1
|
Loreto F, Verdi S, Kia SM, Duvnjak A, Hakeem H, Fitzgerald A, Patel N, Lilja J, Win Z, Perry R, Marquand AF, Cole JH, Malhotra P. Alzheimer's disease heterogeneity revealed by neuroanatomical normative modeling. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12559. [PMID: 38487076 PMCID: PMC10937817 DOI: 10.1002/dad2.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/11/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
INTRODUCTION Overlooking the heterogeneity in Alzheimer's disease (AD) may lead to diagnostic delays and failures. Neuroanatomical normative modeling captures individual brain variation and may inform our understanding of individual differences in AD-related atrophy. METHODS We applied neuroanatomical normative modeling to magnetic resonance imaging from a real-world clinical cohort with confirmed AD (n = 86). Regional cortical thickness was compared to a healthy reference cohort (n = 33,072) and the number of outlying regions was summed (total outlier count) and mapped at individual- and group-levels. RESULTS The superior temporal sulcus contained the highest proportion of outliers (60%). Elsewhere, overlap between patient atrophy patterns was low. Mean total outlier count was higher in patients who were non-amnestic, at more advanced disease stages, and without depressive symptoms. Amyloid burden was negatively associated with outlier count. DISCUSSION Brain atrophy in AD is highly heterogeneous and neuroanatomical normative modeling can be used to explore anatomo-clinical correlations in individual patients.
Collapse
Affiliation(s)
- Flavia Loreto
- Department of Brain SciencesFaculty of MedicineImperial College LondonLondonUK
| | - Serena Verdi
- Centre for Medical Image ComputingMedical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Seyed Mostafa Kia
- Donders Centre for Cognitive NeuroimagingDonders Institute for BrainCognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
- Department of PsychiatryUtrecht University Medical CenterUtrechtThe Netherlands
| | - Aleksandar Duvnjak
- Department of Brain SciencesFaculty of MedicineImperial College LondonLondonUK
| | - Haneen Hakeem
- Department of Brain SciencesFaculty of MedicineImperial College LondonLondonUK
| | - Anna Fitzgerald
- Department of Brain SciencesFaculty of MedicineImperial College LondonLondonUK
| | - Neva Patel
- Department of Nuclear MedicineImperial College Healthcare NHS TrustLondonUK
| | | | - Zarni Win
- Department of Nuclear MedicineImperial College Healthcare NHS TrustLondonUK
| | - Richard Perry
- Department of Brain SciencesFaculty of MedicineImperial College LondonLondonUK
- Department of NeurologyImperial College Healthcare NHS TrustLondonUK
| | - Andre F. Marquand
- Donders Centre for Cognitive NeuroimagingDonders Institute for BrainCognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - James H. Cole
- Centre for Medical Image ComputingMedical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Paresh Malhotra
- Department of Brain SciencesFaculty of MedicineImperial College LondonLondonUK
- Department of NeurologyImperial College Healthcare NHS TrustLondonUK
- UK Dementia Research Institute Care Research and Technology CentreImperial College London and the University of SurreyLondonUK
| |
Collapse
|
2
|
Qiang Q, Skudder-Hill L, Toyota T, Huang Z, Wei W, Adachi H. CSF 14-3-3β is associated with progressive cognitive decline in Alzheimer's disease. Brain Commun 2023; 5:fcad312. [PMID: 38035365 PMCID: PMC10684297 DOI: 10.1093/braincomms/fcad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized pathologically by amyloid-beta plaques, tau tangles and neuronal loss. In clinical practice, the 14-3-3 isoform beta (β) is a biomarker that aids in the diagnosis of sporadic Creutzfeldt-Jakob disease. Recently, a proteomics study found increased CSF 14-3-3β levels in Alzheimer's disease patients, suggesting a potential link between CSF 14-3-3β and Alzheimer's disease. Our present study aimed to further investigate the role of CSF 14-3-3β in Alzheimer's disease by analysing the data of 719 participants with available CSF 14-3-3β measurements from the Alzheimer's Disease Neuroimaging Initiative. Higher CSF 14-3-3β levels were observed in the mild cognitive impairment group compared to the cognitively normal group, with the highest CSF 14-3-3β levels in the Alzheimer's disease dementia group. This study also found significant associations between CSF 14-3-3β levels and CSF biomarkers of p-tau, t-tau, pTau/Aβ42 ratios and GAP-43, as well as other Alzheimer's disease biomarkers such as Aβ-PET. An early increase in CSF 14-3-3β levels was observed prior to Aβ-PET-positive status, and CSF 14-3-3β levels continued to rise after crossing the Aβ-PET positivity threshold before reaching a plateau. The diagnostic accuracy of CSF 14-3-3β (area under the receiver operating characteristic curve = 0.819) was moderate compared to other established Alzheimer's disease biomarkers in distinguishing cognitively normal Aβ pathology-negative individuals from Alzheimer's disease Aβ pathology-positive individuals. Higher baseline CSF 14-3-3β levels were associated with accelerated cognitive decline, reduced hippocampus volumes and declining fluorodeoxyglucose-PET values over a 4-year follow-up period. Patients with mild cognitive impairment and high CSF 14-3-3β levels at baseline had a significantly increased risk [hazard ratio = 2.894 (1.599-5.238), P < 0.001] of progression to Alzheimer's disease dementia during follow-up. These findings indicate that CSF 14-3-3β may be a potential biomarker for Alzheimer's disease and could provide a more comprehensive understanding of the underlying pathological changes of Alzheimer's disease, as well as aid in the diagnosis and monitoring of disease progression.
Collapse
Affiliation(s)
- Qiang Qiang
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, 200040 Shanghai, China
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, 807-8555 Kitakyushu, Japan
| | - Loren Skudder-Hill
- Yuquan Hospital, Tsinghua University School of Clinical Medicine, 100084 Beijing, China
- School of Medicine, University of Auckland, 1023 Auckland, New Zealand
| | - Tomoko Toyota
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, 807-8555 Kitakyushu, Japan
| | - Zhe Huang
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, 807-8555 Kitakyushu, Japan
| | - Wenshi Wei
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, 200040 Shanghai, China
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, 807-8555 Kitakyushu, Japan
| | | |
Collapse
|
3
|
Bollack A, Pemberton HG, Collij LE, Markiewicz P, Cash DM, Farrar G, Barkhof F. Longitudinal amyloid and tau PET imaging in Alzheimer's disease: A systematic review of methodologies and factors affecting quantification. Alzheimers Dement 2023; 19:5232-5252. [PMID: 37303269 DOI: 10.1002/alz.13158] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Deposition of amyloid and tau pathology can be quantified in vivo using positron emission tomography (PET). Accurate longitudinal measurements of accumulation from these images are critical for characterizing the start and spread of the disease. However, these measurements are challenging; precision and accuracy can be affected substantially by various sources of errors and variability. This review, supported by a systematic search of the literature, summarizes the current design and methodologies of longitudinal PET studies. Intrinsic, biological causes of variability of the Alzheimer's disease (AD) protein load over time are then detailed. Technical factors contributing to longitudinal PET measurement uncertainty are highlighted, followed by suggestions for mitigating these factors, including possible techniques that leverage shared information between serial scans. Controlling for intrinsic variability and reducing measurement uncertainty in longitudinal PET pipelines will provide more accurate and precise markers of disease evolution, improve clinical trial design, and aid therapy response monitoring.
Collapse
Affiliation(s)
- Ariane Bollack
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Hugh G Pemberton
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
- GE Healthcare, Amersham, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Pawel Markiewicz
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - David M Cash
- UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London, London, UK
| | | | - Frederik Barkhof
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
- UCL Queen Square Institute of Neurology, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Bollack A, Markiewicz PJ, Wink AM, Prosser L, Lilja J, Bourgeat P, Schott JM, Coath W, Collij LE, Pemberton HG, Farrar G, Barkhof F, Cash DM. Evaluation of novel data-driven metrics of amyloid β deposition for longitudinal PET studies. Neuroimage 2023; 280:120313. [PMID: 37595816 DOI: 10.1016/j.neuroimage.2023.120313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
PURPOSE Positron emission tomography (PET) provides in vivo quantification of amyloid-β (Aβ) pathology. Established methods for assessing Aβ burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four of these amyloid PET metrics against conventional techniques, using a common set of criteria. METHODS Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data-driven metrics computed were the amyloid load (Aβ load), the Aβ-PET pathology accumulation index (Aβ index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, variability of the rate of change and sample size estimates to detect a 25% slowing in Aβ accumulation. RESULTS All metrics showed good reliability. Aβ load, Aβ index and CLNMF were strong associated with the BPND. The associations with CL suggest that cross-sectional measures of CLNMF, Aβ index and Aβ load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aβ load compared to the CL. CONCLUSION Among the novel data-driven metrics evaluated, the Aβ load, the Aβ index and the CLNMF can provide comparable performance to more established quantification methods of Aβ PET tracer uptake. The CLNMF and Aβ load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted.
Collapse
Affiliation(s)
- Ariane Bollack
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, UCL, London, UK.
| | - Pawel J Markiewicz
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Alle Meije Wink
- Amsterdam UMC, location VUmc, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Lloyd Prosser
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | | | | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - William Coath
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Lyduine E Collij
- Amsterdam UMC, location VUmc, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands; Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Hugh G Pemberton
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, UCL, London, UK; GE HealthCare, Amersham, UK; Queen Square Institute of Neurology, University College London, UK
| | | | - Frederik Barkhof
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, UCL, London, UK; Amsterdam UMC, location VUmc, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands; Queen Square Institute of Neurology, University College London, UK
| | - David M Cash
- Queen Square Institute of Neurology, University College London, UK; UK Dementia Research Institute at University College London, London, UK
| |
Collapse
|
5
|
Jovalekic A, Roé-Vellvé N, Koglin N, Quintana ML, Nelson A, Diemling M, Lilja J, Gómez-González JP, Doré V, Bourgeat P, Whittington A, Gunn R, Stephens AW, Bullich S. Validation of quantitative assessment of florbetaben PET scans as an adjunct to the visual assessment across 15 software methods. Eur J Nucl Med Mol Imaging 2023; 50:3276-3289. [PMID: 37300571 PMCID: PMC10542295 DOI: 10.1007/s00259-023-06279-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE Amyloid positron emission tomography (PET) with [18F]florbetaben (FBB) is an established tool for detecting Aβ deposition in the brain in vivo based on visual assessment of PET scans. Quantitative measures are commonly used in the research context and allow continuous measurement of amyloid burden. The aim of this study was to demonstrate the robustness of FBB PET quantification. METHODS This is a retrospective analysis of FBB PET images from 589 subjects. PET scans were quantified with 15 analytical methods using nine software packages (MIMneuro, Hermes BRASS, Neurocloud, Neurology Toolkit, statistical parametric mapping (SPM8), PMOD Neuro, CapAIBL, non-negative matrix factorization (NMF), AmyloidIQ) that used several metrics to estimate Aβ load (SUVR, centiloid, amyloid load, and amyloid index). Six analytical methods reported centiloid (MIMneuro, standard centiloid, Neurology Toolkit, SPM8 (PET only), CapAIBL, NMF). All results were quality controlled. RESULTS The mean sensitivity, specificity, and accuracy were 96.1 ± 1.6%, 96.9 ± 1.0%, and 96.4 ± 1.1%, respectively, for all quantitative methods tested when compared to histopathology, where available. The mean percentage of agreement between binary quantitative assessment across all 15 methods and visual majority assessment was 92.4 ± 1.5%. Assessments of reliability, correlation analyses, and comparisons across software packages showed excellent performance and consistent results between analytical methods. CONCLUSION This study demonstrated that quantitative methods using both CE marked software and other widely available processing tools provided comparable results to visual assessments of FBB PET scans. Software quantification methods, such as centiloid analysis, can complement visual assessment of FBB PET images and could be used in the future for identification of early amyloid deposition, monitoring disease progression and treatment effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Vincent Doré
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
6
|
Bourgeat P, Doré V, Rowe CC, Benzinger T, Tosun D, Goyal MS, LaMontagne P, Jin L, Weiner MW, Masters CL, Fripp J, Villemagne VL. A universal neocortical mask for Centiloid quantification. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12457. [PMID: 37492802 PMCID: PMC10363815 DOI: 10.1002/dad2.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION The Centiloid (CL) project was developed to harmonize the quantification of amyloid beta (Aβ) positron emission tomography (PET) scans to a unified scale. The CL neocortical mask was defined using 11C Pittsburgh compound B (PiB), overlooking potential differences in regional distribution among Aβ tracers. We created a universal mask using an independent dataset of five Aβ tracers, and investigated its impact on inter-tracer agreement, tracer variability, and group separation. METHODS Using data from the Alzheimer's Dementia Onset and Progression in International Cohorts (ADOPIC) study (Australian Imaging Biomarkers and Lifestyle + Alzheimer's Disease Neuroimaging Initiative + Open Access Series of Imaging Studies), age-matched pairs of mild Alzheimer's disease (AD) and healthy controls (HC) were selected: 18F-florbetapir (N = 147 pairs), 18F-florbetaben (N = 22), 18F-flutemetamol (N = 10), 18F-NAV (N = 42), 11C-PiB (N = 63). The images were spatially and standardized uptake value ratio normalized. For each tracer, the mean AD-HC difference image was thresholded to maximize the overlap with the standard neocortical mask. The universal mask was defined as the intersection of all five masks. It was evaluated on the Global Alzheimer's Association Interactive Network (GAAIN) head-to-head datasets in terms of inter-tracer agreement and variance in the young controls (YC) and on the ADOPIC dataset comparing separation between HC/AD and HC/mild cognitive impairment (MCI). RESULTS In the GAAIN dataset, the universal mask led to a small reduction in the variance of the YC, and a small increase in the inter-tracer agreement. In the ADOPIC dataset, it led to a better separation between HC/AD and HC/MCI at baseline. DISCUSSION The universal CL mask led to an increase in inter-tracer agreement and group separation. Those increases were, however, very small, and do not provide sufficient benefits to support departing from the existing standard CL mask, which is suitable for the quantification of all Aβ tracers. HIGHLIGHTS This study built an amyloid universal mask using a matched cohort for the five most commonly used amyloid positron emission tomography tracers.There was a high overlap between each tracer-specific mask.Differences in quantification and group separation between the standard and universal mask were small.The existing standard Centiloid mask is suitable for the quantification of all amyloid beta tracers.
Collapse
Affiliation(s)
- Pierrick Bourgeat
- Australian eHealth Research CentreCSIRO Health and BiosecurityBrisbaneQueenslandAustralia
| | - Vincent Doré
- Australian eHealth Research CentreCSIRO Health and BiosecurityBrisbaneQueenslandAustralia
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
| | - Christopher C. Rowe
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne, ParkvilleMelbourneVictoriaAustralia
| | - Tammie Benzinger
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Duygu Tosun
- San Francisco Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Manu S. Goyal
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Pamela LaMontagne
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Liang Jin
- The Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne, ParkvilleMelbourneVictoriaAustralia
| | - Michael W. Weiner
- San Francisco Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne, ParkvilleMelbourneVictoriaAustralia
| | - Jurgen Fripp
- Australian eHealth Research CentreCSIRO Health and BiosecurityBrisbaneQueenslandAustralia
| | - Victor L. Villemagne
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
- Department of PsychiatryThe University of PittsburghPittsburghPennsylvaniaUSA
| | | | | |
Collapse
|
7
|
Bourgeat P, Doré V, Burnham SC, Benzinger T, Tosun D, Li S, Goyal M, LaMontagne P, Jin L, Rowe CC, Weiner MW, Morris JC, Masters CL, Fripp J, Villemagne VL. β-amyloid PET harmonisation across longitudinal studies: Application to AIBL, ADNI and OASIS3. Neuroimage 2022; 262:119527. [PMID: 35917917 PMCID: PMC9550562 DOI: 10.1016/j.neuroimage.2022.119527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION The Centiloid scale was developed to harmonise the quantification of β-amyloid (Aβ) PET images across tracers, scanners, and processing pipelines. However, several groups have reported differences across tracers and scanners even after centiloid conversion. In this study, we aim to evaluate the impact of different pre and post-processing harmonisation steps on the robustness of longitudinal Centiloid data across three large international cohort studies. METHODS All Aβ PET data in AIBL (N = 3315), ADNI (N = 3442) and OASIS3 (N = 1398) were quantified using the MRI-based Centiloid standard SPM pipeline and the PET-only pipeline CapAIBL. SUVR were converted into Centiloids using each tracer's respective transform. Global Aβ burden from pre-defined target cortical regions in Centiloid units were quantified for both raw PET scans and PET scans smoothed to a uniform 8 mm full width half maximum (FWHM) effective smoothness. For Florbetapir, we assessed the performance of using both the standard Whole Cerebellum (WCb) and a composite white matter (WM)+WCb reference region. Additionally, our recently proposed quantification based on Non-negative Matrix Factorisation (NMF) was applied to all spatially and SUVR normalised images. Correlation with clinical severity measured by the Mini-Mental State Examination (MMSE) and effect size, as well as tracer agreement in 11C-PiB-18F-Florbetapir pairs and longitudinal consistency were evaluated. RESULTS The smoothing to a uniform resolution partially reduced longitudinal variability, but did not improve inter-tracer agreement, effect size or correlation with MMSE. Using a Composite reference region for 18F-Florbetapir improved inter-tracer agreement, effect size, correlation with MMSE, and longitudinal consistency. The best results were however obtained when using the NMF method which outperformed all other quantification approaches in all metrics used. CONCLUSIONS FWHM smoothing has limited impact on longitudinal consistency or outliers. A Composite reference region including subcortical WM should be used for computing both cross-sectional and longitudinal Florbetapir Centiloid. NMF improves Centiloid quantification on all metrics examined.
Collapse
Affiliation(s)
| | - Vincent Doré
- CSIRO Health and Biosecurity, Brisbane, Australia; Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Australia
| | | | | | - Duygu Tosun
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA,; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Shenpeng Li
- CSIRO Health and Biosecurity, Brisbane, Australia
| | - Manu Goyal
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, USA
| | - Pamela LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, USA
| | - Liang Jin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Michael W Weiner
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA,; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - John C Morris
- Washington University in St. Louis, St. Louis, MO, USA
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Brisbane, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Australia; Department of Psychiatry, The University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Pemberton HG, Collij LE, Heeman F, Bollack A, Shekari M, Salvadó G, Alves IL, Garcia DV, Battle M, Buckley C, Stephens AW, Bullich S, Garibotto V, Barkhof F, Gispert JD, Farrar G. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging 2022; 49:3508-3528. [PMID: 35389071 PMCID: PMC9308604 DOI: 10.1007/s00259-022-05784-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
Collapse
Affiliation(s)
- Hugh G Pemberton
- GE Healthcare, Amersham, UK.
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fiona Heeman
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ariane Bollack
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Research Center, Amsterdam, The Netherlands
| | - David Vallez Garcia
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark Battle
- GE Healthcare, Amersham, UK
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | | |
Collapse
|
9
|
Validation of deep learning-based nonspecific estimates for amyloid burden quantification with longitudinal data. Phys Med 2022; 99:85-93. [PMID: 35665624 DOI: 10.1016/j.ejmp.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To validate our previously proposed method of quantifying amyloid-beta (Aβ) load using nonspecific (NS) estimates generated with convolutional neural networks (CNNs) using [18F]Florbetapir scans from longitudinal and multicenter ADNI data. METHODS 188 paired MR (T1-weighted and T2-weighted) and PET images were downloaded from the ADNI3 dataset, of which 49 subjects had 2 time-point scans. 40 Aβ- subjects with low specific uptake were selected for training. Multimodal ScaleNet (SN) and monomodal HighRes3DNet (HRN), using either T1-weighted or T2-weighted MR images as inputs) were trained to map structural MR to NS-PET images. The optimized SN and HRN networks were used to estimate the NS for all scans and then subtracted from SUVr images to determine the specific amyloid load (SAβL) images. The association of SAβL with various cognitive and functional test scores was evaluated using Spearman analysis, as well as the differences in SAβL with cognitive test scores for 49 subjects with 2 time-point scans and sensitivity analysis. RESULTS SAβL derived from both SN and HRN showed higher association with memory-related cognitive test scores compared to SUVr. However, for longitudinal scans, only SAβL estimated from multimodal SN consistently performed better than SUVr for all memory-related cognitive test scores. CONCLUSIONS Our proposed method of quantifying Aβ load using NS estimated from CNN correlated better than SUVr with cognitive decline for both static and longitudinal data, and was able to estimate NS of [18F]Florbetapir. We suggest employing multimodal networks with both T1-weighted and T2-weighted MR images for better NS estimation.
Collapse
|
10
|
Treatment effects on event-related EEG potentials and oscillations in Alzheimer's disease. Int J Psychophysiol 2022; 177:179-201. [PMID: 35588964 DOI: 10.1016/j.ijpsycho.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.
Collapse
|
11
|
Schwarz AJ. The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders. Neurotherapeutics 2021; 18:686-708. [PMID: 33846962 PMCID: PMC8423963 DOI: 10.1007/s13311-021-01027-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Imaging biomarkers play a wide-ranging role in clinical trials for neurological disorders. This includes selecting the appropriate trial participants, establishing target engagement and mechanism-related pharmacodynamic effect, monitoring safety, and providing evidence of disease modification. In the early stages of clinical drug development, evidence of target engagement and/or downstream pharmacodynamic effect-especially with a clear relationship to dose-can provide confidence that the therapeutic candidate should be advanced to larger and more expensive trials, and can inform the selection of the dose(s) to be further tested, i.e., to "de-risk" the drug development program. In these later-phase trials, evidence that the therapeutic candidate is altering disease-related biomarkers can provide important evidence that the clinical benefit of the compound (if observed) is grounded in meaningful biological changes. The interpretation of disease-related imaging markers, and comparability across different trials and imaging tools, is greatly improved when standardized outcome measures are defined. This standardization should not impinge on scientific advances in the imaging tools per se but provides a common language in which the results generated by these tools are expressed. PET markers of pathological protein aggregates and structural imaging of brain atrophy are common disease-related elements across many neurological disorders. However, PET tracers for pathologies beyond amyloid β and tau are needed, and the interpretability of structural imaging can be enhanced by some simple considerations to guard against the possible confound of pseudo-atrophy. Learnings from much-studied conditions such as Alzheimer's disease and multiple sclerosis will be beneficial as the field embraces rarer diseases.
Collapse
Affiliation(s)
- Adam J Schwarz
- Takeda Pharmaceuticals Ltd., 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Kerchner GA, Filippi M. Aβ-PET pathology accumulation index: Ready for the clinic? Neurology 2020; 95:943-944. [PMID: 33077546 DOI: 10.1212/wnl.0000000000011060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Geoffrey A Kerchner
- From Product Development Neuroscience (G.A.K.), F. Hoffmann-La Roche, Ltd, Basel, Switzerland; Neurology and Neurophysiology Units (M.F.) and Neuroimaging Research Unit (M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F.), Milan, Italy.
| | - Massimo Filippi
- From Product Development Neuroscience (G.A.K.), F. Hoffmann-La Roche, Ltd, Basel, Switzerland; Neurology and Neurophysiology Units (M.F.) and Neuroimaging Research Unit (M.F.), Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute; and Vita-Salute San Raffaele University (M.F.), Milan, Italy
| |
Collapse
|