1
|
Colantuono P, D'Anna L, Foschi M, Adipietro M, Lancia S, Mammarella L, Sacco S, Ornello R. How far are we from bringing intensive care bundle for intracerebral hemorrhage into the real-world setting? A 5-year population based-study. Neurol Sci 2025:10.1007/s10072-025-08113-x. [PMID: 40163165 DOI: 10.1007/s10072-025-08113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Comprehensive care bundles including rapid blood pressure management, anticoagulation reversal, neurosurgical consultation, control of blood glucose and body temperature, can improve short- and medium-term outcomes in patients with intracerebral hemorrhage (ICH). This study assessed how the acute management of ICH practices evolved in a real-world setting over five years characterized by global changes in ICH care. METHODS This study analysed ICH cases from a population-based stroke registry between 2018 and 2022. We collected demographic and clinical data, focusing on key parameters of ICH management, such as systolic blood pressure, anticoagulation reversal, neurosurgical referrals, blood glucose, and body temperature. We also examined yearly trends in control of parameters over time. RESULTS We included 460 patients with ICH (55.4% male, median age 79 years, interquartile range 69-85). At onset, 266 patients (57.8%) had high SBP (SBP ≥ 140 mmHg), 286 (70.3%) hyperglycemia (blood glucose ≥ 108 mg/dL), and 63 (17.3%) hyperpyrexia (body temperature ≥ 37.0*C). Anticoagulation was reversed in 21.4% of anticoagulated patients within 24 h. Neurosurgical referrals were made for 84.6% of patients while only 12.4% underwent surgery. From 2018 to 2022, anticoagulation reversal rates increased from 0 to 88.9% (p < 0.001), while neurosurgical referrals not followed by surgery decreased from 79.5 to 55.7% (p < 0.001). CONCLUSIONS This real-world study demonstrates suboptimal management of key factors associated with ICH prognosis; nevertheless, it highlights improvement over time. There is a need for structured interventions to improve the timely and consistent application of simple yet effective measures yielding the potential to improve patients' outcomes.
Collapse
Affiliation(s)
- Paola Colantuono
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, L'Aquila, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London NHS Healthcare Trust, London, United Kingdom
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Matteo Foschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, L'Aquila, Italy
| | - Michela Adipietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, L'Aquila, Italy
| | - Stefania Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, L'Aquila, Italy
| | - Leondino Mammarella
- Servizio Flussi Informativi e Statistica Sanitaria, Azienda Sanitaria Locale Avezzano-Sulmona- L'Aquila, L'Aquila, Italy
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, L'Aquila, Italy.
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, L'Aquila, Italy
| |
Collapse
|
2
|
Cai Y, Yu Z, Yang X, Luo W, Hu E, Li T, Zhu W, Wang Y, Tang T, Luo J. Integrative transcriptomic and network pharmacology analysis reveals the neuroprotective role of BYHWD through enhancing autophagy by inhibiting Ctsb in intracerebral hemorrhage mice. Chin Med 2023; 18:150. [PMID: 37957754 PMCID: PMC10642062 DOI: 10.1186/s13020-023-00852-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND In this study, we aimed to combine transcriptomic and network pharmacology to explore the crucial mRNAs and specific regulatory molecules of Buyang Huanwu Decoction (BYHWD) in intracerebral hemorrhage (ICH) treatment. METHODS C57BL/6 mice were randomly divided into three groups: sham, ICH, and BYHWD. BYHWD (43.29 g/kg) was administered once a day for 7 days. An equal volume of double-distilled water was used as a control. Behavioural and histopathological experiments were conducted to confirm the neuroprotective effects of BYHWD. Brain tissues were collected for transcriptomic detection. Bioinformatics analysis were performed to illustrate the target gene functions. Network pharmacology was used to predict potential targets for BYHWD. Next, transcriptomic assays were combined with network pharmacology to identify the potential differentially expressed mRNAs. Immunofluorescence staining, real-time polymerase chain reaction, western blotting, and transmission electron microscopy were performed to elucidate the underlying mechanisms. RESULTS BYHWD intervention in ICH reduced neurological deficits. Network pharmacology analysis identified 203 potential therapeutic targets for ICH, whereas transcriptomic assay revealed 109 differentially expressed mRNAs post-ICH. Among these, cathepsin B, ATP binding cassette subfamily B member 1, toll-like receptor 4, chemokine (C-C motif) ligand 12, and baculoviral IAP repeat-containing 5 were identified as potential target mRNAs through the integration of transcriptomics and network pharmacology approaches. Bioinformatics analysis suggested that the beneficial effects of BYHWD in ICH may be associated with apoptosis, animal autophagy signal pathways, and PI3K-Akt and mTOR biological processes. Furthermore, BYHWD intervention decreased Ctsb expression levels and increased autophagy levels in ICH. CONCLUSIONS Animal experiments in combination with bioinformatics analysis confirmed that BYHWD plays a neuroprotective role in ICH by regulating Ctsb to enhance autophagy.
Collapse
Affiliation(s)
- Yiqing Cai
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe Yu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xueping Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Weikang Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Wenxin Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jiekun Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Regional Center for Neurological Diseases, Xiangya Hospital, Central South University Jiangxi, Nanchang, 330000, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Zhang CY, Wang B, Hua XT, Fan K, Li YF. Serum vascular endothelial growth factor and cortisol expression to predict prognosis of patients with hypertensive cerebral hemorrhage. World J Clin Cases 2023; 11:5455-5461. [PMID: 37637696 PMCID: PMC10450374 DOI: 10.12998/wjcc.v11.i23.5455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Cerebral hemorrhage is a common and severe complication of hypertension in middle-aged and elderly men. AIM To investigate the correlation between vascular endothelial growth factor (VEGF) and cortisol (Cor) and the prognosis of patients with hypertensive cerebral hemorrhage. METHODS A hundred patients with hypertensive intracerebral hemorrhage were enrolled from January 2020 to December 2022 and assigned to the hypertensive intracerebral hemorrhage group. Another 100 healthy people who were examined at our hospital during the same period were selected and assigned to the healthy group. Peripheral venous blood was collected, and serum Cor and VGEF levels were measured through enzyme linked immunosorbent assay. RESULTS A statistically significant difference in serum Cor and VGEF levels was observed among patients with varying degrees of neurological impairment (P < 0.05). Serum Cor and VGEF levels were significantly higher in the severe group than in the mild-to-moderate group. Cor and VEGF levels were significantly higher in patients with poor prognoses than in those with good prognoses. Multiple logistic regression analysis revealed that serum Cor and VGEF levels were independent factors affecting hypertensive intracerebral hemorrhage (P < 0.05). CONCLUSION Cor and VGEF are associated with the occurrence and development of hypertensive cerebral hemorrhage and are significantly associated with neurological impairment and prognosis of patients.
Collapse
Affiliation(s)
- Chao-Yong Zhang
- Department of Neurosurgery, Taihe Hospital Affiliated to Wannan Medical College, Taihe County People’s Hospital, Fuyang 236600, Anhui Province, China
| | - Bin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Xiang-Ting Hua
- Department of Neurosurgery, Taihe Hospital Affiliated to Wannan Medical College, Taihe County People’s Hospital, Fuyang 236600, Anhui Province, China
| | - Kui Fan
- Department of Neurosurgery, Taihe Hospital Affiliated to Wannan Medical College, Taihe County People’s Hospital, Fuyang 236600, Anhui Province, China
| | - Yu-Feng Li
- Department of Neurosurgery, Taihe Hospital Affiliated to Wannan Medical College, Taihe County People’s Hospital, Fuyang 236600, Anhui Province, China
| |
Collapse
|
4
|
Huang X, Wang D, Zhang Q, Ma Y, Li S, Zhao H, Deng J, Yang J, Ren J, Xu M, Xi H, Li F, Zhang H, Xie Y, Yuan L, Hai Y, Yue M, Zhou Q, Zhou J. Development and Validation of a Clinical-Based Signature to Predict the 90-Day Functional Outcome for Spontaneous Intracerebral Hemorrhage. Front Aging Neurosci 2022; 14:904085. [PMID: 35615596 PMCID: PMC9125153 DOI: 10.3389/fnagi.2022.904085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
We aimed to develop and validate an objective and easy-to-use model for identifying patients with spontaneous intracerebral hemorrhage (ICH) who have a poor 90-day prognosis. This three-center retrospective study included a large cohort of 1,122 patients with ICH who presented within 6 h of symptom onset [training cohort, n = 835; internal validation cohort, n = 201; external validation cohort (center 2 and 3), n = 86]. We collected the patients’ baseline clinical, radiological, and laboratory data as well as the 90-day functional outcomes. Independent risk factors for prognosis were identified through univariate analysis and multivariate logistic regression analysis. A nomogram was developed to visualize the model results while a calibration curve was used to verify whether the predictive performance was satisfactorily consistent with the ideal curve. Finally, we used decision curves to assess the clinical utility of the model. At 90 days, 714 (63.6%) patients had a poor prognosis. Factors associated with prognosis included age, midline shift, intraventricular hemorrhage (IVH), subarachnoid hemorrhage (SAH), hypodensities, ICH volume, perihematomal edema (PHE) volume, temperature, systolic blood pressure, Glasgow Coma Scale (GCS) score, white blood cell (WBC), neutrophil, and neutrophil-lymphocyte ratio (NLR) (p < 0.05). Moreover, age, ICH volume, and GCS were identified as independent risk factors for prognosis. For identifying patients with poor prognosis, the model showed an area under the receiver operating characteristic curve of 0.874, 0.822, and 0.868 in the training cohort, internal validation, and external validation cohorts, respectively. The calibration curve revealed that the nomogram showed satisfactory calibration in the training and validation cohorts. Decision curve analysis showed the clinical utility of the nomogram. Taken together, the nomogram developed in this study could facilitate the individualized outcome prediction in patients with ICH.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Dan Wang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiaoying Zhang
- Department of Radiology, Xi’an Central Hospital, Xi’an, China
| | - Yaqiong Ma
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Hui Zhao
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Juan Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Jingjing Yang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | | | - Min Xu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Fukai Li
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Hongyu Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Yijing Xie
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Long Yuan
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Yucheng Hai
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Mengying Yue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
- *Correspondence: Junlin Zhou,
| |
Collapse
|
5
|
Zhang H, Wang Y, Lian L, Zhang C, He Z. Glycine-Histidine-Lysine (GHK) Alleviates Astrocytes Injury of Intracerebral Hemorrhage via the Akt/miR-146a-3p/AQP4 Pathway. Front Neurosci 2020; 14:576389. [PMID: 33192260 PMCID: PMC7658812 DOI: 10.3389/fnins.2020.576389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major type of cerebrovascular disease with poor prognosis. Recent studies have shown that Glycyl-l-histidyl-l-lysine (GHK) is a kind of natural human tripeptide which could inhibit inflammation and against neurodegenerative diseases, but neither its role nor the mechanisms in ICH have yet been explicit. Currently, we investigated the possible strategies of GHK on ICH injury. Neurological deficit scores, brain water content, Nissl staining, and aquaporin 4 (AQP4) immunohistochemistry were detected in different groups of rats. The expression of microRNAs (miRNAs) was examined by real-time PCR. Inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA). Cell viability and cell proliferation were detected by Cell Counting Kit-8 (CCK-8). Matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitors of metalloproteinase-1 (TIMP1), AQP4 expression were detected/assessed using western blot. We observed that 5 and 10 μg/g of GHK improved neurological recovery by significantly reducing brain water content, improving neurological deficits, and promoting neuron survival. Besides, GHK alleviated inflammatory reaction and downregulated AQP4 expression. Furthermore, the effects of GHK on astrocyte were associated with the upregulation of miRNA-146a-3p, which partially regulated the expression of AQP4. Our results demonstrated that the phosphatidylinositol 3-kinase (PI3K)/AKT pathway participated in the GHK-induced upregulation of miR-146a-3p and miR-146a-3p/AQP4 interaction plays a role in the injury following ICH. These findings suggested that GHK could provide a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Heyu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.,Department of Neurology, First Hospital of China Medical University, Shenyang, China
| | - Yanzhe Wang
- Department of Neurology, First Hospital of China Medical University, Shenyang, China
| | - Ling Lian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhiyi He
- Department of Neurology, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|