1
|
Morozova I, Zorkina Y, Berdalin A, Ikonnikova A, Emelyanova M, Fedoseeva E, Antonova O, Gryadunov D, Andryushchenko A, Ushakova V, Abramova O, Zeltser A, Kurmishev M, Savilov V, Osipova N, Preobrazhenskaya I, Kostyuk G, Morozova A. Dynamics of Cognitive Impairment in MCI Patients over a Three-Year Period: The Informative Role of Blood Biomarkers, Neuroimaging, and Genetic Factors. Diagnostics (Basel) 2024; 14:1883. [PMID: 39272668 PMCID: PMC11394601 DOI: 10.3390/diagnostics14171883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Given the high growth rates of cognitive decline among the elderly population and the lack of effective etiological treatments, early diagnosis of cognitive impairment progression is an imperative task for modern science and medicine. It is of particular interest to identify predictors of an unfavorable subsequent course of cognitive disorders, specifically, rapid progression. Our study assessed the informative role of various risk factors on the dynamics of cognitive impairment among mild cognitive impairment (MCI) patients. The study included patients with MCI (N = 338) who underwent neuropsychological assessment, magnetic resonance imaging (MRI) examination, blood sampling for general and biochemical analysis, APOE genotyping, and polygenic risk score (PRS) evaluation. The APOE ε4/ε4 genotype was found to be associated with a diminished overall cognitive scores initial assessment and negative cognitive dynamics. No associations were found between cognitive changes and the PRS. The progression of cognitive impairment was associated with the width of the third ventricle and hematological parameters, specifically, hematocrit and erythrocyte levels. The absence of significant associations between the dynamics of cognitive decline and PRS over three years can be attributed to the provided suitable medical care for the prevention of cognitive impairment. Adding other risk factors and their inclusion in panels assessing the risk of progression of cognitive impairment should be considered.
Collapse
Affiliation(s)
- Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Alexander Berdalin
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Fedoseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga Antonova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alisa Andryushchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Valeriya Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Marat Kurmishev
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Victor Savilov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Natalia Osipova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Irina Preobrazhenskaya
- Department of Nervous Diseases and Neurosurgery, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry and Psychosomatics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education Russian Biotechnological University, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| |
Collapse
|
2
|
Korbmacher M, van der Meer D, Beck D, Askeland-Gjerde DE, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Distinct Longitudinal Brain White Matter Microstructure Changes and Associated Polygenic Risk of Common Psychiatric Disorders and Alzheimer's Disease in the UK Biobank. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100323. [PMID: 39132576 PMCID: PMC11313202 DOI: 10.1016/j.bpsgos.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background During the course of adulthood and aging, white matter (WM) structure and organization are characterized by slow degradation processes such as demyelination and shrinkage. An acceleration of such aging processes has been linked to the development of a range of diseases. Thus, an accurate description of healthy brain maturation, particularly in terms of WM features, is fundamental to the understanding of aging. Methods We used longitudinal diffusion magnetic resonance imaging to provide an overview of WM changes at different spatial and temporal scales in the UK Biobank (UKB) (n = 2678; agescan 1 = 62.38 ± 7.23 years; agescan 2 = 64.81 ± 7.1 years). To examine the genetic overlap between WM structure and common clinical conditions, we tested the associations between WM structure and polygenic risk scores for the most common neurodegenerative disorder, Alzheimer's disease, and common psychiatric disorders (unipolar and bipolar depression, anxiety, obsessive-compulsive disorder, autism, schizophrenia, attention-deficit/hyperactivity disorder) in longitudinal (n = 2329) and cross-sectional (n = 31,056) UKB validation data. Results Our findings indicate spatially distributed WM changes across the brain, as well as distributed associations of polygenic risk scores with WM. Importantly, brain longitudinal changes reflected genetic risk for disorder development better than the utilized cross-sectional measures, with regional differences giving more specific insights into gene-brain change associations than global averages. Conclusions We extend recent findings by providing a detailed overview of WM microstructure degeneration on different spatial levels, helping to understand fundamental brain aging processes. Further longitudinal research is warranted to examine aging-related gene-brain associations.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Daniel E. Askeland-Gjerde
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I. Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Ikram MA, Kieboom BCT, Brouwer WP, Brusselle G, Chaker L, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, de Knegt RJ, Luik AI, van Meurs J, Pardo LM, Rivadeneira F, van Rooij FJA, Vernooij MW, Voortman T, Terzikhan N. The Rotterdam Study. Design update and major findings between 2020 and 2024. Eur J Epidemiol 2024; 39:183-206. [PMID: 38324224 DOI: 10.1007/s10654-023-01094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
The Rotterdam Study is a population-based cohort study, started in 1990 in the district of Ommoord in the city of Rotterdam, the Netherlands, with the aim to describe the prevalence and incidence, unravel the etiology, and identify targets for prediction, prevention or intervention of multifactorial diseases in mid-life and elderly. The study currently includes 17,931 participants (overall response rate 65%), aged 40 years and over, who are examined in-person every 3 to 5 years in a dedicated research facility, and who are followed-up continuously through automated linkage with health care providers, both regionally and nationally. Research within the Rotterdam Study is carried out along two axes. First, research lines are oriented around diseases and clinical conditions, which are reflective of medical specializations. Second, cross-cutting research lines transverse these clinical demarcations allowing for inter- and multidisciplinary research. These research lines generally reflect subdomains within epidemiology. This paper describes recent methodological updates and main findings from each of these research lines. Also, future perspective for coming years highlighted.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands.
| | - Brenda C T Kieboom
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Willem Pieter Brouwer
- Department of Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Guy Brusselle
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Pulmonology, University Hospital Ghent, Ghent, Belgium
| | - Layal Chaker
- Department of Epidemiology, and Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - André Goedegebure
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, and Department of Neurology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Rob J de Knegt
- Department of Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Luba M Pardo
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Fernando Rivadeneira
- Department of Medicine, and Department of Oral & Maxillofacial Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, and Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
4
|
Heckbert SR, Jensen PN, Erus G, Nasrallah IM, Rashid T, Habes M, Austin TR, Floyd JS, Schaich CL, Redline S, Bryan RN, Costa MD. Heart rate fragmentation and brain MRI markers of small vessel disease in MESA. Alzheimers Dement 2024; 20:1397-1405. [PMID: 38009395 PMCID: PMC10917025 DOI: 10.1002/alz.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Heart rate (HR) fragmentation indices quantify breakdown of HR regulation and are associated with atrial fibrillation and cognitive impairment. Their association with brain magnetic resonance imaging (MRI) markers of small vessel disease is unexplored. METHODS In 606 stroke-free participants of the Multi-Ethnic Study of Atherosclerosis (mean age 67), HR fragmentation indices including percentage of inflection points (PIP) were derived from sleep study recordings. We examined PIP in relation to white matter hyperintensity (WMH) volume, total white matter fractional anisotropy (FA), and microbleeds from 3-Tesla brain MRI completed 7 years later. RESULTS In adjusted analyses, higher PIP was associated with greater WMH volume (14% per standard deviation [SD], 95% confidence interval [CI]: 2, 27%, P = 0.02) and lower WM FA (-0.09 SD per SD, 95% CI: -0.16, -0.01, P = 0.03). DISCUSSION HR fragmentation was associated with small vessel disease. HR fragmentation can be measured automatically from ambulatory electrocardiogram devices and may be useful as a biomarker of vascular brain injury.
Collapse
Affiliation(s)
- Susan R. Heckbert
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Paul N. Jensen
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Guray Erus
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and AnalyticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ilya M. Nasrallah
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and AnalyticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of RadiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tanweer Rashid
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging CoreGlenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Mohamad Habes
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and AnalyticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging CoreGlenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Thomas R. Austin
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - James S. Floyd
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Christopher L. Schaich
- Department of SurgeryHypertension and Vascular Research CenterWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Susan Redline
- Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - R. Nick Bryan
- Department of RadiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Madalena D. Costa
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| |
Collapse
|
5
|
Tap L, Vernooij MW, Wolters F, van den Berg E, Mattace-Raso FUS. New horizons in cognitive and functional impairment as a consequence of cerebral small vessel disease. Age Ageing 2023; 52:afad148. [PMID: 37585592 PMCID: PMC10431695 DOI: 10.1093/ageing/afad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Indexed: 08/18/2023] Open
Abstract
Cerebral small vessel disease (cSVD) is a frequent finding in imaging of the brain in older adults, especially in the concomitance of cardiovascular disease risk factors. Despite the well-established link between cSVD and (vascular) cognitive impairment (VCI), it remains uncertain how and when these vascular alterations lead to cognitive decline. The extent of acknowledged markers of cSVD is at best modestly associated with the severity of clinical symptoms, but technological advances increasingly allow to identify and quantify the extent and perhaps also the functional impact of cSVD more accurately. This will facilitate a more accurate diagnosis of VCI, against the backdrop of concomitant other neurodegenerative pathology, and help to identify persons with the greatest risk of cognitive and functional deterioration. In this study, we discuss how better assessment of cSVD using refined neuropsychological and comprehensive geriatric assessment as well as modern image analysis techniques may improve diagnosis and possibly the prognosis of VCI. Finally, we discuss new avenues in the treatment of cSVD and outline how these contemporary insights into cSVD can contribute to optimise screening and treatment strategies in older adults with cognitive impairment and multimorbidity.
Collapse
Affiliation(s)
- Lisanne Tap
- Department of Internal Medicine, Section of Geriatric Medicine and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Frank Wolters
- Department of Epidemiology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Esther van den Berg
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Francesco U S Mattace-Raso
- Department of Internal Medicine, Section of Geriatric Medicine and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Lacalle-Aurioles M, Iturria-Medina Y. Fornix degeneration in risk factors of Alzheimer's disease, possible trigger of cognitive decline. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100158. [PMID: 36703699 PMCID: PMC9871745 DOI: 10.1016/j.cccb.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Risk factors of late-onset Alzheimer's disease (AD) such as aging, type 2 diabetes, obesity, heart failure, and traumatic brain injury can facilitate the appearance of cognitive decline and dementia by triggering cerebrovascular pathology and neuroinflammation. White matter (WM) microstructure and function are especially vulnerable to these conditions. Microstructural WM changes, assessed with diffusion weighted magnetic resonance imaging, can already be detected at preclinical stages of AD, and in the presence of the aforementioned risk factors. Particularly, the limbic system and cortico-cortical association WM tracts, which myelinate late during brain development, degenerate at the earliest stages. The fornix, a C-shaped WM tract that originates from the hippocampus, is one of the limbic tracts that shows early microstructural changes. Fornix integrity is necessary for ensuring an intact executive function and memory performance. Thus, a better understanding of the mechanisms that cause fornix degeneration is critical in the development of therapeutic strategies aiming to prevent cognitive decline in populations at risk. In this literature review, i) we deepen the idea that partial loss of forniceal integrity is an early event in AD, ii) we describe the role that common risk factors of AD can play in the degeneration of the fornix, and iii) we discuss some potential cellular and physiological mechanisms of WM degeneration in the scenario of cerebrovascular disease and inflammation.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Corresponding author at: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada,McConnell Brain Imaging Centre, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Shafer AT, Williams OA, Perez E, An Y, Landman BA, Ferrucci L, Resnick SM. Accelerated decline in white matter microstructure in subsequently impaired older adults and its relationship with cognitive decline. Brain Commun 2022; 4:fcac051. [PMID: 35356033 PMCID: PMC8963308 DOI: 10.1093/braincomms/fcac051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 11/12/2022] Open
Abstract
Little is known about a longitudinal decline in white matter microstructure and its associations with cognition in preclinical dementia. Longitudinal diffusion tensor imaging and neuropsychological testing were performed in 50 older adults who subsequently developed mild cognitive impairment or dementia (subsequently impaired) and 200 cognitively normal controls. Rates of white matter microstructural decline were compared between groups using voxel-wise linear mixed-effects models. Associations between change in white matter microstructure and cognition were examined. Subsequently impaired individuals had a faster decline in fractional anisotropy in the right inferior fronto-occipital fasciculus and bilateral splenium of the corpus callosum. A decline in right inferior fronto-occipital fasciculus fractional anisotropy was related to a decline in verbal memory, visuospatial ability, processing speed and mini-mental state examination. A decline in bilateral splenium fractional anisotropy was related to a decline in verbal fluency, processing speed and mini-mental state examination. Accelerated regional white matter microstructural decline is evident during the preclinical phase of mild cognitive impairment/dementia and is related to domain-specific cognitive decline.
Collapse
Affiliation(s)
- Andrea T. Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Correspondence to: Andrea T. Shafer 251 Bayview Blvd., Baltimore MD 21224, USA E-mail:
| | - Owen A. Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Evian Perez
- San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Correspondence may also be addressed to: Susan M. Resnick E-mail:
| |
Collapse
|
8
|
Filley CM. Cognitive Dysfunction in White Matter Disorders: New Perspectives in Treatment and Recovery. J Neuropsychiatry Clin Neurosci 2021; 33:349-355. [PMID: 34340526 DOI: 10.1176/appi.neuropsych.21030080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
White matter disorders are increasingly appreciated as capable of disrupting cognitive function, and this impairment may be sufficiently severe to produce the syndrome of white matter dementia. Although recognizing this problem is important for diagnostic accuracy, the treatment of cognitive dysfunction and dementia in the white matter disorders has received relatively little attention. Similarly, few data are available regarding the potential for cognitive recovery in these disorders. Recent clinical and laboratory advances, however, indicate that effective treatment and meaningful recovery may be achievable goals for many patients with macrostructural or microstructural white matter pathology. One recent observation is that leukoaraiosis has been observed to regress with treatment of hypertension, often with concomitant improvement in cognition. Equally novel is emerging evidence that white matter exhibits substantial plasticity related to activity-dependent myelination and that this phenomenon may produce clinical benefit. These insights suggest that noninvasive and inexpensive interventions targeting white matter are warranted for a wide range of cognitively impaired patients. Moreover, given the well-established risk that vascular white matter pathology portends for developing dementia-including both vascular dementia and Alzheimer's disease-the application of these principles before dementia onset may also be efficacious for prevention. In view of the increasingly compelling case for early white matter involvement in the etiopathogenesis of late-life dementia and the continuing lack of disease-modifying therapy, progress in treating cognitive disturbances arising from white matter disorders offers the prospect that this approach may enhance the prevention of dementia as well as the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Christopher M Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora; and Marcus Institute for Brain Health, Aurora, Colo
| |
Collapse
|
9
|
Yuan CL, Yi R, Dong Q, Yao LF, Liu B. The relationship between diabetes-related cognitive dysfunction and leukoaraiosis. Acta Neurol Belg 2021; 121:1101-1110. [PMID: 33893981 DOI: 10.1007/s13760-021-01676-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/10/2021] [Indexed: 12/17/2022]
Abstract
Cognitive dysfunction is a degenerative disease of the central nervous system, which often associates with ageing brain as well as neurodegenerative diseases. A growing body of evidence suggests that patients with diabetes mellitus (DM) have a significantly higher risk of cognitive impairment. In recent years, studies have found that patients with diabetes-related cognitive dysfunction have an increased burden of leukoaraiosis (LA), and larger white matter hyperintensity (WMH) volume. With the recent advancement of technologies, multimodal imaging is widely exploited for the precise evaluation of central nervous system diseases. Emerging studies suggest that LA pathology can be used as a predictive signal of white matter lesions in patients with diabetes-related cognitive dysfunction, providing support for early identification and diagnosis of disease. This article reviews the findings, epidemiological characteristics, pathogenesis, imaging features, prevention and treatment of LA pathophysiology in patients with diabetes-related cognitive dysfunction.
Collapse
Affiliation(s)
- Chun-Lan Yuan
- Department of Neurology, The First Affiliated Hospital Of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, People's Republic of China
| | - Ran Yi
- Department of Endocrine, The First Affiliated Hospital Of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, People's Republic of China
| | - Qi Dong
- Department of Neurology, The First Affiliated Hospital Of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, People's Republic of China.
| | - Li-Fen Yao
- Department of Neurology, The First Affiliated Hospital Of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, People's Republic of China
| | - Bin Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital Of Harbin Medical University, No. 37 Yiyuan Street, Harbin, 150001, People's Republic of China.
| |
Collapse
|
10
|
Gleichgerrcht E, Kellermann TS, Drane DL, Keller SS, McDonald CR, Rorden C, Jensen J, Weber B, Davis KA, Kuzniecky R, Bonilha L. Cortical disconnection in temporal lobe epilepsy. Epilepsy Behav 2021; 123:108231. [PMID: 34371289 PMCID: PMC8478816 DOI: 10.1016/j.yebeh.2021.108231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
A critical concept in neurology is cortical disconnection, in which seemingly normal gray matter can have reduced function due to loss of white matter (WM) connections. White matter damage has been extensively described in temporal lobe epilepsy (TLE), but the anatomical distribution of cortical disconnection in TLE is not fully characterized. Here, we studied 221 participants (64 left-TLE, 55 right-TLE, 102 controls) from three different epilepsy treatment centers. We employed a group connectometry diffusion imaging tractography approach to identify WM fibers with reduced integrity in TLE. We then assessed the anatomical distribution of the gray matter endpoint projections of abnormal fibers to map the anatomical pattern of disconnections. As expected, left- and right-TLE were associated with multiple WM pathways with reduced integrity, which were associated with extensive cortical disconnection involving predominantly limbic structures. Controlling for medial temporal gray matter atrophy, cortical disconnection of the left cingulum and the thalamus as well as disconnection of the bilateral putamen and the amygdala was associated with lower verbal memory immediate recall. In conclusion, our results support that cortical disconnection is an underappreciated but pervasive phenomenon in TLE, and cortical disconnection of limbic structures beyond the medial temporal regions is related to verbal memory performance.
Collapse
Affiliation(s)
| | | | - Daniel L. Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Simon S. Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Carrie R. McDonald
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Chris Rorden
- Department of Psychology & McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC, USA
| | - Jens Jensen
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Germany
| | - Kathryn A. Davis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben Kuzniecky
- Department of Neurology, Hofstra University / Northwell, NY, USA
| | - Leonardo Bonilha
- Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
11
|
Xu R, He Q, Wang Y, Yang Y, Guo ZN. Therapeutic Potential of Remote Ischemic Conditioning in Vascular Cognitive Impairment. Front Cell Neurosci 2021; 15:706759. [PMID: 34413726 PMCID: PMC8370253 DOI: 10.3389/fncel.2021.706759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a heterogeneous disease caused by a variety of cerebrovascular diseases. Patients with VCI often present with slower cognitive processing speed and poor executive function, which affects their independence in daily life, thus increasing social burden. Remote ischemic conditioning (RIC) is a non-invasive and efficient intervention that triggers endogenous protective mechanisms to generate neuroprotection. Over the past decades, evidence from basic and clinical research has shown that RIC is promising for the treatment of VCI. To further our understanding of RIC and improve the management of VCI, we summarize the evidence on the therapeutic potential of RIC in relation to the risk factors and pathobiologies of VCI, including reducing the risk of recurrent stroke, decreasing high blood pressure, improving cerebral blood flow, restoring white matter integrity, protecting the neurovascular unit, attenuating oxidative stress, and inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Qianyan He
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yan Wang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|