1
|
Calma AD, Pavey N, Silva CS, van den Bos MAJ, Yiannikas C, Farrar MA, Kiernan MC, Menon P, Vucic S. Diagnostic utility of threshold tracking TMS paradigms in early amyotrophic lateral sclerosis. Clin Neurophysiol 2025; 174:105-113. [PMID: 40250284 DOI: 10.1016/j.clinph.2025.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE Threshold tracking transcranial magnetic stimulation (TMS) has exhibited utility as a diagnostic technique in Amyotrophic Lateral Sclerosis (ALS). Different threshold tracking paradigms have recently been proposed. The present study assessed the diagnostic utility of serial ascending and parallel threshold tracking TMS in ALS. METHODS Threshold tracking TMS was undertaken on 90 prospectively recruited participants suspected of ALS. Short interval intracortical inhibition (SICI) was recorded with serial ascending and parallel threshold tracking paradigms between Interstimulus Interval (ISI) 1-to-7 ms. The primary outcome measure was differences in diagnostic utility of the paradigms in differentiating ALS from ALS mimicking disorders using receiver operating characteristic (ROC) analysis (DeLong statistical method). RESULTS Reduction in SICI reliably differentiated ALS from mimic disorders, irrespective of the threshold tracking paradigm. Comparison of area under the curve (AUC) established a significantly higher value for mean SICI (1-7 ms) with the serial ascending SICI paradigm (0.81, 95 % confidence interval 0.72-0.91) compared to the parallel paradigm (SICI 0.72, 95 % confidence interval 0.61-0.83, p = 0.0065). The better diagnostic utility of serial ascending paradigm was evident for SICI recorded between 1-to-5 ms, and was maintained irrespective of disease onset site, degree of functional impairment, and the degree of lower motor neuron dysfunction. A comparable diagnostic utility across threshold tracking paradigms was evident in ALS participants who presented with a relative paucity of upper motor neuron signs. CONCLUSION While threshold tracking TMS reliably differentiated ALS from mimic disorders, the present study established better diagnostic utility with the serial ascending threshold tracking TMS paradigm. SIGNIFICANCE The serial ascending threshold tracking TMS should be used in a clinical setting as a diagnostic tool for ALS.
Collapse
Affiliation(s)
- Aicee Dawn Calma
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia; Department of Neurology, Concord Repatriation General Hospital, Sydney, Australia
| | - Nathan Pavey
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia; Department of Neurology, Concord Repatriation General Hospital, Sydney, Australia
| | - Cláudia Santos Silva
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia; Department of Neurosciences and Mental Health, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal; Faculdade de Medicina-Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal
| | - Mehdi A J van den Bos
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Con Yiannikas
- Department of Neurology, Concord Repatriation General Hospital, Sydney, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia; Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, The University of New South Wales, Sydney, Australia
| | - Matthew C Kiernan
- Neuroscience Research Australia, Sydney, Australia; Scientia Professor of Neuroscience, University of NSW; and Department of Neurology, SouthEastern Sydney Local Health District, Sydney, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia; Department of Neurology, Concord Repatriation General Hospital, Sydney, Australia
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia; Department of Neurology, Concord Repatriation General Hospital, Sydney, Australia.
| |
Collapse
|
2
|
D'Amico A, Cucunato R, Salemi G, Bella VL, Aridon P. A population based study to analyse amyotrophic lateral sclerosis as a multi-step process. Sci Rep 2025; 15:11189. [PMID: 40169635 PMCID: PMC11962139 DOI: 10.1038/s41598-025-89616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Recent studies suggest that Amyotrophic Lateral Sclerosis (ALS) follows a multistep process. We evaluated this hypothesis in a well-defined ALS population in Palermo, Sicily, almost entirely followed by our ALS Clinical Center. Incident data from the ALS Center (2014-2023) were analyzed, including both sporadic and familial ALS forms of the disease. To evaluate the multistep process, we regressed the natural log of age-specific incidence against the natural log of patient age We identified 216 ALS patients. We obtained a slope of 5 (r2 = 0.93); the 95% CI ranged from 2.51 to 7.60, remaining relatively wide due to the small sample size, with a p-value of 0.008. The slope estimate was consistent with a 6-step process. In the Palermo ALS population, the multistep analysis confirms a process consistent with a 6-step model. This data, obtained in a relatively homogeneous population, further highlights the probability of strict interaction between environmental and genetic variables in the disease. Our data offer insights into the complexity of the mechanisms involved in the pathogenesis of the disease, particularly during its asymptomatic phase. This study supports the hypothesis that a single therapeutic silver bullet would probably be insufficient to arrest or slow the disease's progression.
Collapse
Affiliation(s)
- Anna D'Amico
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via Gaetano la Loggia n.1, Palermo, 90129, Italy
| | - Roberta Cucunato
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via Gaetano la Loggia n.1, Palermo, 90129, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via Gaetano la Loggia n.1, Palermo, 90129, Italy
| | - Vincenzo La Bella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via Gaetano la Loggia n.1, Palermo, 90129, Italy
| | - Paolo Aridon
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Via Gaetano la Loggia n.1, Palermo, 90129, Italy.
| |
Collapse
|
3
|
Huang CY, Zuo MT, Qi XJ, Gong MD, Xu WB, Meng SY, Long JY, Li PS, Sun ZL, Zheng XF, Liu ZY. Hypoxia tolerance determine differential gelsenicine-induced neurotoxicity between pig and mouse. BMC Med 2025; 23:156. [PMID: 40075370 PMCID: PMC11905507 DOI: 10.1186/s12916-025-03984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Gelsemium elegans (G. elegans) is widely recognized as one of the most toxic plants globally, particularly harmful to humans. Some reports indicate that it is non-toxic to pigs and even has a growth-promoting effect; however, the underlying reasons for this paradox remain unclear. METHODS Gelsenicine is the main toxic component of G. elegans. This study characterized gelsenicine-induced toxicity using electrophysiological recordings, molecular dynamic simulations, c-Fos immunostaining, and multi-omics technologies. Additionally, we conducted a comprehensive analysis comparing the toxic effects of gelsenicine across various animal species through examinations of tissue distribution, blood gas analysis, metabonomics, and behavioral tests. RESULTS We demonstrated that gelsenicine-induced hypoxia leads to respiratory depression in mice by enhancing the effect of gamma-aminobutyric acid (GABA) on GABA receptors (GABARs). Glycine significantly ameliorated hypoxia and improved the survival of gelsenicine-poisoned mice. Under gelsenicine-induced hypoxic conditions, N-methyl-D-aspartate (NMDA) receptor function and mitochondrial energy metabolism processes were perturbed, resulting in neuronal excitotoxicity. Finally, we confirmed that pigs could tolerate hypoxia and were resistant to gelsenicine toxicity due to high concentrations of circulating glycine and low levels of NMDA receptors (NMDARs) in the hippocampus. CONCLUSIONS These findings suggest that hypoxic protection should be considered as a potential therapeutic strategy for gelsenicine poisoning. Our study contributes to preventing potential risks posed by G. elegans poisoning to human and animal health.
Collapse
Affiliation(s)
- Chong-Yin Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Xue-Jia Qi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Meng-Die Gong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Wen-Bo Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Si-Yu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Jiang-Yu Long
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Pi-Shun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Xiao-Feng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Eisen A, Kiernan MC. The Neonatal Microbiome: Implications for Amyotrophic Lateral Sclerosis and Other Neurodegenerations. Brain Sci 2025; 15:195. [PMID: 40002527 PMCID: PMC11852589 DOI: 10.3390/brainsci15020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Most brain development occurs in the "first 1000 days", a critical period from conception to a child's second birthday. Critical brain processes that occur during this time include synaptogenesis, myelination, neural pruning, and the formation of functioning neuronal circuits. Perturbations during the first 1000 days likely contribute to later-life neurodegenerative disease, including sporadic amyotrophic lateral sclerosis (ALS). Neurodevelopment is determined by many events, including the maturation and colonization of the infant microbiome and its metabolites, specifically neurotransmitters, immune modulators, vitamins, and short-chain fatty acids. Successful microbiome maturation and gut-brain axis function depend on maternal factors (stress and exposure to toxins during pregnancy), mode of delivery, quality of the postnatal environment, diet after weaning from breast milk, and nutritional deficiencies. While the neonatal microbiome is highly plastic, it remains prone to dysbiosis which, once established, may persist into adulthood, thereby inducing the development of chronic inflammation and abnormal excitatory/inhibitory balance, resulting in neural excitation. Both are recognized as key pathophysiological processes in the development of ALS.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matthew C. Kiernan
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, NSW 2031, Australia;
| |
Collapse
|
5
|
Edgar S, Zulhairy-Liong NA, Ellis M, Trivedi S, Zhu D, Odongo JO, Goh KJ, Capelle DP, Shahrizaila N, Kennerson ML, Ahmad-Annuar A. ATXN2 polyglutamine intermediate repeats length expansions in Malaysian patients with amyotrophic lateral sclerosis (ALS). Neurogenetics 2025; 26:19. [PMID: 39804470 DOI: 10.1007/s10048-024-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/30/2024] [Indexed: 05/02/2025]
Abstract
Intermediate CAG repeats from 29 to 33 in the ATXN2 gene contributes to the risk of amyotrophic lateral sclerosis (ALS) in European and Asian populations. In this study, 148 ALS patients of multiethnic descent: Chinese (56.1%), Malay (24.3%), Indian (12.8%), others (6.8%) and 100 neurologically normal controls were screened for the ATXN2 CAG repeat expansion. The most common repeat length in both the controls and patients was 22. No familial ALS patients were positive for the intermediate repeat sizes (29-33), while four sporadic patients (2.8%) were positive, with one harbouring a rare ATXN2 homozygous 32 repeat expansion, and a likely pathogenic variant in SPAST. All four patients had limb-onset ALS. Despite representing the smallest ethnic group in our patient cohort, three of the four patients with intermediate repeat sizes were of Indian ancestry. This study, which is the first in Malaysia and Southeast Asia, shows that ATXN2 intermediate risk expansions are relevant to ALS in these populations and will help to inform future genetic testing strategies in the clinic.
Collapse
Affiliation(s)
- Suzanna Edgar
- Neurology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Nurul Angelyn Zulhairy-Liong
- Neurology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Melina Ellis
- Northcott Neuroscience Laboratory, Sydney Local Health District ANZAC Research Institute, Sydney Local Health District Hospital Rd, Concord, NSW, 2137, Australia
| | - Shuchi Trivedi
- Northcott Neuroscience Laboratory, Sydney Local Health District ANZAC Research Institute, Sydney Local Health District Hospital Rd, Concord, NSW, 2137, Australia
| | - Danqing Zhu
- Molecular Medicine Laboratory, NSW Health Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jeffrey Ochieng Odongo
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Khean-Jin Goh
- Neurology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - David Paul Capelle
- Neurology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Nortina Shahrizaila
- Neurology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, Sydney Local Health District ANZAC Research Institute, Sydney Local Health District Hospital Rd, Concord, NSW, 2137, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia.
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
6
|
Ziser L, van Eijk RPA, Kiernan MC, McRae A, Henderson RD, Schultz D, Needham M, Mathers S, McCombe P, Talman P, Vucic S. Amyotrophic lateral sclerosis established as a multistep process across phenotypes. Eur J Neurol 2025; 32:e16532. [PMID: 39475283 PMCID: PMC11622508 DOI: 10.1111/ene.16532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND PURPOSE Given the accepted multistep process of disease causation in amyotrophic lateral sclerosis (ALS), the present study was undertaken to determine the number of steps required for disease onset across each of the ALS phenotypes. METHODS Clinical and demographic data were prospectively accumulated using the Australian Motor Neurone Disease Registry (2005-2016), and age-specific incidence rates were calculated. Poisson regression was utilized to assess the relationship between log age-specific incidence and log age of onset, with McFadden's R2 used to assess the goodness of fit of the model. RESULTS In total, 2647 ALS patients were included, with mean disease-onset age being 62.2 ± 12.1 years. A linear relationship between log incidence and log age was established across ALS phenotypes, with variable slope estimates: bulbar 5.1 (95% confidence interval [CI] 4.6-5.6); cervical 2.7 (95% CI 2.3-3.0); lumbar 3.5 (95% CI 3.2-3.9); flail arm 4.7 (95% CI 3.9-5.5); flail leg 3.6 (95% CI 2.6-4.5); primary lateral sclerosis 2.7 (95% CI 1.8-3.7). Slope estimates were significantly higher in the bulbar compared to the cervical, lumbar and primary lateral sclerosis phenotypes. McFadden's R2 values were >0.4 for all phenotypes indicating excellent model fit. DISCUSSION A multistep process has been established across all ALS phenotypes with variable slope estimates, suggesting that the number of steps to develop disease is different across clinical presentations. Identification of mechanisms underlying slope estimate variability could exert pathophysiological significance.
Collapse
Affiliation(s)
- Laura Ziser
- Institute for Molecular Bioscience, University of QueenslandBrisbaneQueenslandAustralia
| | - Ruben P. A. van Eijk
- Department of Neurology, UMC Utrecht Brain CentreUniversity Medical Center UtrechtUtrechtThe Netherlands
- Biostatistics and Research Support, Julius Centre for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Allan McRae
- Institute for Molecular Bioscience, University of QueenslandBrisbaneQueenslandAustralia
| | - Robert D. Henderson
- Department of NeurologyRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - David Schultz
- Department of NeurologyFlinders University of South Australia, and Flinders Medical CentreBedford ParkSouth AustraliaAustralia
| | - Merrilee Needham
- Department of NeurologyFiona Stanley HospitalMurdochWestern AustraliaAustralia
- Centre for Molecular, MedicineMurdoch UniversityPerthWestern AustraliaAustralia
- Department of NeurologyPerron Institute for Neurological and Translational ScienceNedlandsWestern AustraliaAustralia
- Department of NeurologyUniversity of Notre DameFremantleWestern AustraliaAustralia
| | - Susan Mathers
- Department of NeurologyCalvary Health Care BethlehemMelbourneVictoriaAustralia
- School of Clinical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Pam McCombe
- Department of NeurologyRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Paul Talman
- Deakin University, University Hospital GeelongGeelongVictoriaAustralia
| | - Steve Vucic
- Brain and Nerve Research CentreThe University of Sydney, Concord HospitalSydneyNew South WalesAustralia
| |
Collapse
|
7
|
Vucic S. Trial designs for motor neuron disease in the 21st century. Lancet Neurol 2024; 23:1065-1066. [PMID: 39307152 DOI: 10.1016/s1474-4422(24)00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 10/20/2024]
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Center, Concord Clinical School University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Calma AD, Pavey N, Menon P, Vucic S. Neuroinflammation in amyotrophic lateral sclerosis: pathogenic insights and therapeutic implications. Curr Opin Neurol 2024; 37:585-592. [PMID: 38775138 DOI: 10.1097/wco.0000000000001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW Neuroinflammation appears to be an important pathogenic process in amyotrophic lateral sclerosis (ALS). Dysfunction of central immune pathways, including activation of microglia and astrocytes, and peripherally derived immune cells, initiate noncell autonomous inflammatory mechanisms leading to degeneration. Cell autonomous pathways linked to ALS genetic mutations have been recently identified as contributing mechanism for neurodegeneration. The current review provides insights into the pathogenic importance of central and peripheral inflammatory processes in ALS pathogenesis and appraises their potential as therapeutic targets. RECENT FINDINGS ALS is a multistep process mediated by a complex interaction of genetic, epigenetic, and environmental factors. Noncell autonomous inflammatory pathways contribute to neurodegeneration in ALS. Activation of microglia and astrocytes, along with central nervous system infiltration of peripherally derived pro-inflammatory innate (NK-cells/monocytes) and adaptive (cell-mediated/humoral) immune cells, are characteristic of ALS. Dysfunction of regulatory T-cells, elevation of pro-inflammatory cytokines and dysbiosis of gut microbiome towards a pro-inflammatory phenotype, have been reported as pathogenic mechanisms in ALS. SUMMARY Dysregulation of adaptive and innate immunity is pathogenic in ALS, being associated with greater disease burden, more rapid disease course and reduced survival. Strategies aimed at modulating the pro-inflammatory immune components could be of therapeutic utility.
Collapse
Affiliation(s)
- Aicee D Calma
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
9
|
Zhang J, Cao W, Xie J, Pang C, Gao L, Zhu L, Li Y, Yu H, Du L, Fan D, Deng B. Metabolic Syndrome and Risk of Amyotrophic Lateral Sclerosis: Insights from a Large-Scale Prospective Study. Ann Neurol 2024; 96:788-801. [PMID: 38934512 DOI: 10.1002/ana.27019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Although metabolic abnormalities are implicated in the etiology of neurodegenerative diseases, their role in the development of amyotrophic lateral sclerosis (ALS) remains a subject of controversy. We aimed to identify the association between metabolic syndrome (MetS) and the risk of ALS. METHODS This study included 395,987 participants from the UK Biobank to investigate the relationship between MetS and ALS. Cox regression model was used to estimate hazard ratios (HR). Stratified analyses were performed based on gender, body mass index (BMI), smoking status, and education level. Mediation analysis was conducted to explore potential mechanisms. RESULTS In this study, a total of 539 cases of ALS were recorded after a median follow-up of 13.7 years. Patients with MetS (defined harmonized) had a higher risk of developing ALS after adjusting for confounding factors (HR: 1.50, 95% CI: 1.19-1.89). Specifically, hypertension and high triglycerides were linked to a higher risk of ALS (HR: 1.53, 95% CI: 1.19-1.95; HR: 1.31, 95% CI: 1.06-1.61, respectively). Moreover, the quantity of metabolic abnormalities showed significant results. Stratified analysis revealed that these associations are particularly significant in individuals with a BMI <25. These findings remained stable after sensitivity analysis. Notably, mediation analysis identified potential metabolites and metabolomic mediators, including alkaline phosphatase, cystatin C, γ-glutamyl transferase, saturated fatty acids to total fatty acids percentage, and omega-6 fatty acids to omega-3 fatty acids ratio. INTERPRETATION MetS exhibits a robust association with an increased susceptibility to ALS, particularly in individuals with a lower BMI. Furthermore, metabolites and metabolomics, as potential mediators, provide invaluable insights into the intricate biological mechanisms. ANN NEUROL 2024;96:788-801.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Jiali Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyang Pang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingfei Gao
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luyi Zhu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lihuai Du
- College of Mathematics and Physics, Wenzhou University, Wenzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Arróspide Elgarresta M, Gerovska D, Soto-Gordoa M, Jauregui García ML, Merino Hernández ML, Araúzo-Bravo MJ. Chronic disease incidence explained by stepwise models and co-occurrence among them. iScience 2024; 27:110816. [PMID: 39290836 PMCID: PMC11407032 DOI: 10.1016/j.isci.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Multimorbidity (MM) is the co-occurrence of two or more chronic diseases. We provided a dynamic approach revealing the MM complexity constructing a multistep incidence-age model for all patients with MM between 2014 and 2021 in the Basque Health System, Spain. The multistep model, with eight steps for males and nine for females, is a very well-fitting representation of MM. To gain insight into the MM components, we modeled the 19 diseases used to calculate the Charlson Comorbidity Index (CCI). We observed that the CCI diseases formed a complex interaction network. Hierarchical clustering of the incidence-age profiles clustered the CCI diseases into low- and high-risk of dying pathologies. Diseases with a higher number of steps are better represented by a multistep model. Anatomically, diseases associated with the central nervous system have the highest number of steps, followed by those associated with the kidney, heart, peripheral vasulature, pancreas, joints, cerebral vasculature, lung, stomach, and liver.
Collapse
Affiliation(s)
- Mikel Arróspide Elgarresta
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain
| | - Myrian Soto-Gordoa
- Biogipuzkoa Health Research Institute, San Sebastian-Donostia, Spain
- Mondragon University, Faculty of Engineering, Mondragon, Spain
| | - María L Jauregui García
- Biogipuzkoa Health Research Institute, San Sebastian-Donostia, Spain
- Tolosaldea Integrated Health Care Organization, Tolosa, Spain
| | - Marisa L Merino Hernández
- Biogipuzkoa Health Research Institute, San Sebastian-Donostia, Spain
- Bidasoa Integrated Health Care Organization, Hondarribia, Spain
- Research Network on Chronicity, Primary Care and Prevention and Health Promotion (RICAAPS), Kronikgune Group, Barakaldo, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain
- Basque Foundation for Science, IKERBASQUE, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), 28029 Madrid, Spain
- Max Planck Institute for Molecular Biomedicine, Computational Biology and Bioinformatics, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
11
|
Calma AD, van den Bos M, Pavey N, Santos Silva C, Menon P, Vucic S. Physiological Biomarkers of Upper Motor Neuron Dysfunction in ALS. Brain Sci 2024; 14:760. [PMID: 39199454 PMCID: PMC11352893 DOI: 10.3390/brainsci14080760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Upper motor neuron (UMN) dysfunction is an important feature of amyotrophic lateral sclerosis (ALS) for the diagnosis and understanding of pathogenesis. The identification of UMN signs forms the basis of ALS diagnosis, although may be difficult to discern, especially in the setting of severe muscle weakness. Transcranial magnetic stimulation (TMS) techniques have yielded objective physiological biomarkers of UMN dysfunction in ALS, enabling the interrogation of cortical and subcortical neuronal networks with diagnostic, pathophysiological, and prognostic implications. Transcranial magnetic stimulation techniques have provided pertinent pathogenic insights and yielded novel diagnostic and prognostic biomarkers. Cortical hyperexcitability, as heralded by a reduction in short interval intracortical inhibition (SICI) and an increase in short interval intracortical facilitation (SICF), has been associated with lower motor neuron degeneration, patterns of disease evolution, as well as the development of specific ALS clinical features including the split hand phenomenon. Reduction in SICI has also emerged as a potential diagnostic aid in ALS. More recently, physiological distinct inhibitory and facilitatory cortical interneuronal circuits have been identified, which have been shown to contribute to ALS pathogenesis. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction. Resting-state EEG is a novel neurophysiological technique developed for directly interrogating cortical neuronal networks in ALS, that have yielded potentially useful physiological biomarkers of UMN dysfunction. The present review discusses physiological biomarkers of UMN dysfunction in ALS, encompassing conventional and novel TMS techniques developed to interrogate the functional integrity of the corticomotoneuronal system, focusing on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Aicee Dawn Calma
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Cláudia Santos Silva
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
- Department of Neurosciences and Mental Health, Unidade Local de Saúde de Santa Maria, 1649-028 Lisbon, Portugal
- Faculdade de Medicina-Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| |
Collapse
|
12
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
13
|
Al-Chalabi A, Andrews J, Farhan S. Recent advances in the genetics of familial and sporadic ALS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:49-74. [PMID: 38802182 DOI: 10.1016/bs.irn.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ALS shows complex genetic inheritance patterns. In about 5% to 10% of cases, there is a family history of ALS or a related condition such as frontotemporal dementia in a first or second degree relative, and for about 80% of such people a pathogenic gene variant can be identified. Such variants are also seen in people with no family history because of factor influencing the expression of genes, such as age. Genetic susceptibility factors also contribute to risk, and the heritability of ALS is between 40% and 60%. The genetic variants influencing ALS risk include single base changes, repeat expansions, copy number variants, and others. Here we review what is known of the genetic landscape and architecture of ALS.
Collapse
Affiliation(s)
- Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom.
| | - Jinsy Andrews
- Department of Neurology, Columbia University, New York, NY, United States
| | - Sali Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Montreal, QC, Canada; Department of Human Genetics, Montreal Neurological Institute-Hospital, Montreal, QC, Canada
| |
Collapse
|
14
|
Libonati L, Cambieri C, Colavito D, Moret F, D'Andrea E, Del Giudice E, Leon A, Inghilleri M, Ceccanti M. Genetics screening in an Italian cohort of patients with Amyotrophic Lateral Sclerosis: the importance of early testing and its implication. J Neurol 2024; 271:1921-1936. [PMID: 38112783 DOI: 10.1007/s00415-023-12142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with an elusive etiology. While environmental factors have been considered, familial ALS cases have raised the possibility of genetic involvement. This genetic connection is increasingly evident, even in patients with sporadic ALS. We allowed access to the genetic test to all patients attending our clinic to identify the prevalence and the role of genetic variants in the development of the disease and to identify patients with potentially treatable forms of the disease. MATERIALS AND METHODS 194 patients with probable or definite ALS, were enrolled. A comprehensive genetic testing was performed, including sequencing all exons of the SOD1 gene and testing for hexanucleotide intronic repeat expansions (G4C2) in the C9orf72 gene using fluorescent repeat-primed PCR (RP-PCR). Whole Exome NGS Sequencing (WES) was performed, followed by an in silico multigene panel targeting neuromuscular diseases, spastic paraplegia, and motor distal neuropathies. We conducted statistical analyses to compare different patient groups. RESULTS Clinically significant pathogenetic variants were detected in 14.43% of cases. The highest prevalence of pathogenetic variants was observed in fALS patients, but a substantial proportion of sALS patients also displayed at least one variant, either pathogenetic or of uncertain significance (VUS). The most observed pathogenetic variant was the expansion of the C9orf72 gene, which was associated with a shorter survival. SOD1 variants were found in 1.6% of fALS and 2.5% of sALS patients. DISCUSSION The study reveals a significant number of ALS patients carrying pathogenic or likely pathogenic variants, with a higher prevalence in familial ALS cases. The expansion of the C9orf72 gene emerges as the most common genetic cause of ALS, affecting familial and sporadic cases. Additionally, SOD1 variants are detected at an unexpectedly higher rate, even in patients without a familial history of ALS, underscoring the crucial role of genetic testing in treatment decisions and potential participation in clinical trials. We also investigated variants in genes such as TARDBP, FUS, NEK1, TBK1, and DNAJC7, shedding light on their potential involvement in ALS. These findings underscore the complexity of interpreting variants of uncertain significance (VUS) and their ethical implications in patient communication and genetic counseling for patients' relatives. CONCLUSION This study emphasizes the diverse genetic basis of ALS and advocates for integrating comprehensive genetic testing into diagnostic protocols. The evolving landscape of genetic therapies requires identifying all eligible patients transcending traditional familial boundaries. The presence of VUS highlights the multifaceted nature of ALS genetics, prompting further exploration of complex interactions among genetic variants, environmental factors, and disease development.
Collapse
Affiliation(s)
- Laura Libonati
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy.
| | - Chiara Cambieri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Davide Colavito
- R & I Genetics, C.So Stati Uniti 4int.F, 35127, Padua, Italy
| | - Federica Moret
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Edoardo D'Andrea
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | | | - Alberta Leon
- R & I Genetics, C.So Stati Uniti 4int.F, 35127, Padua, Italy
| | - Maurizio Inghilleri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Marco Ceccanti
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| |
Collapse
|
15
|
Zamani A, Thomas E, Wright DK. Sex biology in amyotrophic lateral sclerosis. Ageing Res Rev 2024; 95:102228. [PMID: 38354985 DOI: 10.1016/j.arr.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Although sex differences in amyotrophic lateral sclerosis (ALS) have not been studied systematically, numerous clinical and preclinical studies have shown sex to be influential in disease prognosis. Moreover, with the development of advanced imaging tools, the difference between male and female brain in structure and function and their response to neurodegeneration are more definitive. As discussed in this review, ALS patients exhibit a sex bias pertaining to the features of the disease, and their clinical, pathological, (and pathophysiological) phenotypes. Several epidemiological studies have indicated that this sex disparity stems from various aetiologies, including sex-specific brain structure and neural functioning, genetic predisposition, age, gonadal hormones, susceptibility to traumatic brain injury (TBI)/head trauma and lifestyle factors.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Emma Thomas
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
16
|
Ruigrok YM, Rinkel GJE, Chang H, Hackenberg KAM, Etminan N, Veldink JH. Analysis of aneurysmal subarachnoid hemorrhage as a multistep process. Eur J Neurol 2024; 31:e16118. [PMID: 37877684 PMCID: PMC11235647 DOI: 10.1111/ene.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND AND PURPOSE Aneurysmal subarachnoid hemorrhage (ASAH) is a complex disease with higher incidence in women compared to men and in Japan compared to other countries. It was hypothesized that ASAH is consistent with a multistep model of disease. The following assessments were made: (1) the number of steps needed for the disease to occur and (2) whether this number may be different in female versus male and in Japanese versus non-Japanese patients. METHODS Incidence data were generated from a meta-analysis on ASAH incidence until 2017, which was supplemented with a literature search from 2017 to April 2023. Age- and sex-adjusted incidences per 10-year age groups were calculated and the logarithm of age-specific incidence against the logarithm of age was regressed with least-squares regression. RESULTS In 2317 ASAH patients a linear relationship between logarithm of incidence and logarithm of age was found with a slope estimate of 3.13 (95% confidence interval 2.60-3.65), consistent with a four-step process. Similar estimates were found for female, male, Japanese and non-Japanese patients. CONCLUSIONS Our results suggest that ASAH is a four-step process, also in subgroups with higher ASAH incidence. Elucidation of the exact nature of these steps can provide important clues for identification of disease mechanisms underlying ASAH.
Collapse
Affiliation(s)
- Ynte M. Ruigrok
- Department of NeurologyUniversity Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrechtThe Netherlands
| | - Gabriel J. E. Rinkel
- Department of NeurologyUniversity Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrechtThe Netherlands
| | - Han‐Sol Chang
- Department of NeurosurgeryMannheim University Hospital, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Katharina A. M. Hackenberg
- Department of NeurosurgeryMannheim University Hospital, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Nima Etminan
- Department of NeurosurgeryMannheim University Hospital, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Jan H. Veldink
- Department of NeurologyUniversity Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
17
|
Kiernan MC, Farrar MA. Emerging role for sphingolipids in the genetics of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2024; 95:101-102. [PMID: 38041659 DOI: 10.1136/jnnp-2023-332719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Michelle Anne Farrar
- Neurology, Sydney Children's Hospital Randwick, Randwick, New South Wales, Australia
- School of Women's and Children's Health, UNSW Medicine, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Goutman SA, Savelieff MG, Jang DG, Hur J, Feldman EL. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol 2023; 19:617-634. [PMID: 37709948 PMCID: PMC11027963 DOI: 10.1038/s41582-023-00867-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration with typical survival of only 2-5 years from diagnosis. The causes of ALS are multifactorial: known genetic mutations account for only around 70% of cases of familial ALS and 15% of sporadic cases, and heritability estimates range from 8% to 61%, indicating additional causes beyond genetics. Consequently, interest has grown in environmental contributions to ALS risk and progression. The gene-time-environment hypothesis posits that ALS onset occurs through an interaction of genes with environmental exposures during ageing. An alternative hypothesis, the multistep model of ALS, suggests that several hits, at least some of which could be environmental, are required to trigger disease onset, even in the presence of highly penetrant ALS-associated mutations. Studies have sought to characterize the ALS exposome - the lifetime accumulation of environmental exposures that increase disease risk and affect progression. Identifying the full scope of environmental toxicants that enhance ALS risk raises the prospect of preventing disease by eliminating or mitigating exposures. In this Review, we summarize the evidence for an ALS exposome, discussing the strengths and limitations of epidemiological studies that have identified contributions from various sources. We also consider potential mechanisms of exposure-mediated toxicity and suggest future directions for ALS exposome research.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Ludolph A, Dupuis L, Kasarskis E, Steyn F, Ngo S, McDermott C. Nutritional and metabolic factors in amyotrophic lateral sclerosis. Nat Rev Neurol 2023; 19:511-524. [PMID: 37500993 DOI: 10.1038/s41582-023-00845-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease that is classically thought to impact the motor system. Over the past 20 years, research has started to consider the contribution of non-motor symptoms and features of the disease, and how they might affect ALS prognosis. Of the non-motor features of the disease, nutritional status (for example, malnutrition) and metabolic balance (for example, weight loss and hypermetabolism) have been consistently shown to contribute to more rapid disease progression and/or earlier death. Several complex cellular changes observed in ALS, including mitochondrial dysfunction, are also starting to be shown to contribute to bioenergetic failure. The resulting energy depletion in high energy demanding neurons makes them sensitive to apoptosis. Given that nutritional and metabolic stressors at the whole-body and cellular level can impact the capacity to maintain optimal function, these factors present avenues through which we can identify novel targets for treatment in ALS. Several clinical trials are now underway evaluating the effectiveness of modifying energy balance in ALS, making this article timely in reviewing the evidence base for metabolic and nutritional interventions.
Collapse
Affiliation(s)
- Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Site Ulm, Ulm, Germany
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Edward Kasarskis
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Frederik Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
20
|
Willemse SW, Harley P, van Eijk RPA, Demaegd KC, Zelina P, Pasterkamp RJ, van Damme P, Ingre C, van Rheenen W, Veldink JH, Kiernan MC, Al-Chalabi A, van den Berg LH, Fratta P, van Es MA. UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target. J Neurol Neurosurg Psychiatry 2023; 94:649-656. [PMID: 36737245 PMCID: PMC10359588 DOI: 10.1136/jnnp-2022-330504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options and an incompletely understood pathophysiology. Although genomewide association studies (GWAS) have advanced our understanding of the disease, the precise manner in which risk polymorphisms contribute to disease pathogenesis remains unclear. Of relevance, GWAS have shown that a polymorphism (rs12608932) in the UNC13A gene is associated with risk for both ALS and frontotemporal dementia (FTD). Homozygosity for the C-allele at rs12608932 modifies the ALS phenotype, as these patients are more likely to have bulbar-onset disease, cognitive impairment and FTD at baseline as well as shorter survival. UNC13A is expressed in neuronal tissue and is involved in maintaining synaptic active zones, by enabling the priming and docking of synaptic vesicles. In the absence of functional TDP-43, risk variants in UNC13A lead to the inclusion of a cryptic exon in UNC13A messenger RNA, subsequently leading to nonsense mediated decay, with loss of functional protein. Depletion of UNC13A leads to impaired neurotransmission. Recent discoveries have identified UNC13A as a potential target for therapy development in ALS, with a confirmatory trial with lithium carbonate in UNC13A cases now underway and future approaches with antisense oligonucleotides currently under consideration. Considering UNC13A is a potent phenotypic modifier, it may also impact clinical trial outcomes. This present review describes the path from the initial discovery of UNC13A as a risk gene in ALS to the current therapeutic options being explored and how knowledge of its distinct phenotype needs to be taken into account in future trials.
Collapse
Affiliation(s)
- Sean W Willemse
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands
| | - Koen C Demaegd
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Philip van Damme
- Department of Neurology, KU Leuven Hospital, Leuven, Belgium
- Laboratory of Neurobiology, VIB KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | | | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
21
|
Monnakgotla NR, Mahungu AC, Heckmann JM, Botha G, Mulder NJ, Wu G, Rampersaud E, Myers J, Van Blitterswijk M, Rademakers R, Taylor JP, Wuu J, Benatar M, Nel M. Analysis of Structural Variants Previously Associated With ALS in Europeans Highlights Genomic Architectural Differences in Africans. Neurol Genet 2023; 9:e200077. [PMID: 37346932 PMCID: PMC10281237 DOI: 10.1212/nxg.0000000000200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/23/2023]
Abstract
Background and Objectives Amyotrophic lateral sclerosis (ALS) is a degenerative condition of the brain and spinal cord in which protein-coding variants in known ALS disease genes explain a minority of sporadic cases. There is a growing interest in the role of noncoding structural variants (SVs) as ALS risk variants or genetic modifiers of ALS phenotype. In small European samples, specific short SV alleles in noncoding regulatory regions of SCAF4, SQSTM1, and STMN2 have been reported to be associated with ALS, and several groups have investigated the possible role of SMN1/SMN2 gene copy numbers in ALS susceptibility and clinical severity. Methods Using short-read whole genome sequencing (WGS) data, we investigated putative ALS-susceptibility SCAF4 (3'UTR poly-T repeat), SQSTM1 (intron 5 AAAC insertion), and STMN2 (intron 3 CA repeat) alleles in African ancestry patients with ALS and described the architecture of the SMN1/SMN2 gene region. South African cases with ALS (n = 114) were compared with ancestry-matched controls (n = 150), 1000 Genomes Project samples (n = 2,336), and H3Africa Genotyping Chip Project samples (n = 347). Results There was no association with previously reported SCAF4 poly-T repeat, SQSTM1 AAAC insertion, and long STMN2 CA alleles with ALS risk in South Africans (p > 0.2). Similarly, SMN1 and SMN2 gene copy numbers did not differ between South Africans with ALS and matched population controls (p > 0.9). Notably, 20% of the African samples in this study had no SMN2 gene copies, which is a higher frequency than that reported in Europeans (approximately 7%). Discussion We did not replicate the reported association of SCAF4, SQSTM1, and STMN2 short SVs with ALS in a small South African sample. In addition, we found no link between SMN1 and SMN2 copy numbers and susceptibility to ALS in this South African sample, which is similar to the conclusion of a recent meta-analysis of European studies. However, the SMN gene region findings in Africans replicate previous results from East and West Africa and highlight the importance of including diverse population groups in disease gene discovery efforts. The clinically relevant differences in the SMN gene architecture between African and non-African populations may affect the effectiveness of targeted SMN2 gene therapy for related diseases such as spinal muscular atrophy.
Collapse
Affiliation(s)
- Nomakhosazana R Monnakgotla
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Amokelani C Mahungu
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Jeannine M Heckmann
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Gerrit Botha
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Nicola J Mulder
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Gang Wu
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Evadnie Rampersaud
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Jason Myers
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Marka Van Blitterswijk
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Rosa Rademakers
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - J Paul Taylor
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Joanne Wuu
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Michael Benatar
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| | - Melissa Nel
- From the Neurology Research Group (N.R.M., A.C.M., J.M.H., M.N.), Division of Neurology, Department of Medicine; Neuroscience Institute (N.R.M., A.C.M., J.M.H., M.N.); Computational Biology Division (G.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.V.B.), Mayo Clinic, Jacksonville, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belgium; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Neurology (J.W., M.B.), University of Miami, FL
| |
Collapse
|
22
|
Tazelaar GHP, Hop PJ, Seelen M, van Vugt JJFA, van Rheenen W, Kool L, van Eijk KR, Gijzen M, Dooijes D, Moisse M, Calvo A, Moglia C, Brunetti M, Canosa A, Nordin A, Pardina JSM, Ravits J, Al-Chalabi A, Chio A, McLaughlin RL, Hardiman O, Van Damme P, de Carvalho M, Neuwirth C, Weber M, Andersen PM, van den Berg LH, Veldink JH, van Es MA. Whole genome sequencing analysis reveals post-zygotic mutation variability in monozygotic twins discordant for amyotrophic lateral sclerosis. Neurobiol Aging 2023; 122:76-87. [PMID: 36521271 DOI: 10.1016/j.neurobiolaging.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis is a heterogeneous, fatal neurodegenerative disease, characterized by motor neuron loss and in 50% of cases also by cognitive and/or behavioral changes. Mendelian forms of ALS comprise approximately 10-15% of cases. The majority is however considered sporadic, but also with a high contribution of genetic risk factors. To explore the contribution of somatic mutations and/or epigenetic changes to disease risk, we performed whole genome sequencing and methylation analyses using samples from multiple tissues on a cohort of 26 monozygotic twins discordant for ALS, followed by in-depth validation and replication experiments. The results of these analyses implicate several mechanisms in ALS pathophysiology, which include a role for de novo mutations, defects in DNA damage repair and accelerated aging.
Collapse
Affiliation(s)
- Gijs H P Tazelaar
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J Hop
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Meinie Seelen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joke J F A van Vugt
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lindy Kool
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristel R van Eijk
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marleen Gijzen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthieu Moisse
- Neurology Department University Hospitals Leuven, Department of Neurosciences and Leuven Brain Institute (LBI) KU Leuven-University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Leuven, Belgium
| | - Andrea Calvo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Cristina Moglia
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Maura Brunetti
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Antonio Canosa
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Angelica Nordin
- Department of Clinical Science, Neurosciences, Umeå University Umeå, Sweden
| | | | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, King's College London, London, UK; Department of Neurology, King's College Hospital, London, UK
| | - Adriano Chio
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Russell L McLaughlin
- Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Republic of Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Republic of Ireland; Department of Neurology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Philip Van Damme
- Neurology Department University Hospitals Leuven, Department of Neurosciences and Leuven Brain Institute (LBI) KU Leuven-University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Leuven, Belgium
| | - Mamede de Carvalho
- Department of Neurosciences, Hospital de Santa Maria-CHLN, Lisbon, Portugal; Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University Umeå, Sweden
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael A van Es
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
23
|
Mazumder S, Kiernan MC, Halliday GM, Timmins HC, Mahoney CJ. The contribution of brain banks to knowledge discovery in amyotrophic lateral sclerosis: A systematic review. Neuropathol Appl Neurobiol 2022; 48:e12845. [PMID: 35921237 PMCID: PMC9804699 DOI: 10.1111/nan.12845] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/17/2022] [Accepted: 07/23/2022] [Indexed: 01/09/2023]
Abstract
Over the past decade, considerable efforts have been made to accelerate pathophysiological understanding of fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) with brain banks at the forefront. In addition to exploratory disease mechanisms, brain banks have aided our understanding with regard to clinical diagnosis, genetics and cell biology. Across neurodegenerative disorders, the impact of brain tissue in ALS research has yet to be quantified. This review aims to outline (i) how postmortem tissues from brain banks have influenced our understanding of ALS over the last 15 years, (ii) correlate the location of dedicated brain banks with the geographical prevalence of ALS, (iii) identify the frequency of features reported from postmortem studies and (iv) propose common reporting standards for materials obtained from dedicated brain banks. A systematic review was conducted using PubMed and Web of Science databases using key words. From a total of 1439 articles, 73 articles were included in the final review, following PRISMA guidelines. Following a thematic analysis, articles were categorised into five themes; clinico-pathological (13), genetic (20), transactive response DNA binding protein 43 (TDP-43) pathology (12), non-TDP-43 neuronal pathology (nine) and extraneuronal pathology (19). Research primarily focused on the genetics of ALS, followed by protein pathology. About 63% of the brain banks were in the United States of America and United Kingdom. The location of brain banks overall aligned with the incidence of ALS worldwide with 88% of brain banks situated in Europe and North America. An overwhelming lack of consistency in reporting and replicability was observed, strengthening the need for a standardised reporting system. Overall, postmortem material from brain banks generated substantial new knowledge in areas of genetics and proteomics and supports their ongoing role as an important research tool.
Collapse
Affiliation(s)
- Srestha Mazumder
- ForeFront Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Matthew C. Kiernan
- ForeFront Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Glenda M. Halliday
- Frontier, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Hannah C. Timmins
- ForeFront Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Colin J. Mahoney
- ForeFront Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
24
|
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet 2022; 400:1363-1380. [PMID: 36116464 PMCID: PMC10089700 DOI: 10.1016/s0140-6736(22)01272-7] [Citation(s) in RCA: 442] [Impact Index Per Article: 147.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis is a fatal CNS neurodegenerative disease. Despite intensive research, current management of amyotrophic lateral sclerosis remains suboptimal from diagnosis to prognosis. Recognition of the phenotypic heterogeneity of amyotrophic lateral sclerosis, global CNS dysfunction, genetic architecture, and development of novel diagnostic criteria is clarifying the spectrum of clinical presentation and facilitating diagnosis. Insights into the pathophysiology of amyotrophic lateral sclerosis, identification of disease biomarkers and modifiable risks, along with new predictive models, scales, and scoring systems, and a clinical trial pipeline of mechanism-based therapies, are changing the prognostic landscape. Although most recent advances have yet to translate into patient benefit, the idea of amyotrophic lateral sclerosis as a complex syndrome is already having tangible effects in the clinic. This Seminar will outline these insights and discuss the status of the management of amyotrophic lateral sclerosis for the general neurologist, along with future prospects that could improve care and outcomes for patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Letizia Mazzini
- ALS Centre, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy; Department of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Masha G Savelieff
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Gen Sobue
- Department of Neurology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
25
|
Webster AJ, Clarke R. Sporadic, late-onset, and multistage diseases. PNAS NEXUS 2022; 1:pgac095. [PMID: 35899071 PMCID: PMC9308562 DOI: 10.1093/pnasnexus/pgac095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023]
Abstract
Multistage disease processes are often characterized by a linear relationship between the log of incidence rates and the log of age. Examples include sequences of somatic mutations, that can cause cancer, and have recently been linked with a range of non-malignant diseases. Using a Weibull distribution to model diseases that occur through an ordered sequence of stages, and another model where stages can occur in any order, we characterized the age-related onset of disease in UK Biobank data. Despite their different underlying assumptions, both models accurately described the incidence of over 450 diseases, demonstrating that multistage disease processes cannot be inferred from this data alone. The parametric models provided unique insights into age-related disease, that conventional studies of relative risks cannot. The rate at which disease risk increases with age was used to distinguish between "sporadic" diseases, with an initially low and slowly increasing risk, and "late-onset" diseases whose negligible risk when young rapidly increases with age. "Relative aging rates" were introduced to quantify how risk factors modify age-related risk, finding the effective age-at-risk of sporadic diseases is strongly modified by common risk factors. Relative aging rates are ideal for risk-stratification, allowing the identification of ages with equivalent-risk in groups with different exposures. Most importantly, our results suggest that a substantial burden of sporadic diseases can be substantially delayed or avoided by early lifestyle interventions.
Collapse
Affiliation(s)
- Anthony J Webster
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Robert Clarke
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| |
Collapse
|
26
|
Goutman SA, Hardiman O, Al-Chalabi A, Chió A, Savelieff MG, Kiernan MC, Feldman EL. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 2022; 21:465-479. [PMID: 35334234 PMCID: PMC9513754 DOI: 10.1016/s1474-4422(21)00414-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease. The discovery of genes associated with amyotrophic lateral sclerosis, commencing with SOD1 in 1993, started fairly gradually. Recent advances in genetic technology have led to the rapid identification of multiple new genes associated with the disease, and to a new understanding of oligogenic and polygenic disease risk. The overlap of genes associated with amyotrophic lateral sclerosis with those of other neurodegenerative diseases is shedding light on the phenotypic spectrum of neurodegeneration, leading to a better understanding of genotype-phenotype correlations. A deepening knowledge of the genetic architecture is allowing the characterisation of the molecular steps caused by various mutations that converge on recurrent dysregulated pathways. Of crucial relevance, mutations associated with amyotrophic lateral sclerosis are amenable to novel gene-based therapeutic options, an approach in use for other neurological illnesses. Lastly, the exposome-the summation of lifetime environmental exposures-has emerged as an influential component for amyotrophic lateral sclerosis through the gene-time-environment hypothesis. Our improved understanding of all these aspects will lead to long-awaited therapies and the identification of modifiable risks factors.
Collapse
Affiliation(s)
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, and Department of Neurology, King's College London, London, UK
| | - Adriano Chió
- Rita Levi Montalcini Department of Neurosciences, University of Turin, Turin, Italy
| | | | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Choi SJ, Park CHK, Hong YH, Sung JJ. Previous psychiatric disorders in the multistep hypothesis of amyotrophic lateral sclerosis: a South Korean population study. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:601-607. [PMID: 35164606 DOI: 10.1080/21678421.2022.2035765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Objective: There is accumulating evidence about an association between amyotrophic lateral sclerosis (ALS) and psychiatric disorders. We aimed to investigate the prevalence of previous psychiatric disorders before ALS onset and evaluate the contribution of psychiatric disorders to the number of steps toward developing ALS.Methods: We analyzed the National Health Insurance claims data from 2011 to 2017 and calculated the incidence of ALS. We created a multistep model using the linear least squares method with regression of the log incidence against the log age.Results: The mean annual incidence of ALS was 0.95/100,000 and frequency of familial ALS (fALS) was 5.89%. The proportions of patients who had psychiatric disorders before ALS diagnosis were 36.8% and 47.0% in fALS and sporadic ALS (sALS), respectively (p = 0.009). In both fALS and sALS, depressive disorders and anxiety and stress disorders were relatively frequent, whereas psychotic disorders and bipolar disorders were rare. Further, the slope estimates for regression analyses were 3.50 (R2 = 0.94) and 3.56 (R2 = 0.99) for fALS and sALS, respectively, suggesting a 4-5-step process to ALS onset. However, slope estimates did not differ between sALS patients with pre-symptomatic psychiatric disorders and those without.Conclusions: The incidence of ALS is relatively low in Korea and fewer steps are required to develop ALS compared to Western populations (all 6 steps). Although the prevalence of previous depression or anxiety is seemingly high, the multistep model provides no evidence that these conditions modify the risk of developing ALS in our cohort.
Collapse
Affiliation(s)
- Seok-Jin Choi
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Inha University Hospital, Incheon, Republic of Korea
| | - C Hyung Keun Park
- Department of Psychiatry, Asan Medical Center, Seoul, Republic of Korea
| | - Yoon-Ho Hong
- Department of Neurology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Gerovska D, Araúzo-Bravo MJ. The common incidence-age multistep model of neurodegenerative diseases revisited: wider general age range of incidence corresponds to fewer disease steps. Cell Biosci 2022; 12:11. [PMID: 35093175 PMCID: PMC8801114 DOI: 10.1186/s13578-021-00737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Background Previously, we collected age-stratified incidence data of 404 epidemiological datasets of 10 neurodegenerative diseases (NDs), namely Amyotrophic Lateral Sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Fronto Temporal Dementia (FTD), Dementia with Lewy Bodies (DLB), Parkinsonism (PDM), Parkinson’s disease with Dementia (PDD), Creutzfeldt–Jakob disease (CJD), and Multiple Sclerosis (MS). We tested whether each ND follows a multistep model, found the number of steps necessary for the onset of each ND, found the number of common steps with other NDs and the number of specific steps of each ND, and built a parsimony tree of the genealogy of the NDs. The tree disclosed three groups of NDs: the stem NDs with less than 3 steps; the trunk NDs with 5–7 steps; and the crown NDs with more than 7 steps. Methods We made a multidimensional reduction of the previously collected age-stratified incidence epidemiological data of the 10 NDs. We studied the general range of incidence of the 10 NDs using the age- and sex-stratified incidence data. First, we calculated the log of the incidence versus the log of the age for each ND. Next, we calculated the age intervals of the spread of the incidence of each ND. We calculated the regression of the steps obtained with the multistep model versus the age of incidence of the NDs. Results We found that the number of steps of the NDs is inversely correlated with the age of incidence of the NDs, and calculated the number of years required for a single step for each ND. Based on these results, we extended the genealogy tree model of the NDs to account for the time needed for a ND step to occur. Conclusion The extended genealogy tree disclosed three groups of NDs according to the estimated time needed for a step to occur: the stem ND, HD, with 32.5 years/step, the trunk NDs ALS, FTD, PD and CJD, with 6.7–13.7 years/step; and the crown NDs PDM, PDD, AD and DLB, with 2.3–3.8 years/step. Thus, the NDs cluster into three groups according to both the number of steps and the number of years for a step to occur.
Collapse
|
29
|
Vucic S, Wray N, Henders A, Henderson RD, Talman P, Mathers S, Bellgard M, Aoun S, Birks C, Thomas G, Hansen C, Thomas G, Hogden A, Needham M, Schultz D, Soulis T, Sheean B, Milne J, Rowe D, Zoing M, Kiernan MC. MiNDAUS partnership: a roadmap for the cure and management of motor Neurone disease. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:321-328. [PMID: 34590512 DOI: 10.1080/21678421.2021.1980889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An innovative approach to patient management, evidence-based policy development, and clinical drug trials is required to provide personalized care and to improve the likelihood of finding an effective treatment for Motor Neurone Disease (MND). The MiNDAus Partnership builds on and extends existing national collaborations in a targeted approach to improve the standard and coordination of care for people living with MND in Australia, and to enhance the prospects of discovering a cure or treatment. Relationships have been developed between leading clinical and research groups as well as patient-centered organizations, care providers, and philanthropy with a shared vision. MiNDAus has established a corporate structure and meets at least biannually to decide on how best to progress research, drug development, and patient management. The key themes are; (i) empowering patients and their family carers to engage in self-management and ensure personalized service provision, treatment, and policy development, (ii) integration of data collection so as to better inform policy development, (iii) unifying patients and carers with advocacy groups, funding bodies, clinicians and academic institutions so as to inform policy development and research, (iv) coordination of research efforts and development of standardized national infrastructure for conducting innovative clinical MND trials that can be harmonized within Australia and with international trials consortia. Such a collaborative approach is required across stakeholders in order to develop innovative management guidelines, underpinned by necessary and evidence-based policy change recommendations, which, will ensure the best patient care until a cure is discovered.
Collapse
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Center, Concord Clinical School, University of Sydney and Concord Hospital, Sydney, Australia
| | - Naomi Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Anjali Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robert D Henderson
- Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Australia
| | - Paul Talman
- Deakin University, University Hospital Geelong, Geelong, Australia
| | - Susan Mathers
- Department of Neurology, Calvary Health Care Bethlehem Monash University, Melbourne, Australia
| | - Matthew Bellgard
- Office of eResearch, Queensland University of Technology, Brisbane, Australia
| | - Samar Aoun
- Perron Institute for Neurological and translational Science, Perth, Western Australia.,La Trobe University, Melbourne, Victoria
| | | | | | | | - Geoff Thomas
- Thomas MND Research Group, Adelaide, South Australia, Australia
| | - Anne Hogden
- Australian Institute of Health Service Management, University of Tasmania, Hobart, Tasmania, Australia
| | - Merrilee Needham
- Department of Neurology, Fiona Stanley Hospital, CMMIT Murdoch University and School of Medicine, University of Notre Dame, Western Australia, Perth, Australia
| | - David Schultz
- Department of Neurology, Flinders Medical Centre, Flinders Drive, Bedford Park, South Australia, Australia
| | - Tina Soulis
- Neuroscience Trials Australia, Melbourne, Australia
| | | | - Jane Milne
- MND and Me Foundation, Brisbane, Queensland, Australia
| | - Dominic Rowe
- MCentre for Motor Neurone Disease Research, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, Australia
| | - Margie Zoing
- Brain and Mind Center, University of Sydney, University of Sydney, Sydney, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Matthew C Kiernan
- Brain and Mind Center, University of Sydney, University of Sydney, Sydney, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, Australia
| |
Collapse
|
30
|
Vucic S, Henderson RD, Mathers S, Needham M, Schultz D, Kiernan MC. Safety and efficacy of dimethyl fumarate in ALS: randomised controlled study. Ann Clin Transl Neurol 2021; 8:1991-1999. [PMID: 34477330 PMCID: PMC8528453 DOI: 10.1002/acn3.51446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Neuroinflammation is an important pathogenic mechanism in amyotrophic lateral sclerosis (ALS), with regulatory T cells (Tregs) mediating a slower rate of disease progression. Dimethyl fumarate enhances Treg levels and suppresses pro-inflammatory T cells. The present study assessed the safety and efficacy of dimethyl fumarate in ALS. METHODS Phase-2, double-blind, placebo-controlled randomised clinical trial recruited participants from May 1, 2018 to September 25, 2019, across six Australian sites. Participants were randomised (2:1 ratio) to dimethyl fumarate (480 mg/day) or matching placebo, completing visits at screening, baseline, weeks 12, 24 and 36. The primary efficacy endpoint was a change in Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) at week 36. Secondary outcome measures included survival, neurophysiological index (NI), respiratory function, urinary neurotrophin-receptor p75 and quality of life. RESULTS A total of 107 participants were randomised to dimethyl fumarate (n = 72) or placebo (n = 35). ALSFRS-R score was not significantly different at week 36 (-1.12 [-3.75 to 1.52, p = 0.41]). Dimethyl fumarate was associated with a reduced NI decline week 36 (differences in the least-squares mean: (0.84 [-0.51 to 2.22, p = 0.22]). There were no significant differences in other secondary outcome measures. Safety profiles were comparable between groups. INTERPRETATION Dimethyl fumarate, in combination with riluzole, was safe and well-tolerated in ALS. There was no significant improvement in the primary endpoint. The trial provides class I evidence for safety and lack of efficacy of dimethyl fumarate in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School, Concord Hospital, University of Sydney, Sydney, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Susan Mathers
- Department of Neurology, Calvary Health Care Bethlehem, Caulfield South, Australia
| | - Merrilee Needham
- Department of Neurology, Fiona Stanley Hospital, Murdoch University, Murdoch, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Australia.,University of Notre Dame, Fremantle, Australia
| | | | | | | |
Collapse
|
31
|
Le Heron C, MacAskill M, Mason D, Dalrymple-Alford J, Anderson T, Pitcher T, Myall D. A Multi-Step Model of Parkinson's Disease Pathogenesis. Mov Disord 2021; 36:2530-2538. [PMID: 34374460 PMCID: PMC9290013 DOI: 10.1002/mds.28719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) may result from the combined effect of multiple etiological factors. The relationship between disease incidence and age, as demonstrated in the cancer literature, can be used to model a multistep pathogenic process, potentially affording unique insights into disease development. OBJECTIVES We tested whether the observed incidence of PD is consistent with a multistep process, estimated the number of steps required and whether this varies with age, and examined drivers of sex differences in PD incidence. METHODS Our validated probabilistic modeling process, based on medication prescribing, generated nationwide age- and sex-adjusted PD incidence data spanning 2006-2017. Models of log(incidence) versus log(age) were compared using Bayes factors, to estimate (1) if a linear relationship was present (indicative of a multistep process); (2) the relationship's slope (one less than number of steps); (3) whether slope was lower at younger ages; and (4) whether slope or y-intercept varied with sex. RESULTS Across >15,000 incident cases of PD, there was a clear linear relationship between log(age) and log(incidence). Evidence was strongest for a model with an initial slope of 5.2 [3.8, 6.4], an inflexion point at age 45, and beyond this a slope of 6.8 [6.4, 7.2]. There was evidence for the intercept varying by sex, but no evidence for slope being sex-dependent. CONCLUSIONS The age-specific incidence of PD is consistent with a process that develops in multiple, discrete steps - on average six before age 45 and eight after. The model supports theories emphasizing the primacy of environmental factors in driving sex differences in PD incidence. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Campbell Le Heron
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Michael MacAskill
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Deborah Mason
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - John Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa, Dunedin, New Zealand
| | - Daniel Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| |
Collapse
|
32
|
ALS is a Multistep Process in South Korean, Japanese, and Australian Patients. Neurology 2021; 97:151. [PMID: 32651287 PMCID: PMC11387101 DOI: 10.1212/wnl.0000000000010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/24/2020] [Indexed: 11/15/2022] Open
|
33
|
Geevasinga N, Van den Bos M, Menon P, Vucic S. Utility of Transcranial Magnetic Simulation in Studying Upper Motor Neuron Dysfunction in Amyotrophic Lateral Sclerosis. Brain Sci 2021; 11:brainsci11070906. [PMID: 34356140 PMCID: PMC8304017 DOI: 10.3390/brainsci11070906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterised by progressive dysfunction of the upper and lower motor neurons. The disease can evolve over time from focal limb or bulbar onset to involvement of other regions. There is some clinical heterogeneity in ALS with various phenotypes of the disease described, from primary lateral sclerosis, progressive muscular atrophy and flail arm/leg phenotypes. Whilst the majority of ALS patients are sporadic in nature, recent advances have highlighted genetic forms of the disease. Given the close relationship between ALS and frontotemporal dementia, the importance of cortical dysfunction has gained prominence. Transcranial magnetic stimulation (TMS) is a noninvasive neurophysiological tool to explore the function of the motor cortex and thereby cortical excitability. In this review, we highlight the utility of TMS and explore cortical excitability in ALS diagnosis, pathogenesis and insights gained from genetic and variant forms of the disease.
Collapse
|
34
|
Vucic S, Pavey N, Haidar M, Turner BJ, Kiernan MC. Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neurosci Lett 2021; 759:136039. [PMID: 34118310 DOI: 10.1016/j.neulet.2021.136039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/04/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Cortical hyperexcitability is an early and intrinsic feature of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS).. Importantly, cortical hyperexcitability appears to be associated with motor neuron degeneration, possibly via an anterograde glutamate-mediated excitotoxic process, thereby forming a pathogenic basis for ALS. The presence of cortical hyperexcitability in ALS patients may be readily determined by transcranial magnetic stimulation (TMS), a neurophysiological tool that provides a non-invasive and painless method for assessing cortical function. Utilising the threshold tracking TMS technique, cortical hyperexcitability has been established as a robust diagnostic biomarker that distinguished ALS from mimicking disorders at early stages of the disease process. The present review discusses the pathophysiological and diagnostic utility of cortical hyperexcitability in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Western Clinical School, University of Sydney, Sydney, Australia.
| | - Nathan Pavey
- Western Clinical School, University of Sydney, Sydney, Australia
| | - Mouna Haidar
- Florey Institute of Neuroscieace and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscieace and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
35
|
Nel M, Mavundla T, Gultig K, Botha G, Mulder N, Benatar M, Wuu J, Cooley A, Myers J, Rampersaud E, Wu G, Heckmann JM. Repeats expansions in ATXN2, NOP56, NIPA1 and ATXN1 are not associated with ALS in Africans. IBRO Neurosci Rep 2021; 10:130-135. [PMID: 34179866 PMCID: PMC8211917 DOI: 10.1016/j.ibneur.2021.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/03/2021] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized primarily by progressive loss of motor neurons. Although ALS occurs worldwide and the frequency and spectrum of identifiable genetic causes of disease varies across populations, very few studies have included African subjects. In addition to a hexanucleotide repeat expansion (RE) in C9orf72, the most common genetic cause of ALS in Europeans, REs in ATXN2, NIPA1 and ATXN1 have shown variable associations with ALS in Europeans. Intermediate range expansions in some of these genes (e.g. ATXN2) have been reported as potential risk factors, or phenotypic modifiers, of ALS. Pathogenic expansions in NOP56 cause spinocerebellar ataxia-36, which can present with prominent motor neuron degeneration. Here we compare REs in these genes in a cohort of Africans with ALS and population controls using whole genome sequencing data. Targeting genotyping of short tandem repeats at known loci within ATXN2, NIPA1, ATXN1 and NOP56 was performed using ExpansionHunter software in 105 Southern African (SA) patients with ALS. African population controls were from an in-house SA population control database (n = 25), the SA Human Genome Program (n = 24), the Simons Genome Diversity Project (n = 39) and the Illumina Polaris Diversity Cohort (IPDC) dataset (n = 50). We found intermediate RE alleles in ATXN2 (27-33 repeats) and ATXN1 (33-35 repeats), and NIPA1 long alleles (≥8 repeats) were rare in Africans, and not associated with ALS (p > 0.17). NOP56 showed no expanded alleles in either ALS or controls. We also compared the differences in allele distributions between the African and n = 50 European controls (from the IPDC). There was a statistical significant difference in the distribution of the REs in the ATXN1 between African and European controls (Chi-test p < 0.001), and NIPA1 showed proportionately more longer alleles (RE > 8) in Europeans vs. Africans (Fisher's p = 0.016). The distribution of RE alleles in ATXN2 and NOP56 were similar amongst African and European controls. In conclusion, repeat expansions in ATXN2, NIPA1 and ATXN1, which showed associations with ALS in Europeans, were not replicated in Southern Africans with ALS.
Collapse
Affiliation(s)
- Melissa Nel
- Neurology Research Group, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Computational Biology Division, Institute of Infectious Disease and Molecular Medicine, South Africa
| | - Thandeka Mavundla
- Neurology Research Group, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Computational Biology Division, Institute of Infectious Disease and Molecular Medicine, South Africa
| | - Kayleigh Gultig
- Neurology Research Group, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Gerrit Botha
- Computational Biology Division, Institute of Infectious Disease and Molecular Medicine, South Africa
| | - Nicola Mulder
- Computational Biology Division, Institute of Infectious Disease and Molecular Medicine, South Africa
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Anne Cooley
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Jason Myers
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, USA
| | - Evadnie Rampersaud
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, Memphis, USA
| | - Jeannine M. Heckmann
- Neurology Research Group, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Neurology division, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Cheng F, De Luca A, Hogan AL, Rayner SL, Davidson JM, Watchon M, Stevens CH, Muñoz SS, Ooi L, Yerbury JJ, Don EK, Fifita JA, Villalva MD, Suddull H, Chapman TR, Hedl TJ, Walker AK, Yang S, Morsch M, Shi B, Blair IP, Laird AS, Chung RS, Lee A. Unbiased Label-Free Quantitative Proteomics of Cells Expressing Amyotrophic Lateral Sclerosis (ALS) Mutations in CCNF Reveals Activation of the Apoptosis Pathway: A Workflow to Screen Pathogenic Gene Mutations. Front Mol Neurosci 2021; 14:627740. [PMID: 33986643 PMCID: PMC8111008 DOI: 10.3389/fnmol.2021.627740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
The past decade has seen a rapid acceleration in the discovery of new genetic causes of ALS, with more than 20 putative ALS-causing genes now cited. These genes encode proteins that cover a diverse range of molecular functions, including free radical scavenging (e.g., SOD1), regulation of RNA homeostasis (e.g., TDP-43 and FUS), and protein degradation through the ubiquitin-proteasome system (e.g., ubiquilin-2 and cyclin F) and autophagy (TBK1 and sequestosome-1/p62). It is likely that the various initial triggers of disease (either genetic, environmental and/or gene-environment interaction) must converge upon a common set of molecular pathways that underlie ALS pathogenesis. Given the complexity, it is not surprising that a catalog of molecular pathways and proteostasis dysfunctions have been linked to ALS. One of the challenges in ALS research is determining, at the early stage of discovery, whether a new gene mutation is indeed disease-specific, and if it is linked to signaling pathways that trigger neuronal cell death. We have established a proof-of-concept proteogenomic workflow to assess new gene mutations, using CCNF (cyclin F) as an example, in cell culture models to screen whether potential gene candidates fit the criteria of activating apoptosis. This can provide an informative and time-efficient output that can be extended further for validation in a variety of in vitro and in vivo models and/or for mechanistic studies. As a proof-of-concept, we expressed cyclin F mutations (K97R, S195R, S509P, R574Q, S621G) in HEK293 cells for label-free quantitative proteomics that bioinformatically predicted activation of the neuronal cell death pathways, which was validated by immunoblot analysis. Proteomic analysis of induced pluripotent stem cells (iPSCs) derived from patient fibroblasts bearing the S621G mutation showed the same activation of these pathways providing compelling evidence for these candidate gene mutations to be strong candidates for further validation and mechanistic studies (such as E3 enzymatic activity assays, protein-protein and protein-substrate studies, and neuronal apoptosis and aberrant branching measurements in zebrafish). Our proteogenomics approach has great utility and provides a relatively high-throughput screening platform to explore candidate gene mutations for their propensity to cause neuronal cell death, which will guide a researcher for further experimental studies.
Collapse
Affiliation(s)
- Flora Cheng
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alana De Luca
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alison L Hogan
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Maxinne Watchon
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Claire H Stevens
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Emily K Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennifer A Fifita
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Maria D Villalva
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Hannah Suddull
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Tyler R Chapman
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Thomas J Hedl
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Adam K Walker
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Shu Yang
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Bingyang Shi
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Angela S Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
37
|
Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, Al-Chalabi A, Huynh W, Cudkowicz M, Talman P, Van den Berg LH, Dharmadasa T, Wicks P, Reilly C, Turner MR. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol 2021; 17:104-118. [PMID: 33340024 PMCID: PMC7747476 DOI: 10.1038/s41582-020-00434-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Individuals who are diagnosed with amyotrophic lateral sclerosis (ALS) today face the same historically intransigent problem that has existed since the initial description of the disease in the 1860s - a lack of effective therapies. In part, the development of new treatments has been hampered by an imperfect understanding of the biological processes that trigger ALS and promote disease progression. Advances in our understanding of these biological processes, including the causative genetic mutations, and of the influence of environmental factors have deepened our appreciation of disease pathophysiology. The consequent identification of pathogenic targets means that the introduction of effective therapies is becoming a realistic prospect. Progress in precision medicine, including genetically targeted therapies, will undoubtedly change the natural history of ALS. The evolution of clinical trial designs combined with improved methods for patient stratification will facilitate the translation of novel therapies into the clinic. In addition, the refinement of emerging biomarkers of therapeutic benefits is critical to the streamlining of care for individuals. In this Review, we synthesize these developments in ALS and discuss the further developments and refinements needed to accelerate the introduction of effective therapeutic approaches.
Collapse
Affiliation(s)
- Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| | - Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Orla Hardiman
- Academic Neurology Unit, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland
| | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, University of Arizona College of Medicine Phoenix, Creighton University, Phoenix, AZ, USA
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, UK
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Merit Cudkowicz
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul Talman
- Neurosciences Department, Barwon Health District, Melbourne, Victoria, Australia
| | - Leonard H Van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul Wicks
- Wicks Digital Health, Lichfield, United Kingdom
| | - Claire Reilly
- The Motor Neurone Disease Association of New Zealand, Auckland, New Zealand
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M, Halliday GM, van den Berg LH, Van Den Bosch L, van Damme P, Kiernan MC, van Es MA, Vucic S. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-322983. [PMID: 33177049 PMCID: PMC7803890 DOI: 10.1136/jnnp-2020-322983] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022]
Abstract
Inclusions of pathogenic deposits containing TAR DNA-binding protein 43 (TDP-43) are evident in the brain and spinal cord of patients that present across a spectrum of neurodegenerative diseases. For instance, the majority of patients with sporadic amyotrophic lateral sclerosis (up to 97%) and a substantial proportion of patients with frontotemporal lobar degeneration (~45%) exhibit TDP-43 positive neuronal inclusions, suggesting a role for this protein in disease pathogenesis. In addition, TDP-43 inclusions are evident in familial ALS phenotypes linked to multiple gene mutations including the TDP-43 gene coding (TARDBP) and unrelated genes (eg, C9orf72). While TDP-43 is an essential RNA/DNA binding protein critical for RNA-related metabolism, determining the pathophysiological mechanisms through which TDP-43 mediates neurodegeneration appears complex, and unravelling these molecular processes seems critical for the development of effective therapies. This review highlights the key physiological functions of the TDP-43 protein, while considering an expanding spectrum of neurodegenerative diseases associated with pathogenic TDP-43 deposition, and dissecting key molecular pathways through which TDP-43 may mediate neurodegeneration.
Collapse
Affiliation(s)
- Eva Maria Johanna de Boer
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Viyanti K Orie
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Timothy Williams
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mark R Baker
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Hugo M De Oliveira
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tuomo Polvikoski
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Neuropathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Matthew Silsby
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Parvathi Menon
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mehdi van den Bos
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Glenda M Halliday
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Leonard H van den Berg
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Philip van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Matthew C Kiernan
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Michael A van Es
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Shatunov A, Al-Chalabi A. The genetic architecture of ALS. Neurobiol Dis 2020; 147:105156. [PMID: 33130222 DOI: 10.1016/j.nbd.2020.105156] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Aleksey Shatunov
- Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Ammar Al-Chalabi
- Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK; Department of Neurology, King's College Hospital, London SE5 9RS, UK.
| |
Collapse
|
40
|
Garton FC, Trabjerg BB, Wray NR, Agerbo E. Cardiovascular disease, psychiatric diagnosis and sex differences in the multistep hypothesis of amyotrophic lateral sclerosis. Eur J Neurol 2020; 28:421-429. [PMID: 32978838 DOI: 10.1111/ene.14554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) risk increases with age, and a linear log-incidence and log-age relationship is interpreted to suggest that five to six factors are involved in disease onset. The factors remain unidentified, except that fewer steps are predicted for those carrying a known ALS-causing mutation. METHODS Men with a psychiatric disorder or cardiovascular disease (CVD) diagnosis have an increased relative risk of ALS. Using the Danish population registries and ALS diagnosis years 1980 to 2017, we tested whether these factors would decrease the predicted steps to disease. RESULTS Consistent with previous reports, we find a linear log-incidence and log-age ALS-onset relationship (n = 4385, regression coefficient b = 4.6, 95% confidence interval [CI]: 4.3-4.9, R2 = 0.99). This did not differ when considering ALS cases with a prior psychiatric diagnosis (n = 391, b = 4.6, 95% CI: 4.0-5.1) Surprisingly, it was higher (+1.5 steps, P = 2.3 × 10-5 ) for those with a prior CVD diagnosis (n = 901, b = 6.1, 95% CI: 5.4-6.8). To control for competing risk of death, a test to investigate if this effect was maintained in those with CVD in the population demonstrated an increased baseline risk and fewer steps to disease (b = 1.8, 95% CI: 1.2-2.3, P = 4.6 × 10-21 ), which consistent with a positive association of CVD and ALS. Assessing sex differences, our data and meta-analyses (n = 22 495) support half a step fewer for men (-0.4, 95% CI: ±0.24, P = 0.00031) without support for contributing differences explained by menopause. CONCLUSIONS Any factor associated with ALS disease onset may be relevant for understanding disease pathogenesis and/or counselling. Modelling disease incidence with age demonstrates some insight into relevant risk factors; however, the outcome can differ if competing risks are considered.
Collapse
Affiliation(s)
- F C Garton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - B B Trabjerg
- National Centre for Register-Based Research NCRR, Aarhus University, Aarhus, Denmark.,Centre for Integrated Register-Based Research CIRRAU, Aarhus University, Aarhus, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - N R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - E Agerbo
- National Centre for Register-Based Research NCRR, Aarhus University, Aarhus, Denmark.,Centre for Integrated Register-Based Research CIRRAU, Aarhus University, Aarhus, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| |
Collapse
|
41
|
Lattante S, Marangi G, Doronzio PN, Conte A, Bisogni G, Zollino M, Sabatelli M. High-Throughput Genetic Testing in ALS: The Challenging Path of Variant Classification Considering the ACMG Guidelines. Genes (Basel) 2020; 11:genes11101123. [PMID: 32987860 PMCID: PMC7600768 DOI: 10.3390/genes11101123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
The development of high-throughput sequencing technologies and screening of big patient cohorts with familial and sporadic amyotrophic lateral sclerosis (ALS) led to the identification of a significant number of genetic variants, which are sometimes difficult to interpret. The American College of Medical Genetics and Genomics (ACMG) provided guidelines to help molecular geneticists and pathologists to interpret variants found in laboratory testing. We assessed the application of the ACMG criteria to ALS-related variants, combining data from literature with our experience. We analyzed a cohort of 498 ALS patients using massive parallel sequencing of ALS-associated genes and identified 280 variants with a minor allele frequency < 1%. Examining all variants using the ACMG criteria, thus considering the type of variant, inheritance, familial segregation, and possible functional studies, we classified 20 variants as “pathogenic”. In conclusion, ALS’s genetic complexity, such as oligogenic inheritance, presence of genes acting as risk factors, and reduced penetrance, needs to be considered when interpreting variants. The goal of this work is to provide helpful suggestions to geneticists and clinicians dealing with ALS.
Collapse
Affiliation(s)
- Serena Lattante
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
| | - Giuseppe Marangi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-0630154606
| | - Paolo Niccolò Doronzio
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
| | - Amelia Conte
- Adult NEMO Clinical Center, Complex Operational Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy; (A.C.); (G.B.); (M.S.)
| | - Giulia Bisogni
- Adult NEMO Clinical Center, Complex Operational Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy; (A.C.); (G.B.); (M.S.)
| | - Marcella Zollino
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy; (S.L.); (P.N.D.); (M.Z.)
- Complex Operational Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy
| | - Mario Sabatelli
- Adult NEMO Clinical Center, Complex Operational Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, A. Gemelli University Hospital Foundation IRCCS, 00168 Roma, Italy; (A.C.); (G.B.); (M.S.)
- Section of Neurology, Department of Neuroscience, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Roma, Italy
| |
Collapse
|