direct effect on seizure termination and the prevention of status epilepticus; (2) the vasodilatory effect of adenosine, potentially counteracting postictal vasoconstriction; (3) its neuroprotective effects under hypoxic conditions; and (4) its disease modifying antiepileptogenic effect. The bad or detrimental effects of adenosine signaling include: (1) its capacity to suppress breathing and contribute to peri-ictal respiratory dysfunction; (2) its contribution to postictal generalized EEG suppression (PGES); (3) the prolonged increase in extracellular adenosine following spreading depolarization waves may contribute to postictal neuronal dysfunction; (4) the excitatory effects of A2A receptor activation is thought to exacerbate seizures in some instances; and (5) its potential contributions to sleep alterations in epilepsy. Finally, the adverse effects of adenosine signaling may potentiate a deadly outcome in the form of SUDEP by suppressing breathing and arousal in the postictal period. Evidence from animal models suggests that excessive postictal adenosine signaling contributes to the pathophysiology of SUDEP. The goal of this review is to discuss the beneficial, harmful, and potentially deadly roles that adenosine plays in the context of epilepsy and to identify crucial gaps in knowledge where further investigation is necessary. By better understanding adenosine dynamics, we may gain insights into the treatment of epilepsy and the prevention of SUDEP.
Collapse
Affiliation(s)
- Benton Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Raja Jani
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
22
|
Gabeff V, Teijeiro T, Zapater M, Cammoun L, Rheims S, Ryvlin P, Atienza D. Interpreting deep learning models for epileptic seizure detection on EEG signals. Artif Intell Med 2021; 117:102084. [PMID: 34127231 DOI: 10.1016/j.artmed.2021.102084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
While Deep Learning (DL) is often considered the state-of-the art for Artificial Intel-ligence-based medical decision support, it remains sparsely implemented in clinical practice and poorly trusted by clinicians due to insufficient interpretability of neural network models. We have approached this issue in the context of online detection of epileptic seizures by developing a DL model from EEG signals, and associating certain properties of the model behavior with the expert medical knowledge. This has conditioned the preparation of the input signals, the network architecture, and the post-processing of the output in line with the domain knowledge. Specifically, we focused the discussion on three main aspects: (1) how to aggregate the classification results on signal segments provided by the DL model into a larger time scale, at the seizure-level; (2) what are the relevant frequency patterns learned in the first convolutional layer of different models, and their relation with the delta, theta, alpha, beta and gamma frequency bands on which the visual interpretation of EEG is based; and (3) the identification of the signal waveforms with larger contribution towards the ictal class, according to the activation differences highlighted using the DeepLIFT method. Results show that the kernel size in the first layer determines the interpretability of the extracted features and the sensitivity of the trained models, even though the final performance is very similar after post-processing. Also, we found that amplitude is the main feature leading to an ictal prediction, suggesting that a larger patient population would be required to learn more complex frequency patterns. Still, our methodology was successfully able to generalize patient inter-variability for the majority of the studied population with a classification F1-score of 0.873 and detecting 90% of the seizures.
Collapse
Affiliation(s)
- Valentin Gabeff
- Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland.
| | - Tomas Teijeiro
- Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland
| | - Marina Zapater
- Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland; REDS Institute, University of Applied Sciences Western Switzerland (HEIG-VD/HES-SO), Yverdon-les-Bains, Switzerland
| | - Leila Cammoun
- Department of Clinical Neurosciences, Neurology Service, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France; Lyon's Neurosciences Research Center (INSERM U1028/CNRS UMR 5292), Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Neurology Service, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - David Atienza
- Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland
| |
Collapse
|
23
|
Mazzola L, Rheims S. Ictal and Interictal Cardiac Manifestations in Epilepsy. A Review of Their Relation With an Altered Central Control of Autonomic Functions and With the Risk of SUDEP. Front Neurol 2021; 12:642645. [PMID: 33776894 PMCID: PMC7994524 DOI: 10.3389/fneur.2021.642645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
There is a complex interrelation between epilepsy and cardiac pathology, with both acute and long-term effects of seizures on the regulation of the cardiac rhythm and on the heart functioning. A specific issue is the potential relation between these cardiac manifestations and the risk of Sudden and Unexpected Death in Epilepsy (SUDEP), with unclear respective role of centrally-control ictal changes, long-term epilepsy-related dysregulation of the neurovegetative control and direct effects on the heart function. In the present review, we detailed available data about ictal cardiac changes, along with interictal cardiac manifestations associated with long-term functional and structural alterations of the heart. Pathophysiological mechanisms of these cardiac changes are discussed, with a specific focus on central mechanisms and the investigation of a possible deregulation of the central control of autonomic functions in addition to the role of catecholamine and hypoxemia on heart.
Collapse
Affiliation(s)
- Laure Mazzola
- Neurology Department, University Hospital, Saint-Étienne, France.,Lyon Neuroscience Research Center, INSERM U 1028, CNRS UMR, Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, INSERM U 1028, CNRS UMR, Lyon, France.,Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| |
Collapse
|
24
|
Burtscher J, Syed MMK, Lashuel HA, Millet GP. Hypoxia Conditioning as a Promising Therapeutic Target in Parkinson's Disease? Mov Disord 2021; 36:857-861. [DOI: 10.1002/mds.28544] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
- Institute of Sport Sciences, University of Lausanne Lausanne Switzerland
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute, EPFL Lausanne Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute, EPFL Lausanne Switzerland
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne Lausanne Switzerland
| |
Collapse
|
25
|
Ashraf O, Huynh T, Purnell BS, Murugan M, Fedele DE, Chitravanshi V, Boison D. Suppression of phrenic nerve activity as a potential predictor of imminent sudden unexpected death in epilepsy (SUDEP). Neuropharmacology 2021; 184:108405. [PMID: 33212114 PMCID: PMC8199795 DOI: 10.1016/j.neuropharm.2020.108405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with refractory epilepsy. Centrally-mediated respiratory dysfunction has been identified as one of the principal mechanisms responsible for SUDEP. Seizures generate a surge in adenosine release. Elevated adenosine levels suppress breathing. Insufficient metabolic clearance of a seizure-induced adenosine surge might be a precipitating factor in SUDEP. In order to deliver targeted therapies to prevent SUDEP, reliable biomarkers must be identified to enable prompt intervention. Because of the integral role of the phrenic nerve in breathing, we hypothesized that suppression of phrenic nerve activity could be utilized as predictive biomarker for imminent SUDEP. We used a rat model of kainic acid-induced seizures in combination with pharmacological suppression of metabolic adenosine clearance to trigger seizure-induced death in tracheostomized rats. Recordings of EEG, blood pressure, and phrenic nerve activity were made concomitant to the seizure. We found suppression of phrenic nerve burst frequency to 58.9% of baseline (p < 0.001, one-way ANOVA) which preceded seizure-induced death; importantly, irregularities of phrenic nerve activity were partly reversible by the adenosine receptor antagonist caffeine. Suppression of phrenic nerve activity may be a useful biomarker for imminent SUDEP. The ability to reliably detect the onset of SUDEP may be instrumental in the timely administration of potentially lifesaving interventions.
Collapse
Affiliation(s)
- Omar Ashraf
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Trong Huynh
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA; Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Denise E Fedele
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Vineet Chitravanshi
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA; Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
26
|
Bourgeois-Vionnet J, Jung J, Bouet R, Leclercq M, Catenoix H, Bezin L, Ryvlin P, Rheims S. Relation between coffee consumption and risk of seizure-related respiratory dysfunction in patients with drug-resistant focal epilepsy. Epilepsia 2021; 62:765-777. [PMID: 33586176 DOI: 10.1111/epi.16837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Caffeine is an antagonist of the adenosine pathway, which is involved in regulation of breathing. Extracellular concentrations of adenosine are increased in the immediate aftermath of a seizure. Seizure-related overstimulation of adenosine receptors might promote peri-ictal apnea. However, the relation between caffeine consumption and risk of seizure-related respiratory dysfunction in patients with drug-resistant focal epilepsy remains unknown. METHODS We performed a cross-sectional analysis of data collected in patients included in the SAVE study in Lyon's epilepsy monitoring unit at the Adult Epilepsy Department of the Lyon University Hospital between February 2016 and October 2018. The video-electroencephalographic recordings of 156 patients with drug-resistant focal epilepsy included in the study were reviewed to identify those with ≥1 focal seizure (FS), valid pulse oximetry (SpO2 ) measurement, and information about usual coffee consumption. This latter was collected at inclusion using a standardized self-questionnaire and further classified into four groups: none, rare (≤3 cups/week), moderate (4 cups/week to 3 cups/day), and high (≥4 cups/day). Peri-ictal hypoxemia (PIH) was defined as SpO2 < 90% for at least 5 s occurring during the ictal period, the post-ictal period, or both. RESULTS Ninety patients fulfilled inclusion criteria, and 323 seizures were analyzed. Both the level of usual coffee consumption (p = .033) and the level of antiepileptic drug withdrawal (p = .004) were independent risk factors for occurrence of PIH. In comparison with FS in patients with no coffee consumption, risk of PIH was four times lower in FS in patients with moderate consumption (odds ratio [OR] = .25, 95% confidence interval [CI] = .07-.91, p = .036) and six times lower in FS in patients with high coffee consumption (OR = .16, 95% CI = .04-.66, p = .011). However, when PIH occurred, its duration was longer in patients with moderate or high consumption than in those with no coffee consumption (p = .042). SIGNIFICANCE Coffee consumption may be a protective factor for seizure-related respiratory dysfunction, with a dose-dependent effect.
Collapse
Affiliation(s)
- Julie Bourgeois-Vionnet
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Julien Jung
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - Romain Bouet
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - Mathilde Leclercq
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France
| | - Laurent Bezin
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Vaudois University Hospital Center, Lausanne, Switzerland
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.,Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| |
Collapse
|
27
|
Harowitz J, Crandall L, McGuone D, Devinsky O. Seizure-related deaths in children: The expanding spectrum. Epilepsia 2021; 62:570-582. [PMID: 33586153 PMCID: PMC7986159 DOI: 10.1111/epi.16833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022]
Abstract
Although seizures are common in children, they are often overlooked as a potential cause of death. Febrile and nonfebrile seizures can be fatal in children with or without an epilepsy diagnosis and may go unrecognized by parents or physicians. Sudden unexpected infant deaths, sudden unexplained death in childhood, and sudden unexpected death in epilepsy share clinical, neuropathological, and genetic features, including male predominance, unwitnessed deaths, death during sleep, discovery in the prone position, hippocampal abnormalities, and variants in genes regulating cardiac and neuronal excitability. Additionally, epidemiological studies reveal that miscarriages are more common among individuals with a personal or family history of epilepsy, suggesting that some fetal losses may result from epileptic factors. The spectrum of seizure-related deaths in pediatrics is wide and underappreciated; accurately estimating this mortality and understanding its mechanism in children is critical to developing effective education and interventions to prevent these tragedies.
Collapse
Affiliation(s)
- Jenna Harowitz
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laura Crandall
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, USA.,SUDC Foundation, Herndon, Virginia, USA
| | - Declan McGuone
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
28
|
Lucchesi M, Silverman JB, Sundaram K, Kollmar R, Stewart M. Proposed Mechanism-Based Risk Stratification and Algorithm to Prevent Sudden Death in Epilepsy. Front Neurol 2021; 11:618859. [PMID: 33569036 PMCID: PMC7868441 DOI: 10.3389/fneur.2020.618859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sudden Unexpected Death in Epilepsy (SUDEP) is the leading cause of death in young adults with uncontrolled seizures. First aid guidance to prevent SUDEP, though, has not been previously published because the rarity of monitored cases has made the underlying mechanism difficult to define. This starkly contrasts with the first aid guidelines for sudden cardiac arrest that have been developed based on retrospective studies and expert consensus and the discussion of resuscitation challenges in various American Heart Association certificate courses. However, an increasing amount of evidence from documented SUDEP cases and near misses and from animal models points to a consistent sequence of events that starts with sudden airway occlusion and suggests a mechanistic basis for enhancing seizure first aid. In monitored cases, this sudden airway occlusion associated with seizure activity can be accurately inferred from inductance plethysmography or (depending on recording bandwidth) from electromyographic (EMG) bursts that are associated with inspiratory attempts appearing on the electroencephalogram (EEG) or the electrocardiogram (ECG). In an emergency setting or outside a hospital, seizure first aid can be improved by (1) keeping a lookout for sudden changes in airway status during a seizure, (2) distinguishing thoracic and abdominal movements during attempts to inspire from effective breathing, (3) applying a simple maneuver, the laryngospasm notch maneuver, that may help with airway management when aggressive airway management is unavailable, (4) providing oxygen early as a preventative step to reduce the risk of death, and (5) performing cardiopulmonary resuscitation before the limited post-ictal window of opportunity closes. We propose that these additions to first aid protocols can limit progression of any potential SUDEP case and prevent death. Risk stratification can be improved by recognition of airway occlusion, attendant hypoxia, and need for resuscitation.
Collapse
Affiliation(s)
- Michael Lucchesi
- Department of Emergency Medicine, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Joshua B Silverman
- Department of Otolaryngology, North Shore Long Island Jewish Medical Center, New Hyde Park, NY, United States
| | - Krishnamurthi Sundaram
- Department of Otolaryngology, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Richard Kollmar
- Department of Otolaryngology, State University of New York Health Sciences University, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Mark Stewart
- Department of Neurology, State University of New York Health Sciences University, Brooklyn, NY, United States.,Department of Physiology & Pharmacology, State University of New York Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Epilepsy is associated with autonomic dysfunction. Here, we provide an up-to-date review on measures of interictal autonomic function, focusing on heart rate variability (HRV), baroreflex sensitivity (BRS) and electrodermal activity (EDA). RECENT FINDINGS Resting HRV, BRS and EDA are altered in patients with epilepsy compared with healthy controls. A larger body of work is available for HRV compared with BRS and EDA, and points to interictal HRV derangements across a wide range of epilepsies, including focal, generalized, and combined generalized and focal epilepsies. HRV alterations are most pronounced in temporal lobe epilepsy, Dravet syndrome and drug-resistant and chronic epilepsies. There are conflicting data on the effect of antiseizure medications on measures of interictal autonomic function. However, carbamazepine has been associated with decreased HRV. Epilepsy surgery and vagus nerve stimulation do not appear to have substantial impact on measures of interictal autonomic function but well designed studies are lacking. SUMMARY Patients with epilepsy, particularly those with longstanding uncontrolled seizures, have measurable alterations of resting autonomic function. These alterations may be relevant to the increased risk of premature mortality in epilepsy, including sudden unexpected death in epilepsy, which warrants investigation in future research.
Collapse
|
30
|
A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22020582. [PMID: 33430140 PMCID: PMC7826574 DOI: 10.3390/ijms22020582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings. Here, we discuss the potential of more holistic approaches with the purpose to re-establish a healthy cellular environment and to promote cellular resilience. We review the involvement of important molecular pathways (e.g., the sphingosine, δ-opioid receptor or N-Methyl-D-aspartate (NMDA) receptor pathways) in neuroprotective hypoxic conditioning effects and how these pathways can be targeted for chemical conditioning. Despite the present scarcity of knowledge on the efficacy of such approaches in neurodegeneration, the specific characteristics of Huntington’s disease may make it particularly amenable for such conditioning techniques. Not only do classical features of neurodegenerative diseases like mitochondrial dysfunction, oxidative stress and inflammation support this assumption, but also specific Huntington’s disease characteristics: a relatively young age of neurodegeneration, molecular overlap of related pathologies with hypoxic adaptations and sensitivity to brain hypoxia. The aim of this review is to discuss several molecular pathways in relation to hypoxic adaptations that have potential as drug targets in neurodegenerative diseases. We will extract the relevance for Huntington’s disease from this knowledge base.
Collapse
|
31
|
Vilella L, Lacuey N, Hampson JP, Zhu L, Omidi S, Ochoa-Urrea M, Tao S, Rani MRS, Sainju RK, Friedman D, Nei M, Strohl K, Scott C, Allen L, Gehlbach BK, Hupp NJ, Hampson JS, Shafiabadi N, Zhao X, Reick-Mitrisin V, Schuele S, Ogren J, Harper RM, Diehl B, Bateman LM, Devinsky O, Richerson GB, Ryvlin P, Zhang GQ, Lhatoo SD. Association of Peri-ictal Brainstem Posturing With Seizure Severity and Breathing Compromise in Patients With Generalized Convulsive Seizures. Neurology 2020; 96:e352-e365. [PMID: 33268557 DOI: 10.1212/wnl.0000000000011274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To analyze the association between peri-ictal brainstem posturing semiologies with postictal generalized electroencephalographic suppression (PGES) and breathing dysfunction in generalized convulsive seizures (GCS). METHODS In this prospective, multicenter analysis of GCS, ictal brainstem semiology was classified as (1) decerebration (bilateral symmetric tonic arm extension), (2) decortication (bilateral symmetric tonic arm flexion only), (3) hemi-decerebration (unilateral tonic arm extension with contralateral flexion) and (4) absence of ictal tonic phase. Postictal posturing was also assessed. Respiration was monitored with thoracoabdominal belts, video, and pulse oximetry. RESULTS Two hundred ninety-five seizures (180 patients) were analyzed. Ictal decerebration was observed in 122 of 295 (41.4%), decortication in 47 of 295 (15.9%), and hemi-decerebration in 28 of 295 (9.5%) seizures. Tonic phase was absent in 98 of 295 (33.2%) seizures. Postictal posturing occurred in 18 of 295 (6.1%) seizures. PGES risk increased with ictal decerebration (odds ratio [OR] 14.79, 95% confidence interval [CI] 6.18-35.39, p < 0.001), decortication (OR 11.26, 95% CI 2.96-42.93, p < 0.001), or hemi-decerebration (OR 48.56, 95% CI 6.07-388.78, p < 0.001). Ictal decerebration was associated with longer PGES (p = 0.011). Postictal posturing was associated with postconvulsive central apnea (PCCA) (p = 0.004), longer hypoxemia (p < 0.001), and Spo2 recovery (p = 0.035). CONCLUSIONS Ictal brainstem semiology is associated with increased PGES risk. Ictal decerebration is associated with longer PGES. Postictal posturing is associated with a 6-fold increased risk of PCCA, longer hypoxemia, and Spo2 recovery. Peri-ictal brainstem posturing may be a surrogate biomarker for GCS severity identifiable without in-hospital monitoring. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that peri-ictal brainstem posturing is associated with the GCS with more prolonged PGES and more severe breathing dysfunction.
Collapse
Affiliation(s)
- Laura Vilella
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Nuria Lacuey
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johnson P Hampson
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Liang Zhu
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Shirin Omidi
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Manuela Ochoa-Urrea
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Shiqiang Tao
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - M R Sandhya Rani
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Rup K Sainju
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Daniel Friedman
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Maromi Nei
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Kingman Strohl
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Catherine Scott
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Luke Allen
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Brian K Gehlbach
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Norma J Hupp
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jaison S Hampson
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nassim Shafiabadi
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Xiuhe Zhao
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Victoria Reick-Mitrisin
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stephan Schuele
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jennifer Ogren
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ronald M Harper
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Beate Diehl
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lisa M Bateman
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Orrin Devinsky
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - George B Richerson
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Philippe Ryvlin
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Guo-Qiang Zhang
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Samden D Lhatoo
- From the NINDS Center for SUDEP Research (L.V., N.L., S.O., M.O.-U., S.T., M.R.S.R., R.K.S., D.F., M.N., C.S., L.A., B.K.G., J.S.H., S.S., J.O., R.M.H., B.D., L.M.B., O.D., G.B.R., P.R., G.-Q.Z., S.D.L.) and Department of Neurology (L.V., N.L., J.P.H., S.O., M.O.-U., S.T., M.R.S.R., N.J.H., J.S.H., G.-Q.Z., S.D.L.), McGovern Medical School, and Biostatistics and Epidemiology Research Design Core (L.Z., G.B.R.), Division of Clinical and Translational Sciences, University of Texas Health Science Center at Houston; Departament de Medicina (L.V.), Universitat Autonoma de Barcelona, Spain; University of Iowa Carver College of Medicine (R.K.S., B.K.G.), Iowa City; NYU Langone School of Medicine (D.F., O.D.), New York; Sidney Kimmel Medical College (M.N.), Thomas Jefferson University, Philadelphia, PA; Division of Pulmonary (K.S.), Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH; Institute of Neurology (C.S., L.A., B.D.), University College London, UK; Case Western Reserve University (N.S., X.Z., V.R.-M.), Cleveland, OH; Feinberg School of Medicine (S.S.), Northwestern University, Chicago, IL; Department of Neurobiology and the Brain Research Institute (J.O., R.M.H.), University of California, Los Angeles; Department of Neurology (L.M.B.), Columbia University, New York, NY; and Department of Clinical Neuroscience (P.R.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
32
|
Sivathamboo S, Constantino TN, Chen Z, Sparks PB, Goldin J, Velakoulis D, Jones NC, Kwan P, Macefield VG, O'Brien TJ, Perucca P. Cardiorespiratory and autonomic function in epileptic seizures: A video-EEG monitoring study. Epilepsy Behav 2020; 111:107271. [PMID: 32653843 DOI: 10.1016/j.yebeh.2020.107271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Seizure-induced cardiorespiratory and autonomic dysfunction has long been recognized, and growing evidence points to its implication in sudden unexpected death in epilepsy (SUDEP). However, a comprehensive understanding of cardiorespiratory function in the preictal, ictal, and postictal periods are lacking. METHODS We examined continuous cardiorespiratory and autonomic function in 157 seizures (18 convulsive and 139 nonconvulsive) from 70 consecutive patients who had a seizure captured on concurrent video-encephalogram (EEG) monitoring and polysomnography between February 1, 2012 and May 31, 2017. Heart and respiratory rates, heart rate variability (HRV), and oxygen saturation were assessed across four distinct periods: baseline (120 s), preictal (60 s), ictal, and postictal (300 s). Heart and respiratory rates were further followed for up to 60 min after seizure termination to assess return to baseline. RESULTS Ictal tachycardia occurred during both convulsive and nonconvulsive seizures, but the maximum rate was higher for convulsive seizures (mean: 138.8 beats/min, 95% confidence interval (CI): 125.3-152.4) compared with nonconvulsive seizures (mean: 105.4 beats/min, 95% CI: 101.2-109.6; p < 0.001). Convulsive seizures were associated with a lower ictal minimum respiratory rate (mean: 0 breaths/min, 95% CI: 0-0) compared with nonconvulsive seizures (mean: 11.0 breaths/min, 95% CI: 9.5-12.6; p < 0.001). Ictal obstructive apnea was associated with convulsive compared with nonconvulsive seizures. The low-frequency (LF) power band of ictal HRV was higher among convulsive seizures than nonconvulsive seizures (ratio of means (ROM): 2.97, 95% CI: 1.34-6.60; p = 0.008). Postictal tachycardia was substantially prolonged, characterized by a longer return to baseline for convulsive seizures (median: 60.0 min, interquartile range (IQR): 46.5-60.0) than nonconvulsive seizures (median: 0.26 min, IQR: 0.008-0.9; p < 0.001). For postictal hyperventilation, the return to baseline was longer in convulsive seizures (median: 25.3 min, IQR: 8.1-60) than nonconvulsive seizures (median: 1.0 min, IQR: 0.07-3.2; p < 0.001). The LF power band of postictal HRV was lower in convulsive seizures than nonconvulsive seizures (ROM: 0.33, 95% CI: 0.11-0.96; p = 0.043). Convulsive seizures with postictal generalized EEG suppression (PGES; n = 12) were associated with lower postictal heart and respiratory rate, and increased HRV, compared with those without (n = 6). CONCLUSIONS Profound cardiorespiratory and autonomic dysfunction associated with convulsive seizures may explain why these seizures carry the greatest risk of SUDEP.
Collapse
Affiliation(s)
- Shobi Sivathamboo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville 3050, Victoria, Australia.
| | - Thomas N Constantino
- Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Clayton 3800, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia
| | - Paul B Sparks
- Department of Cardiology, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| | - Jeremy Goldin
- Department of Respiratory and Sleep Disorders Medicine, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Department of Psychiatry, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville 3050, Victoria, Australia
| | - Vaughan G Macefield
- Human Autonomic Neurophysiology, Baker Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville 3050, Victoria, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3000, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia; The Epilepsy Unit, Alfred Health, Melbourne 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Parkville 3050, Victoria, Australia
| |
Collapse
|
33
|
Stewart M, Silverman JB, Sundaram K, Kollmar R. Causes and Effects Contributing to Sudden Death in Epilepsy and the Rationale for Prevention and Intervention. Front Neurol 2020; 11:765. [PMID: 32849221 PMCID: PMC7411179 DOI: 10.3389/fneur.2020.00765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) claims the lives of one in every thousand epileptic patients each year. Autonomic, cardiac, and respiratory pieces to a mechanistic puzzle have not yet been completely assembled. We propose a single sequence of causes and effects that unifies disparate and competitive concepts into a single algorithm centered on ictal obstructive apnea. Based on detailed animal studies that are sometimes impossible in humans, and striking parallels with a growing body of clinical examples, this framework (1) accounts for the autonomic, cardiac, and respiratory data to date by showing the causal relationships between specific elements, and (2) highlights specific kinds of data that can be used to precisely classify various patient outcomes. The framework also justifies a “near miss” designation to be applied to any cases with evidence of obstructive apnea even, and perhaps especially, in individuals that do not require resuscitation. Lastly, the rationale for preventative oxygen therapy is demonstrated. With better mechanistic understanding of SUDEP, we suggest changes for detection and classification to increase survival rates and improve risk stratification.
Collapse
Affiliation(s)
- Mark Stewart
- Department of Neurology, State University of New York Health Sciences University, Brooklyn, NY, United States.,Department of Physiology & Pharmacology, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Joshua B Silverman
- Department of Otolaryngology, North Shore Long Island Jewish Medical Center, New Hyde Park, NY, United States
| | - Krishnamurthi Sundaram
- Department of Otolaryngology, State University of New York Health Sciences University, Brooklyn, NY, United States
| | - Richard Kollmar
- Department of Otolaryngology, State University of New York Health Sciences University, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
34
|
Beniczky S, Arbune AA, Jeppesen J, Ryvlin P. Biomarkers of seizure severity derived from wearable devices. Epilepsia 2020; 61 Suppl 1:S61-S66. [PMID: 32519759 DOI: 10.1111/epi.16492] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 11/28/2022]
Abstract
Besides triggering alarms, wearable seizure detection devices record a variety of biosignals that represent biomarkers of seizure severity. There is a need for automated seizure characterization, to identify high-risk seizures. Wearable devices can automatically identify seizure types with the highest associated morbidity and mortality (generalized tonic-clonic seizures), quantify their duration and frequency, and provide data on postictal position and immobility, autonomic changes derived from electrocardiography/heart rate variability, electrodermal activity, respiration, and oxygen saturation. In this review, we summarize how these biosignals reflect seizure severity, and how they can be monitored in the ambulatory outpatient setting using wearable devices. Multimodal recording of these biosignals will provide valuable information for individual risk assessment, as well as insights into the mechanisms and prevention of sudden unexpected death in epilepsy.
Collapse
Affiliation(s)
- Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anca A Arbune
- Department of Clinical Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark.,Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Jesper Jeppesen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Vaud University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
35
|
Arbune AA, Jeppesen J, Conradsen I, Ryvlin P, Beniczky S. Peri-ictal heart rate variability parameters as surrogate markers of seizure severity. Epilepsia 2020; 61 Suppl 1:S55-S60. [PMID: 32436605 DOI: 10.1111/epi.16491] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study aims at defining objective parameters reflecting the severity of peri-ictal autonomic changes and their relation to post-ictal generalized electroencephalography (EEG) suppression (PGES), with the view that such changes could be detected by wearable seizure detection systems and prove useful to assess the risk of sudden unexpected death in epilepsy (SUDEP). To this purpose, we assessed peri-ictal changes in heart rate variability (HRV) and correlated them with seizure duration, intensity of electromyography-based ictal muscle activity, and presence and duration of post-ictal generalized EEG suppression (PGES). We evaluated 75 motor seizures from 40 patients, including 61 generalized tonic-clonic seizures (GTCS) and 14 other major motor seizure types. For all major motor seizures, HRV measurements demonstrated a significantly decreased parasympathetic activity and increased sympathetic activity in the post-ictal period. The post-ictal increased sympathetic activity was significantly higher for GTCS as compared with non-GTCS. The degree of peri-ictal decreased parasympathetic activity and increased sympathetic activity was associated with longer PGES (>20 s), longer seizure duration, and greater intensity of ictal muscle activity. Mean post-ictal heart rate (HR) was an independent predictor of PGES duration, seizure duration, and intensity of ictal muscle contraction. Our results indicate that peri-ictal changes in HRV are potential biomarkers of major motor seizure severity.
Collapse
Affiliation(s)
- Anca A Arbune
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark.,Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Jesper Jeppesen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Philippe Ryvlin
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Pottkämper JCM, Hofmeijer J, van Waarde JA, van Putten MJAM. The postictal state - What do we know? Epilepsia 2020; 61:1045-1061. [PMID: 32396219 PMCID: PMC7317965 DOI: 10.1111/epi.16519] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
This narrative review provides a broad and comprehensive overview of the most important discoveries on the postictal state over the past decades as well as recent developments. After a description and definition of the postictal state, we discuss postictal sypmtoms, their clinical manifestations, and related findings. Moreover, pathophysiological advances are reviewed, followed by current treatment options.
Collapse
Affiliation(s)
- Julia C M Pottkämper
- Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Psychiatry, Rijnstate Hospital, Arnhem, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Michel J A M van Putten
- Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
37
|
Loizon M, Ryvlin P, Chatard B, Jung J, Bouet R, Guenot M, Mazzola L, Bezin L, Rheims S. Transient hypoxemia induced by cortical electrical stimulation: A mapping study in 75 patients. Neurology 2020; 94:e2323-e2336. [PMID: 32371448 DOI: 10.1212/wnl.0000000000009497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/26/2019] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE To identify which cortical regions are associated with direct electrical stimulation (DES)-induced alteration of breathing significant enough to impair pulse oximetry (SpO2). METHODS Evolution of SpO2 after 1,352 DES was analyzed in 75 patients with refractory focal epilepsy who underwent stereo-EEG recordings. For each DES, we assessed the change in SpO2 from 30 seconds prior to DES onset to 120 seconds following the end of the DES. The primary outcome was occurrence of stimulation-induced transient hypoxemia as defined by decrease of SpO2 ≥5% within 60 seconds after stimulation onset as compared to pre-DES SpO2 or SpO2 nadir <90% during at least 5 seconds. Localization of the stimulated contacts was defined according to MarsAtlas brain parcellation and Freesurfer segmentation. RESULTS A stimulation-induced transient hypoxemia was observed after 16 DES (1.2%) in 10 patients (13%), including 6 in whom SpO2 nadir was <90%. Among these 16 DES, 7 (44%) were localized within the perisylvian cortex. After correction for individual effects and the varying number of DES contributed by each person, significant decrease of SpO2 was significantly associated with the localization of DES (p = 0.019). CONCLUSION Though rare, a significant decrease of SpO2 could be elicited by cortical direct electrical stimulation outside the temporo-limbic structures, most commonly after stimulation of the perisylvian cortex.
Collapse
Affiliation(s)
- Marine Loizon
- From the Departments of Functional Neurology and Epileptology (M.L., J.J., S.R.) and Functional Neurosurgery (M.G.), Hospices Civils de Lyon and University of Lyon, France; Department of Clinical Neurosciences (P.R.), Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland; INSERM U1028/CNRS UMR 5292 (B.C., J.J., R.B., M.G., L.M., L.B., S.R.), Lyon's Neuroscience Research Center; Neurology Department (L.M.), University Hospital, Saint-Etienne; and Epilepsy Institute (L.B., S.R.), Lyon, France
| | - Philippe Ryvlin
- From the Departments of Functional Neurology and Epileptology (M.L., J.J., S.R.) and Functional Neurosurgery (M.G.), Hospices Civils de Lyon and University of Lyon, France; Department of Clinical Neurosciences (P.R.), Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland; INSERM U1028/CNRS UMR 5292 (B.C., J.J., R.B., M.G., L.M., L.B., S.R.), Lyon's Neuroscience Research Center; Neurology Department (L.M.), University Hospital, Saint-Etienne; and Epilepsy Institute (L.B., S.R.), Lyon, France
| | - Benoit Chatard
- From the Departments of Functional Neurology and Epileptology (M.L., J.J., S.R.) and Functional Neurosurgery (M.G.), Hospices Civils de Lyon and University of Lyon, France; Department of Clinical Neurosciences (P.R.), Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland; INSERM U1028/CNRS UMR 5292 (B.C., J.J., R.B., M.G., L.M., L.B., S.R.), Lyon's Neuroscience Research Center; Neurology Department (L.M.), University Hospital, Saint-Etienne; and Epilepsy Institute (L.B., S.R.), Lyon, France
| | - Julien Jung
- From the Departments of Functional Neurology and Epileptology (M.L., J.J., S.R.) and Functional Neurosurgery (M.G.), Hospices Civils de Lyon and University of Lyon, France; Department of Clinical Neurosciences (P.R.), Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland; INSERM U1028/CNRS UMR 5292 (B.C., J.J., R.B., M.G., L.M., L.B., S.R.), Lyon's Neuroscience Research Center; Neurology Department (L.M.), University Hospital, Saint-Etienne; and Epilepsy Institute (L.B., S.R.), Lyon, France
| | - Romain Bouet
- From the Departments of Functional Neurology and Epileptology (M.L., J.J., S.R.) and Functional Neurosurgery (M.G.), Hospices Civils de Lyon and University of Lyon, France; Department of Clinical Neurosciences (P.R.), Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland; INSERM U1028/CNRS UMR 5292 (B.C., J.J., R.B., M.G., L.M., L.B., S.R.), Lyon's Neuroscience Research Center; Neurology Department (L.M.), University Hospital, Saint-Etienne; and Epilepsy Institute (L.B., S.R.), Lyon, France
| | - Marc Guenot
- From the Departments of Functional Neurology and Epileptology (M.L., J.J., S.R.) and Functional Neurosurgery (M.G.), Hospices Civils de Lyon and University of Lyon, France; Department of Clinical Neurosciences (P.R.), Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland; INSERM U1028/CNRS UMR 5292 (B.C., J.J., R.B., M.G., L.M., L.B., S.R.), Lyon's Neuroscience Research Center; Neurology Department (L.M.), University Hospital, Saint-Etienne; and Epilepsy Institute (L.B., S.R.), Lyon, France
| | - Laure Mazzola
- From the Departments of Functional Neurology and Epileptology (M.L., J.J., S.R.) and Functional Neurosurgery (M.G.), Hospices Civils de Lyon and University of Lyon, France; Department of Clinical Neurosciences (P.R.), Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland; INSERM U1028/CNRS UMR 5292 (B.C., J.J., R.B., M.G., L.M., L.B., S.R.), Lyon's Neuroscience Research Center; Neurology Department (L.M.), University Hospital, Saint-Etienne; and Epilepsy Institute (L.B., S.R.), Lyon, France
| | - Laurent Bezin
- From the Departments of Functional Neurology and Epileptology (M.L., J.J., S.R.) and Functional Neurosurgery (M.G.), Hospices Civils de Lyon and University of Lyon, France; Department of Clinical Neurosciences (P.R.), Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland; INSERM U1028/CNRS UMR 5292 (B.C., J.J., R.B., M.G., L.M., L.B., S.R.), Lyon's Neuroscience Research Center; Neurology Department (L.M.), University Hospital, Saint-Etienne; and Epilepsy Institute (L.B., S.R.), Lyon, France
| | - Sylvain Rheims
- From the Departments of Functional Neurology and Epileptology (M.L., J.J., S.R.) and Functional Neurosurgery (M.G.), Hospices Civils de Lyon and University of Lyon, France; Department of Clinical Neurosciences (P.R.), Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland; INSERM U1028/CNRS UMR 5292 (B.C., J.J., R.B., M.G., L.M., L.B., S.R.), Lyon's Neuroscience Research Center; Neurology Department (L.M.), University Hospital, Saint-Etienne; and Epilepsy Institute (L.B., S.R.), Lyon, France.
| |
Collapse
|
38
|
Verducci C, Friedman D, Donner E, Devinsky O. Genetic generalized and focal epilepsy prevalence in the North American SUDEP Registry. Neurology 2020; 94:e1757-e1763. [PMID: 32217773 PMCID: PMC7282874 DOI: 10.1212/wnl.0000000000009295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/18/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess relative rates and clinical features of patients with genetic generalized epilepsy (GGE), focal epilepsy (FE), and developmental encephalopathic epilepsy (DEE) in the North American SUDEP Registry (NASR). METHODS We identified all adjudicated definite, definite plus, and probable sudden unexpected death in epilepsy (SUDEP) cases (n = 262) and determined epilepsy type (GGE, FE, or DEE) from medical record review including history, imaging and EEG results, genetics, and next-of-kin interviews. RESULTS Of the 262 SUDEP cases, 41 occurred in GGE, 95 in FE, 24 in DEE, and 102 were unclassifiable. GGE cases comprised 26% of NASR cases with an epilepsy syndrome diagnosis. The relative frequency of FE:GGE was slightly lower (2.3:1) than in population cohorts (2.1-6:1). Compared to patients with FE, patients with GGE had similar (1) ages at death and epilepsy onset and rates of (2) terminal and historical antiseizure medication adherence; (3) abnormal cardiac pathology; (4) illicit drug/alcohol use histories; and (5) sleep state when SUDEP occurred. CONCLUSIONS GGE cases were relatively overrepresented in NASR. Because GGEs are less often treatment-resistant than FE or DEE, seizure type rather than frequency may be critical. Many people with GGE predominantly have generalized tonic-clonic seizures (GTCS) when they have uncontrolled or breakthrough seizures, whereas patients with FE more commonly experience milder seizures. Future mechanistic SUDEP studies should assess primary and focal-to-bilateral GTCS to identify potential differences in postictal autonomic and arousal disorders and to determine the differential role that lifestyle factors have on breakthrough seizures and seizure types in GGE vs FE to effectively target SUDEP mechanisms and prevention.
Collapse
Affiliation(s)
- Chloe Verducci
- From the Comprehensive Epilepsy Center (C.V., D.F., O.D.), New York University School of Medicine, New York; and Division of Neurology (E.D.), The Hospital for Sick Children, University of Toronto, Canada
| | - Daniel Friedman
- From the Comprehensive Epilepsy Center (C.V., D.F., O.D.), New York University School of Medicine, New York; and Division of Neurology (E.D.), The Hospital for Sick Children, University of Toronto, Canada
| | - Elizabeth Donner
- From the Comprehensive Epilepsy Center (C.V., D.F., O.D.), New York University School of Medicine, New York; and Division of Neurology (E.D.), The Hospital for Sick Children, University of Toronto, Canada
| | - Orrin Devinsky
- From the Comprehensive Epilepsy Center (C.V., D.F., O.D.), New York University School of Medicine, New York; and Division of Neurology (E.D.), The Hospital for Sick Children, University of Toronto, Canada.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The current review updates our knowledge regarding sudden unexpected death in epilepsy patient (SUDEP) risks, risk factors, and investigations of putative biomarkers based on suspected mechanisms of SUDEP. RECENT FINDINGS The overall incidence of SUDEP in adults with epilepsy is 1.2/1000 patient-years, with surprisingly comparable figures in children in recently published population-based studies. This risk was found to decrease over time in several cohorts at a rate of -7% per year, for unknown reasons. Well established risk factors include frequency of generalized tonic-clonic seizures, while adding antiepileptic treatment, nocturnal supervision and use of nocturnal listening device appear to be protective. In contrast, recent data failed to demonstrate the predictive value of heart rate variability, periictal cardiorespiratory dysfunction, and postictal generalized electroencephalography suppression. Preliminary findings suggest that brainstem and thalamic atrophy may be associated with a higher risk of SUDEP. Novel experimental and human data support the primary role of generalized tonic-clonic seizure-triggered respiratory dysfunction and the likely contribution of altered brainstem serotoninergic neurotransmission, in SUDEP pathophysiology. SUMMARY Although significant progress has been made during the past year in the understanding of SUDEP mechanisms and investigation of numerous potential biomarkers, we are still missing reliable predictors of SUDEP beyond the well established clinical risk factors.
Collapse
|