1
|
Witzig V, Pjontek R, Tan SKH, Schulz JB, Holtbernd F. Modulating the cholinergic system-Novel targets for deep brain stimulation in Parkinson's disease. J Neurochem 2025; 169:e16264. [PMID: 39556446 PMCID: PMC11808463 DOI: 10.1111/jnc.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
Parkinson's disease (PD) is the second-fastest growing neurodegenerative disease in the world. The major clinical symptoms rigor, tremor, and bradykinesia derive from the degeneration of the nigrostriatal pathway. However, PD is a multi-system disease, and neurodegeneration extends beyond the degradation of the dopaminergic pathway. Symptoms such as postural instability, freezing of gait, falls, and cognitive decline are predominantly caused by alterations of transmitter systems outside the classical dopaminergic axis. While levodopa and deep brain stimulation (DBS) of the subthalamic nucleus or globus pallidus internus effectively address PD primary motor symptoms, they often fall short in mitigating axial symptoms and cognitive impairment. Along these lines, the cholinergic system is increasingly recognized to play a crucial role in governing locomotion, postural stability, and cognitive function. Thus, there is a growing interest in bolstering the cholinergic tone by DBS of cholinergic targets such as the pedunculopontine nucleus (PPN) and nucleus basalis of Meynert (NBM), aiming to alleviate these debilitating symptoms resistant to traditional treatment strategies targeting the dopaminergic network. This review offers a comprehensive overview of the role of cholinergic dysfunction in PD. We discuss the impact of PPN and NBM DBS on the management of symptoms not readily accessible to established DBS targets and pharmacotherapy in PD and seek to provide guidance on patient selection, surgical approach, and stimulation paradigms.
Collapse
Affiliation(s)
- V. Witzig
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - R. Pjontek
- Department of NeurosurgeryRWTH Aachen UniversityAachenGermany
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital CologneCologneGermany
| | - S. K. H. Tan
- Department of NeurosurgeryAntwerp University HospitalEdegemBelgium
- Translational Neurosciences, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - J. B. Schulz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
| | - F. Holtbernd
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
- Jülich Research Center, Institutes of Neuroscience and Medicine (INM‐4, INM‐11)JülichGermany
| |
Collapse
|
2
|
Rapaka D, Tebogo MO, Mathew EM, Adiukwu PC, Bitra VR. Targeting papez circuit for cognitive dysfunction- insights into deep brain stimulation for Alzheimer's disease. Heliyon 2024; 10:e30574. [PMID: 38726200 PMCID: PMC11079300 DOI: 10.1016/j.heliyon.2024.e30574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Hippocampus is the most widely studied brain area coupled with impairment of memory in a variety of neurological diseases and Alzheimer's disease (AD). The limbic structures within the Papez circuit have been linked to various aspects of cognition. Unfortunately, the brain regions that include this memory circuit are often ignored in terms of understanding cognitive decline in these diseases. To properly comprehend where cognition problems originate, it is crucial to clarify any aberrant contributions from all components of a specific circuit -on both a local and a global level. The pharmacological treatments currently available are not long lasting. Deep Brain Stimulation (DBS) emerged as a new powerful therapeutic approach for alleviation of the cognitive dysfunctions. Metabolic, functional, electrophysiological, and imaging studies helped to find out the crucial nodes that can be accessible for DBS. Targeting these nodes within the memory circuit produced significant improvement in learning and memory by disrupting abnormal circuit activity and restoring the physiological network. Here, we provide an overview of the neuroanatomy of the circuit of Papez along with the mechanisms and various deep brain stimulation targets of the circuit structures which could be significant for improving cognitive dysfunctions in AD.
Collapse
Affiliation(s)
| | - Motshegwana O. Tebogo
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | - Elizabeth M. Mathew
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | | | - Veera Raghavulu Bitra
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| |
Collapse
|
3
|
Kumbhare D, Rajagopal M, Toms J, Freelin A, Weistroffer G, McComb N, Karnam S, Azghadi A, Murnane KS, Baron MS, Holloway KL. Deep Brain Stimulation of Nucleus Basalis of Meynert improves learning in rat model of dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588271. [PMID: 38645266 PMCID: PMC11030230 DOI: 10.1101/2024.04.05.588271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has been preliminarily investigated as a potential treatment for dementia. The degeneration of NBM cholinergic neurons is a pathological feature of many forms of dementia. Although stimulation of the NBM has been demonstrated to improve learning, the ideal parameters for NBM stimulation have not been elucidated. This study assesses the differential effects of varying stimulation patterns and duration on learning in a dementia rat model. Methods 192-IgG-saporin (or vehicle) was injected into the NBM to produce dementia in rats. Next, all rats underwent unilateral implantation of a DBS electrode in the NBM. The experimental groups consisted of i-normal, ii-untreated demented, and iii-demented rats receiving NBM DBS. The stimulation paradigms included testing different modes (tonic and burst) and durations (1-hr, 5-hrs, and 24-hrs/day) over 10 daily sessions. Memory was assessed pre- and post-stimulation using two established learning paradigms: novel object recognition (NOR) and auditory operant chamber learning. Results Both normal and stimulated rats demonstrated improved performance in NOR and auditory learning as compared to the unstimulated demented group. The burst stimulation groups performed better than the tonic stimulated group. Increasing the daily stimulation duration to 24-hr did not further improve cognitive performance in an auditory recognition task and degraded the results on a NOR task as compared with 5-hr. Conclusion The present findings suggest that naturalistic NBM burst DBS may offer a potential effective therapy for treating dementia and suggests potential strategies for the reevaluation of current human NBM stimulation paradigms.
Collapse
|
4
|
Remoli G, Tariciotti L, Remore LG, Palmisciano P, Sciancalepore F, Canevelli M, Lacorte E, Da Re F, Bruno G, Ferrarese C, Appollonio I, Locatelli M, Vanacore N. An updated overview of recent and ongoing deep brain stimulation (DBS) trials in patients with dementia: a systematic review. Neurol Sci 2023; 44:3395-3427. [PMID: 37204563 DOI: 10.1007/s10072-023-06821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Dementia affects more than 55 million people worldwide. Several technologies have been developed to slow cognitive decline: deep brain stimulation (DBS) of network targets in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) have been recently investigated. OBJECTIVE This study aimed to review the characteristics of the populations, protocols, and outcomes of patients with dementia enrolled in clinical trials investigating the feasibility and efficacy of DBS. MATERIALS AND METHODS A systematic search of all registered RCTs was performed on Clinicaltrials.gov and EudraCT, while a systematic literature review was conducted on PubMed, Scopus, Cochrane, and APA PsycInfo to identify published trials. RESULTS The literature search yielded 2122 records, and the clinical trial search 15 records. Overall, 17 studies were included. Two of 17 studies were open-label studies reporting no NCT/EUCT code and were analysed separately. Of 12 studies investigating the role of DBS in AD, we included 5 published RCTs, 2 unregistered open-label (OL) studies, 3 recruiting studies, and 2 unpublished trials with no evidence of completion. The overall risk of bias was assessed as moderate-high. Our review showed significant heterogeneity in the recruited populations regarding age, disease severity, informed consent availability, inclusion, and exclusion criteria. Notably, the standard mean of overall severe adverse events was moderately high (SAEs: 9.10 ± 7.10%). CONCLUSION The population investigated is small and heterogeneous, published results from clinical trials are under-represented, severe adverse events not negligible, and cognitive outcomes uncertain. Overall, the validity of these studies requires confirmation based on forthcoming higher-quality clinical trials.
Collapse
Affiliation(s)
- Giulia Remoli
- Neurology Section, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- Neurology Ward, San Gerardo Hospital, Monza, Italy
| | - Leonardo Tariciotti
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
- University of Milan, Milan, Italy.
| | - Luigi Gianmaria Remore
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- University of Milan, Milan, Italy
| | - Paolo Palmisciano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Francesco Sciancalepore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Marco Canevelli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
- Department of Neuroscience, University of Rome "La Sapienza,", Rome, Italy
| | - Eleonora Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Fulvio Da Re
- Neurology Ward, San Gerardo Hospital, Monza, Italy
| | - Giuseppe Bruno
- Department of Neuroscience, University of Rome "La Sapienza,", Rome, Italy
| | - Carlo Ferrarese
- Neurology Section, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- Neurology Ward, San Gerardo Hospital, Monza, Italy
| | - Ildebrando Appollonio
- Neurology Section, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- Neurology Ward, San Gerardo Hospital, Monza, Italy
| | - Marco Locatelli
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Aldo Ravelli Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
5
|
Bava JM, Wang Z, Bick SK, Englot DJ, Constantinidis C. Improving Visual Working Memory with Cholinergic Deep Brain Stimulation. Brain Sci 2023; 13:917. [PMID: 37371395 PMCID: PMC10296349 DOI: 10.3390/brainsci13060917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Acetylcholine is a critical modulatory neurotransmitter for cognitive function. Cholinergic drugs improve cognitive performance and enhance neuronal activity in the sensory and association cortices. An alternative means of improving cognitive function is through the use of deep brain stimulation. Prior animal studies have demonstrated that stimulation of the nucleus basalis of Meynert through DBS improves cognitive performance on a visual working memory task to the same degree as cholinesterase inhibitors. Additionally, unlike current pharmacological treatments for neurocognitive disorders, DBS does not lose efficacy over time and adverse effects are rare. These findings suggest that DBS may be a promising alternative for treating cognitive impairments in neurodegenerative disorders such as Alzheimer's disease. Thus, further research and human trials should be considered to assess the potential of DBS as a therapeutic treatment for these disorders.
Collapse
Affiliation(s)
- Janki M. Bava
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA;
| | - Sarah K. Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA;
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Parkinson Disease Dementia Management: an Update of Current Evidence and Future Directions. Curr Treat Options Neurol 2023. [DOI: 10.1007/s11940-023-00749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
Chiu SY, Wyman-Chick KA, Ferman TJ, Bayram E, Holden SK, Choudhury P, Armstrong MJ. Sex differences in dementia with Lewy bodies: Focused review of available evidence and future directions. Parkinsonism Relat Disord 2023; 107:105285. [PMID: 36682958 PMCID: PMC10024862 DOI: 10.1016/j.parkreldis.2023.105285] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
In this review, we summarize the current knowledge on sex differences in dementia with Lewy bodies (DLB) relating to epidemiology, clinical features, neuropathology, biomarkers, disease progression, and caregiving. While many studies show a higher DLB prevalence in men, this finding is inconsistent and varies by study approach. Visual hallucinations may be more common and occur earlier in women with DLB, whereas REM sleep behavior disorder may be more common and occur earlier in men. Several studies report a higher frequency of parkinsonism in men with DLB, while the frequency of fluctuations appears similar between sexes. Women tend to be older, have greater cognitive impairment at their initial visit, and are delayed in meeting DLB criteria compared to men. Women are also more likely to have Lewy body disease with co-existing AD-related pathology than so-called "pure" Lewy body disease, while men may present with either. Research is mixed regarding the impact of sex on DLB progression. Biomarker and treatment research assessing for sex differences is lacking. Women provide the majority of caregiving in DLB but how this affects the caregiving experience is uncertain. Gaining a better understanding of sex differences will be instrumental in aiding future development of sex-specific strategies in DLB for early diagnosis, care, and drug development.
Collapse
Affiliation(s)
- Shannon Y Chiu
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA; Norman Fixel Institute for Neurologic Diseases, University of Florida, Gainesville, FL, USA.
| | - Kathryn A Wyman-Chick
- Center for Memory and Aging, Department of Neurology, HealthPartners, Saint Paul, MN, USA
| | - Tanis J Ferman
- Department of Psychiatry & Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Ece Bayram
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Samantha K Holden
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Parichita Choudhury
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Melissa J Armstrong
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA; Norman Fixel Institute for Neurologic Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Gupta A, Vardalakis N, Wagner FB. Neuroprosthetics: from sensorimotor to cognitive disorders. Commun Biol 2023; 6:14. [PMID: 36609559 PMCID: PMC9823108 DOI: 10.1038/s42003-022-04390-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and biomedical engineering, which aims at replacing or modulating parts of the nervous system that get disrupted in neurological disorders or after injury. Although neuroprostheses have steadily evolved over the past 60 years in the field of sensory and motor disorders, their application to higher-order cognitive functions is still at a relatively preliminary stage. Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromodulation strategies might also be useful in alleviating some cognitive and memory deficits, in particular in the context of dementia. Here, we review the evolution of neuroprosthetics from sensorimotor to cognitive disorders, highlighting important common principles such as the need for neuroprosthetic systems that enable multisite bidirectional interactions with the nervous system.
Collapse
Affiliation(s)
- Ankur Gupta
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Fabien B. Wagner
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
9
|
Sriram S, Root K, Chacko K, Patel A, Lucke-Wold B. Surgical Management of Synucleinopathies. Biomedicines 2022; 10:2657. [PMID: 36289920 PMCID: PMC9599076 DOI: 10.3390/biomedicines10102657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Synucleinopathies represent a diverse set of pathologies with significant morbidity and mortality. In this review, we highlight the surgical management of three synucleinopathies: Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). After examining underlying molecular mechanisms and the medical management of these diseases, we explore the role of deep brain stimulation (DBS) in the treatment of synuclein pathophysiology. Further, we examine the utility of focused ultrasound (FUS) in the treatment of synucleinopathies such as PD, including its role in blood-brain barrier (BBB) opening for the delivery of novel drug therapeutics and gene therapy vectors. We also discuss other recent advances in the surgical management of MSA and DLB. Together, we give a diverse overview of current techniques in the neurosurgical management of these pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
10
|
Khera A, Stopschinski BE, Chiang HS. Evidence-Based Evaluation and Management of Cognitive Impairment in Dementia With Lewy Bodies. Psychiatr Ann 2022. [DOI: 10.3928/00485713-20220901-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Elder GJ, Lazar AS, Alfonso‐Miller P, Taylor J. Sleep disturbances in Lewy body dementia: A systematic review. Int J Geriatr Psychiatry 2022; 37:10.1002/gps.5814. [PMID: 36168299 PMCID: PMC9827922 DOI: 10.1002/gps.5814] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Lewy body dementia (LBD) refers to both dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD). Sleep disturbances are common in LBD, and can include poor sleep quality, excessive daytime sleepiness (EDS), and rapid eye movement behaviour disorder (RBD). Despite the high clinical prevalence of sleep disturbances in LBD, they are under-studied relative to other dementias. The aim of the present systematic review was to examine the nature of sleep disturbances in LBD, summarise the effect of treatment studies upon sleep, and highlight specific and necessary directions for future research. METHODS Published studies in English were located by searching PubMED and PSYCArticles databases (until 10 June 2022). The search protocol was pre-registered in PROSPERO (CRD42021293490) and performed in accordance with PRISMA guidelines. RESULTS Following full-text review, a final total of 70 articles were included. These included 20 studies focussing on subjective sleep, 14 on RBD, 8 on EDS, 7 on objective sleep, and 1 on circadian rhythms. The majority of the 18 treatment studies used pharmacological interventions (n = 12), had an open-label design (n = 8), and were of low-to-moderate quality. Most studies (n = 55) included only patients with DLB. Due to the heterogeneity of the studies, we reported a narrative synthesis without meta-analysis. CONCLUSIONS At least one form of sleep disturbance may be present in as many as 90% of people with LBD. Subjectively poor sleep quality, excessive daytime sleepiness, and RBD are more common and severe in LBD relative to other dementias.
Collapse
Affiliation(s)
- Greg J. Elder
- Northumbria Sleep ResearchDepartment of PsychologyFaculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Alpar S. Lazar
- Sleep and Brain Research UnitFaculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Pam Alfonso‐Miller
- Northumbria Sleep ResearchDepartment of PsychologyFaculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - John‐Paul Taylor
- Translational and Clinical Research InstituteNewcastle UniversityCampus for Ageing and VitalityNewcastle Upon TyneUK
| |
Collapse
|
12
|
Potel SR, Marceglia S, Meoni S, Kalia SK, Cury RG, Moro E. Advances in DBS Technology and Novel Applications: Focus on Movement Disorders. Curr Neurol Neurosci Rep 2022; 22:577-588. [PMID: 35838898 DOI: 10.1007/s11910-022-01221-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established treatment in several movement disorders, including Parkinson's disease, dystonia, tremor, and Tourette syndrome. In this review, we will review and discuss the most recent findings including but not limited to clinical evidence. RECENT FINDINGS New DBS technologies include novel hardware design (electrodes, cables, implanted pulse generators) enabling new stimulation patterns and adaptive DBS which delivers potential stimulation tailored to moment-to-moment changes in the patient's condition. Better understanding of movement disorders pathophysiology and functional anatomy has been pivotal for studying the effects of DBS on the mesencephalic locomotor region, the nucleus basalis of Meynert, the substantia nigra, and the spinal cord. Eventually, neurosurgical practice has improved with more accurate target visualization or combined targeting. A rising research domain emphasizes bridging neuromodulation and neuroprotection. Recent advances in DBS therapy bring more possibilities to effectively treat people with movement disorders. Future research would focus on improving adaptive DBS, leading more clinical trials on novel targets, and exploring neuromodulation effects on neuroprotection.
Collapse
Affiliation(s)
- Sina R Potel
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Sara Marceglia
- Dipartimento Di Ingegneria E Architettura, Università Degli Studi Di Trieste, Trieste, Italy
| | - Sara Meoni
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Rubens G Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France.
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France.
| |
Collapse
|
13
|
Kokkonen A, Honkanen EA, Corp DT, Joutsa J. Neurobiological effects of deep brain stimulation: A systematic review of molecular brain imaging studies. Neuroimage 2022; 260:119473. [PMID: 35842094 DOI: 10.1016/j.neuroimage.2022.119473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/28/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for several brain disorders, including Parkinson's disease, essential tremor, dystonia and epilepsy, and an emerging therapeutic tool in many other neurological and psychiatric disorders. The therapeutic efficacy of DBS is dependent on the stimulation target, but its mechanisms of action are still relatively poorly understood. Investigating these mechanisms is challenging, partly because the stimulation devices and electrodes have limited the use of functional MRI in these patients. Molecular brain imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPET), offer a unique opportunity to characterize the whole brain effects of DBS. Here, we investigated the direct effects of DBS by systematically reviewing studies performing an `on' vs `off' contrast during PET or SPET imaging. We identified 62 studies (56 PET and 6 SPET studies; 531 subjects). Approximately half of the studies focused on cerebral blood flow or glucose metabolism in patients Parkinson's disease undergoing subthalamic DBS (25 studies, n = 289), therefore Activation Likelihood Estimation analysis was performed on these studies. Across disorders and stimulation targets, DBS was associated with a robust local increase in ligand uptake at the stimulation site and target-specific remote network effects. Subthalamic nucleus stimulation in Parkinson's disease showed a specific pattern of changes in the motor circuit, including increased ligand uptake in the basal ganglia, and decreased ligand uptake in the primary motor cortex, supplementary motor area and cerebellum. However, there was only a handful of studies investigating other brain disorder and stimulation site combinations (1-3 studies each), or specific neurotransmitter systems, preventing definitive conclusions of the detailed molecular effects of the stimulation in these cases.
Collapse
Affiliation(s)
- Aleksi Kokkonen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland.
| | - Emma A Honkanen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America.
| |
Collapse
|
14
|
Tsanov M. Basal Forebrain Impairment: Understanding the Mnemonic Function of the Septal Region Translates in Therapeutic Advances. Front Neural Circuits 2022; 16:916499. [PMID: 35712645 PMCID: PMC9194835 DOI: 10.3389/fncir.2022.916499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The basal forebrain is one of the three major brain circuits involved in episodic memory formation together with the hippocampus and the diencephalon. The dysfunction of each of these regions is known to cause anterograde amnesia. While the hippocampal pyramidal neurons are known to encode episodic information and the diencephalic structures are known to provide idiothetic information, the contribution of the basal forebrain to memory formation has been exclusively associated with septo-hippocampal cholinergic signaling. Research data from the last decade broadened our understanding about the role of septal region in memory formation. Animal studies revealed that septal neurons process locomotor, rewarding and attentional stimuli. The integration of these signals results in a systems model for the mnemonic function of the medial septum that could guide new therapeutic strategies for basal forebrain impairment (BFI). BFI includes the disorders characterized with basal forebrain amnesia and neurodegenerative disorders that affect the basal forebrain. Here, we demonstrate how the updated model of septal mnemonic function can lead to innovative translational treatment approaches that include pharmacological, instrumental and behavioral techniques.
Collapse
Affiliation(s)
- Marian Tsanov
- UCD School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Rodriguez-Porcel F, Wyman-Chick KA, Abdelnour Ruiz C, Toledo JB, Ferreira D, Urwyler P, Weil RS, Kane J, Pilotto A, Rongve A, Boeve B, Taylor JP, McKeith I, Aarsland D, Lewis SJG. Clinical outcome measures in dementia with Lewy bodies trials: critique and recommendations. Transl Neurodegener 2022; 11:24. [PMID: 35491418 PMCID: PMC9059356 DOI: 10.1186/s40035-022-00299-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
The selection of appropriate outcome measures is fundamental to the design of any successful clinical trial. Although dementia with Lewy bodies (DLB) is one of the most common neurodegenerative conditions, assessment of therapeutic benefit in clinical trials often relies on tools developed for other conditions, such as Alzheimer's or Parkinson's disease. These may not be sufficiently valid or sensitive to treatment changes in DLB, decreasing their utility. In this review, we discuss the limitations and strengths of selected available tools used to measure DLB-associated outcomes in clinical trials and highlight the potential roles for more specific objective measures. We emphasize that the existing outcome measures require validation in the DLB population and that DLB-specific outcomes need to be developed. Finally, we highlight how the selection of outcome measures may vary between symptomatic and disease-modifying therapy trials.
Collapse
Affiliation(s)
- Federico Rodriguez-Porcel
- Department of Neurology, Medical University of South Carolina, 208b Rutledge Av., Charleston, SC, 29403, USA.
| | - Kathryn A Wyman-Chick
- Department of Neurology, Center for Memory and Aging, HealthPartners, Saint Paul, MN, USA
| | | | - Jon B Toledo
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer's Research, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Prabitha Urwyler
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Rimona S Weil
- Dementia Research Centre, University College London, London, UK
| | - Joseph Kane
- Centre for Public Health, Queen's University, Belfast, UK
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Arvid Rongve
- Department of Research and Innovation, Helse Fonna, Haugesund Hospital, Haugesund, Norway
- Institute of Clinical Medicine (K1), The University of Bergen, Bergen, Norway
| | - Bradley Boeve
- Department of Neurology, Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ian McKeith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| |
Collapse
|
16
|
Rogozinski S, Klietz M, Respondek G, Oertel WH, Grothe MJ, Pereira JB, Höglinger GU. Reduction in Volume of Nucleus Basalis of Meynert Is Specific to Parkinson’s Disease and Progressive Supranuclear Palsy but Not to Multiple System Atrophy. Front Aging Neurosci 2022; 14:851788. [PMID: 35431891 PMCID: PMC9012106 DOI: 10.3389/fnagi.2022.851788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
Objectives To study in vivo gray matter (GM) volumes of the nucleus basalis of Meynert (nbM) in different parkinsonian syndromes and assess their relationship with clinical variables. Methods T1-weighted magnetic resonance images from patients with progressive supranuclear palsy (PSP, N = 43), multiple system atrophy (MSA, N = 23), Parkinson’s disease (PD, N = 26), and healthy controls (HC, N = 29) were included. T1-weighted images were analyzed using a voxel-based morphometry approach implemented in the VBM8 toolbox, and nbM volumes were extracted from the spatially normalized GM images using a cyto-architectonically-defined nbM mask in stereotactic standard space. NbM volumes were compared between groups, while controlling for intracranial volume. Further, within each group correlation analyses between nbM volumes and the Mini Mental Status Examination (MMSE), Hoehn and Yahr stage, PSP Rating Scale, Unified Parkinson’s Disease Rating Scale part III and Frontal Assessment Battery scores were performed. Results Significantly lower nbM volumes in patients with PSP and PD compared to HC or patients with MSA were found. No significant correlations between MMSE and nbM volumes were detected in any of the subgroups. No significant correlations were found between clinical scores and nbM volumes in PSP or other groups. Conclusion nbM volumes were reduced both in PD and PSP but not in MSA. The lack of significant correlations between nbM and cognitive measures suggests that other factors, such as frontal atrophy, may play a more important role than subcortical cholinergic atrophy in PSP patients. These results may indicate that other drug-targets are needed to improve cognitive function in PSP patients.
Collapse
Affiliation(s)
- Sophia Rogozinski
- Department of Neurology, Hanover Medical School, Hanover, Germany
- *Correspondence: Sophia Rogozinski,
| | - Martin Klietz
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Wolfgang H. Oertel
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Michel J. Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Joana B. Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Günter U. Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
17
|
Artusi CA, Rinaldi D, Balestrino R, Lopiano L. Deep brain stimulation for atypical parkinsonism: A systematic review on efficacy and safety. Parkinsonism Relat Disord 2022; 96:109-118. [PMID: 35288028 DOI: 10.1016/j.parkreldis.2022.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atypical Parkinsonisms (APs) -including progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB)- are neurodegenerative diseases lacking satisfying symptomatic therapies. Deep Brain Stimulation (DBS) is an established neurosurgical option for advanced Parkinson disease (PD). Although DBS effectiveness in PD fed expectations for the treatment of APs, DBS is still not recommended for APs on the basis of expert consensus and lack of clinical trials. OBJECTIVE In this systematic review, we sought to analyze current evidence on the safety and efficacy of DBS in APs, discussing clinical indications, anatomical targets, and ethical issues. METHODS Following the PRISMA guidelines, we systematically searched PubMed for studies reporting the outcome of patients with APs treated with DBS. RESULTS We identified 25 eligible studies for a total of 66 patients with APs treated with DBS: 31 PSP, 22 MSA, 12 DLB, 1 unspecified parkinsonism with tongue tremor. Targeted nuclei were subthalamic nucleus (STN), globus pallidus pars-interna (GPi), pedunculopontine nucleus (PPN), and nucleus basalis of Meynert (nbM). Only 3/25 studies were randomized controlled trials, and most studies showed a high risk of bias. CONCLUSION Taking into account study biases and confounding factors, current evidence does not support the use of DBS in APs. However, some interesting insights arise from the literature, such as the high frequency of cognitive/neurobehavioral issues in MSA patients treated with STN-DBS, the low frequency of complications in trials of nbM-DBS for DLB, and the possible good response of dystonic symptoms in PSP with GPi DBS.
Collapse
Affiliation(s)
- Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Torino, Italy; Neurology 2 Unit, A.O.U, Città della Salute e della Scienza di Torino, Corso Bramante 88, 10126, Torino, Italy.
| | - Domiziana Rinaldi
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa, 1035-00189, Rome, Italy
| | - Roberta Balestrino
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Leonardo Lopiano
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Torino, Italy; Neurology 2 Unit, A.O.U, Città della Salute e della Scienza di Torino, Corso Bramante 88, 10126, Torino, Italy
| |
Collapse
|
18
|
Sasikumar S, Cohn M, Harmsen IE, Loh A, Cho SS, Sáenz-Farret M, Maciel R, Soh D, Boutet A, Germann J, Elias G, Youm A, Duncan K, Rowland NC, Strafella AP, Kalia SK, Lozano AM, Fasano A. Single-Trajectory Multiple-Target Deep Brain Stimulation for Parkinsonian Mobility and Cognition. Mov Disord 2021; 37:635-640. [PMID: 34806782 DOI: 10.1002/mds.28870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) is an emerging target to potentially treat cognitive dysfunction. OBJECTIVES The aim of this study is to achieve feasibility and safety of globus pallidus pars interna (GPi) and NBM DBS in advanced PD with cognitive impairment. METHODS We performed a phase-II double-blind crossover pilot trial in six participants to assess safety and cognitive measures, the acute effect of NBM stimulation on attention, motor and neuropsychological data at one year, and neuroimaging biomarkers of NBM stimulation. RESULTS NBM DBS was well tolerated but did not improve cognition. GPi DBS improved dyskinesia and motor fluctuations (P = 0.04) at one year. NBM stimulation was associated with reduced right frontal and parietal glucose metabolism (P < 0.01) and increased low- and high-frequency power and functional connectivity. Volume of tissue activated in the left NBM was associated with stable cognition (P < 0.05). CONCLUSIONS Simultaneous GPi and NBM stimulation is safe and improves motor complications. NBM stimulation altered neuroimaging biomarkers but without lasting cognitive improvement. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Melanie Cohn
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Irene E Harmsen
- Mitchell Goldhar MEG Unit, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Toronto Western Hospital, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Loh
- Toronto Western Hospital, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Sang Soo Cho
- Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Brain Institute, UHN, University of Toronto, Toronto, Ontario, Canada.,Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Michel Sáenz-Farret
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Ricardo Maciel
- Movement Disorders Unit, Hospital das Clínicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Derrick Soh
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Alexandre Boutet
- Toronto Western Hospital, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Jürgen Germann
- Toronto Western Hospital, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Elias
- Toronto Western Hospital, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Ariana Youm
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Duncan
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Nathan C Rowland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Antonio P Strafella
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Brain Institute, UHN, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Krembil Brain Institute, Toronto, Ontario, Canada.,Toronto Western Hospital, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Andres M Lozano
- Krembil Brain Institute, Toronto, Ontario, Canada.,Toronto Western Hospital, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Alfonso Fasano
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| |
Collapse
|
19
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
20
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Electrical stimulation of the nucleus basalis of meynert: a systematic review of preclinical and clinical data. Sci Rep 2021; 11:11751. [PMID: 34083732 PMCID: PMC8175342 DOI: 10.1038/s41598-021-91391-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/24/2021] [Indexed: 12/09/2022] Open
Abstract
Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has been clinically investigated in Alzheimer’s disease (AD) and Lewy body dementia (LBD). However, the clinical effects are highly variable, which questions the suggested basic principles underlying these clinical trials. Therefore, preclinical and clinical data on the design of NBM stimulation experiments and its effects on behavioral and neurophysiological aspects are systematically reviewed here. Animal studies have shown that electrical stimulation of the NBM enhanced cognition, increased the release of acetylcholine, enhanced cerebral blood flow, released several neuroprotective factors, and facilitates plasticity of cortical and subcortical receptive fields. However, the translation of these outcomes to current clinical practice is hampered by the fact that mainly animals with an intact NBM were used, whereas most animals were stimulated unilaterally, with different stimulation paradigms for only restricted timeframes. Future animal research has to refine the NBM stimulation methods, using partially lesioned NBM nuclei, to better resemble the clinical situation in AD, and LBD. More preclinical data on the effect of stimulation of lesioned NBM should be present, before DBS of the NBM in human is explored further.
Collapse
|
22
|
Peng S, Dhawan V, Eidelberg D, Ma Y. Neuroimaging evaluation of deep brain stimulation in the treatment of representative neurodegenerative and neuropsychiatric disorders. Bioelectron Med 2021; 7:4. [PMID: 33781350 PMCID: PMC8008578 DOI: 10.1186/s42234-021-00065-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 01/16/2023] Open
Abstract
Brain stimulation technology has become a viable modality of reversible interventions in the effective treatment of many neurological and psychiatric disorders. It is aimed to restore brain dysfunction by the targeted delivery of specific electronic signal within or outside the brain to modulate neural activity on local and circuit levels. Development of therapeutic approaches with brain stimulation goes in tandem with the use of neuroimaging methodology in every step of the way. Indeed, multimodality neuroimaging tools have played important roles in target identification, neurosurgical planning, placement of stimulators and post-operative confirmation. They have also been indispensable in pre-treatment screen to identify potential responders and in post-treatment to assess the modulation of brain circuitry in relation to clinical outcome measures. Studies in patients to date have elucidated novel neurobiological mechanisms underlying the neuropathogenesis, action of stimulations, brain responses and therapeutic efficacy. In this article, we review some applications of deep brain stimulation for the treatment of several diseases in the field of neurology and psychiatry. We highlight how the synergistic combination of brain stimulation and neuroimaging technology is posed to accelerate the development of symptomatic therapies and bring revolutionary advances in the domain of bioelectronic medicine.
Collapse
Affiliation(s)
- Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Vijay Dhawan
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - David Eidelberg
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA.
| |
Collapse
|