1
|
Poblete RA, Yaceczko S, Aliakbar R, Saini P, Hazany S, Breit H, Louie SG, Lyden PD, Partikian A. Optimization of Nutrition after Brain Injury: Mechanistic and Therapeutic Considerations. Biomedicines 2023; 11:2551. [PMID: 37760993 PMCID: PMC10526443 DOI: 10.3390/biomedicines11092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Emerging science continues to establish the detrimental effects of malnutrition in acute neurological diseases such as traumatic brain injury, stroke, status epilepticus and anoxic brain injury. The primary pathological pathways responsible for secondary brain injury include neuroinflammation, catabolism, immune suppression and metabolic failure, and these are exacerbated by malnutrition. Given this, there is growing interest in novel nutritional interventions to promote neurological recovery after acute brain injury. In this review, we will describe how malnutrition impacts the biomolecular mechanisms of secondary brain injury in acute neurological disorders, and how nutritional status can be optimized in both pediatric and adult populations. We will further highlight emerging therapeutic approaches, including specialized diets that aim to resolve neuroinflammation, immunodeficiency and metabolic crisis, by providing pre-clinical and clinical evidence that their use promotes neurologic recovery. Using nutrition as a targeted treatment is appealing for several reasons that will be discussed. Given the high mortality and both short- and long-term morbidity associated with acute brain injuries, novel translational and clinical approaches are needed.
Collapse
Affiliation(s)
- Roy A. Poblete
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Shelby Yaceczko
- UCLA Health, University of California, 100 Medical Plaza, Suite 345, Los Angeles, CA 90024, USA;
| | - Raya Aliakbar
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Pravesh Saini
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Saman Hazany
- Department of Radiology, Keck School of Medicine, The University of Southern California, 1500 San Pablo Street, Los Angeles, CA 90033, USA;
| | - Hannah Breit
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Stan G. Louie
- Department of Clinical Pharmacy, School of Pharmacy, The University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA;
| | - Patrick D. Lyden
- Department of Neurology, Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA;
| | - Arthur Partikian
- Department of Neurology, Department of Pediatrics, Keck School of Medicine, The University of Southern California, 2010 Zonal Avenue, Building B, 3P61, Los Angeles, CA 90033, USA;
| |
Collapse
|
2
|
Nabbout R, Matricardi S, De Liso P, Dulac O, Oualha M. Ketogenic diet for super-refractory status epilepticus (SRSE) with NORSE and FIRES: Single tertiary center experience and literature data. Front Neurol 2023; 14:1134827. [PMID: 37122314 PMCID: PMC10133555 DOI: 10.3389/fneur.2023.1134827] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background and purpose Ketogenic diet (KD) is an emerging treatment option for super-refractory status epilepticus (SRSE). We evaluated the effectiveness of KD in patients presenting SRSE including NORSE (and its subcategory FIRES). Methods A retrospective review of the medical records was performed at the Necker Enfants Malades Hospital. All children with SRSE in whom KD was started during the last 10 years were included. A systematic search was carried out for all study designs, including at least one patient of any age with SRSE in whom KD was started. The primary outcome was the responder rate and Kaplan-Meier survival curves were generated for the time-to-KD response. As secondary outcomes, Cox proportional hazard models were created to assess the impact of NORSE-related factors on KD efficacy. Results Sixteen children received KD for treatment of SRSE, and three had NORSE presentation (one infectious etiology, two FIRES). In medical literature, 1,613 records were initially identified, and 75 were selected for review. We selected 276 patients receiving KD during SRSE. The most common etiology of SRSE was acute symptomatic (21.3%), among these patients, 67.7% presented with NORSE of immune and infectious etiologies. Other etiologies were remote symptomatic (6.8%), progressive symptomatic (6.1%), and SE in defined electroclinical syndromes (14.8%), including two patients with genetic etiology and NORSE presentation. The etiology was unknown in 50.7% of the patients presenting with cryptogenic NORSE, of which 102 presented with FIRES. Overall, most patients with NORSE benefit from KD (p < 0.004), but they needed a longer time to achieve RSE resolution after starting KD compared with other non-NORSE SRSE (p = 0.001). The response to KD in the NORSE group with identified etiology compared to the cryptogenic NORSE was significantly higher (p = 0.01), and the time to achieve SE resolution after starting KD was shorter (p = 0.04). Conclusions The search for underlying etiology should help to a better-targeted therapy. KD can have good efficacy in NORSE; however, the time to achieve SE resolution seems to be longer in cryptogenic cases. These findings highlight the therapeutic role of KD in NORSE, even though this favorable response needs to be better confirmed in prospective controlled studies.
Collapse
Affiliation(s)
- Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
- Imagine Institute, National Institute of Health and Medical Research, Mixed Unit of Research 1163, University Paris Cité, Paris, France
- *Correspondence: Rima Nabbout ;
| | - Sara Matricardi
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Paola De Liso
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Member of ERN EpiCARE, Rome, Italy
| | - Olivier Dulac
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, University Paris Cité, Member of ERN EpiCARE, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Université de Paris, Paris, France
| |
Collapse
|
3
|
Husari KS, Cervenka MC. Ketogenic Diet Therapy for the Treatment of Post-encephalitic and Autoimmune-Associated Epilepsies. Front Neurol 2021; 12:624202. [PMID: 34220664 PMCID: PMC8242936 DOI: 10.3389/fneur.2021.624202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: Acute Encephalitis is associated with a high risk of acute symptomatic seizures, status epilepticus, and remote symptomatic epilepsy. Ketogenic diet therapies (KDT) have been established as a feasible and safe adjunctive management of refractory- and super-refractory status epilepticus. However, the role of KDT in the chronic management of Post-encephalitic epilepsy (PE) and autoimmune-associated epilepsy (AE) is unknown. This study aims to investigate the use of KDT in patients with PE and AE. Methods: A retrospective single-center case series examining adult patients with PE and AE treated with the modified Atkins diet (MAD), a KDT commonly used by adults with drug-resistant epilepsy. Results: Ten patients with PE and AE who were treated with adjunctive MAD were included. Four patients had either confirmed or presumed viral encephalitis, five patients had seronegative AE, and one patient had GAD65 AE. The median latency between starting MAD and onset of encephalitis was 6 years (IQR: 1–10). The median duration of MAD was 10 months (IQR: 3.75–36). Three patients (30%) became seizure-free, one patient (10%) achieved 90% seizure freedom, and three patients (30%) achieved a 50–75% reduction in their baseline seizure frequency, while three patients (30%) had no significant benefit. Overall, seven patients (70%) achieved ≥50% seizure reduction. Conclusion: In addition to its established role in the treatment of RSE, KDT may be a safe and feasible option for the treatment of chronic PE and AE, particularly in those with prior history of SE. Prospective studies are warranted to explore the efficacy of KDT in management of patients with PE and AE.
Collapse
Affiliation(s)
- Khalil S Husari
- Department of Neurology, Johns Hopkins Comprehensive Epilepsy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins Comprehensive Epilepsy Center, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
Willems LM, Bauer S, Jahnke K, Voss M, Rosenow F, Strzelczyk A. Therapeutic Options for Patients with Refractory Status Epilepticus in Palliative Settings or with a Limitation of Life-Sustaining Therapies: A Systematic Review. CNS Drugs 2020; 34:801-826. [PMID: 32705422 PMCID: PMC8316215 DOI: 10.1007/s40263-020-00747-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Refractory status epilepticus (RSE) represents a serious medical condition requiring early and targeted therapy. Given the increasing number of elderly or multimorbid patients with a limitation of life-sustaining therapy (LOT) or within a palliative care setting (PCS), guidelines-oriented therapy escalation options for RSE have to be omitted frequently. OBJECTIVES This systematic review sought to summarize the evidence for fourth-line antiseizure drugs (ASDs) and other minimally or non-invasive therapeutic options beyond guideline recommendations in patients with RSE to elaborate on possible treatment options for patients undergoing LOT or in a PCS. METHODS A systematic review of the literature in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, focusing on fourth-line ASDs or other minimally or non-invasive therapeutic options was performed in February and June 2020 using the MEDLINE, EMBASE and Cochrane databases. The search terminology was constructed using the name of the specific ASD or therapy option and the term 'status epilepticus' with the use of Boolean operators, e.g. "(brivaracetam) AND (status epilepticus)". The respective Medical Subject Headings (MeSH) and Emtree terms were used, if available. RESULTS There is currently no level 1, grade A evidence for the use of ASDs in RSE. The best evidence was found for the use of lacosamide and topiramate (level 3, grade C), followed by brivaracetam, perampanel (each level 4, grade D) and stiripentol, oxcarbazepine and zonisamide (each level 5, grade D). Regarding non-medicinal options, there is little evidence for the use of the ketogenic diet (level 4, grade D) and magnesium sulfate (level 5, grade D) in RSE. The broad use of immunomodulatory or immunosuppressive treatment options in the absence of a presumed autoimmune etiology cannot be recommended; however, if an autoimmune etiology is assumed, steroid pulse, intravenous immunoglobulins and plasma exchange/plasmapheresis should be considered (level 4, grade D). Even if several studies suggested that the use of neurosteroids (level 5, grade D) is beneficial in RSE, the current data situation indicates that there is formal evidence against it. CONCLUSIONS RSE in patients undergoing LOT or in a PCS represents a challenge for modern clinicians and epileptologists. The evidence for the use of ASDs in RSE beyond that in current guidelines is low, but several effective and well-tolerated options are available that should be considered in this patient population. More so than in any other population, advance care planning, advance directives, and medical ethical aspects have to be considered carefully before and during therapy.
Collapse
Affiliation(s)
- Laurent M Willems
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Sebastian Bauer
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kolja Jahnke
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Voss
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neuro-Oncology, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Neurology, Epilepsy Center Hessen, Philipps University Marburg, Marburg (Lahn), Germany
| |
Collapse
|