3
|
Bsteh G, Hegen H, Krajnc N, Föttinger F, Altmann P, Auer M, Berek K, Kornek B, Leutmezer F, Macher S, Monschein T, Ponleitner M, Rommer P, Schmied C, Zebenholzer K, Zulehner G, Zrzavy T, Deisenhammer F, Di Pauli F, Pemp B, Berger T. Retinal layer thinning for monitoring disease-modifying treatment in relapsing multiple sclerosis-Evidence for applying a rebaselining concept. Mult Scler 2024; 30:1128-1138. [PMID: 39109593 DOI: 10.1177/13524585241267257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
BACKGROUND Employing a rebaselining concept may reduce noise in retinal layer thinning measured by optical coherence tomography (OCT). METHODS From an ongoing prospective observational study, we included patients with relapsing multiple sclerosis (RMS), who had OCT scans at disease-modifying treatment (DMT) start (baseline), 6-12 months after baseline (rebaseline), and ⩾12 months after rebaseline. Mean annualized percent loss (aL) rates (%/year) were calculated both from baseline and rebaseline for peripapillary-retinal-nerve-fiber-layer (aLpRNFLbaseline/aLpRNFLrebaseline) and macular-ganglion-cell-plus-inner-plexiform-layer (aLGCIPLbaseline/aLGCIPLrebaseline) by mixed-effects linear regression models. RESULTS We included 173 RMS patients (mean age 31.7 years (SD 8.8), 72.8% female, median disease duration 15 months (12-94) median baseline-to-last-follow-up-interval 37 months (18-71); 56.6% moderately effective DMT (M-DMT), 43.4% highly effective DMT (HE-DMT)). Both mean aLpRNFLbaseline and aLGCIPLbaseline significantly increased in association with relapse (0.51% and 0.26% per relapse, p < 0.001, respectively) and disability worsening (1.10% and 0.48%, p < 0.001, respectively) before baseline, but not with DMT class. Contrarily, neither aLpRNFLrebaseline nor aLGCIPLrebaseline was dependent on relapse or disability worsening before baseline, while HE-DMT significantly lowered aLpRNFLrebaseline (by 0.31%, p < 0.001) and aLGCIPLrebaseline (0.25%, p < 0.001) compared with M-DMT. CONCLUSIONS Applying a rebaselining concept significantly improves differentiation of DMT effects on retinal layer thinning by avoiding carry-over confounding from previous disease activity.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fabian Föttinger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tobias Monschein
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christiane Schmied
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Karin Zebenholzer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gudrun Zulehner
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Berthold Pemp
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Ehrhardt H, Lambe J, Moussa H, Vasileiou ES, Kalaitzidis G, Murphy OC, Filippatou AG, Pellegrini N, Douglas M, Davis S, Nagy N, Quiroga A, Hu C, Zambriczki Lee A, Duval A, Fitzgerald KC, Prince JL, Calabresi PA, Sotirchos ES, Bermel R, Saidha S. Effects of Ibudilast on Retinal Atrophy in Progressive Multiple Sclerosis Subtypes: Post Hoc Analyses of the SPRINT-MS Trial. Neurology 2023; 101:e1014-e1024. [PMID: 37460235 PMCID: PMC10491449 DOI: 10.1212/wnl.0000000000207551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/08/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Ganglion cell + inner plexiform layer (GCIPL) thinning, measured by optical coherence tomography (OCT), reflects global neurodegeneration in multiple sclerosis (MS). Atrophy of the inner (INL) and outer nuclear layer (ONL) may also be prominent in progressive MS (PMS). The phase 2, SPRINT-MS trial found reduced brain atrophy with ibudilast therapy in PMS. In this post hoc analysis of the SPRINT-MS trial, we investigate (1) retinal atrophy (2) differences in response by subtype and (3) associations between OCT and MRI measures of neurodegeneration. METHODS In the multicenter, double-blind SPRINT-MS trial, participants with secondary progressive MS (SPMS) or primary progressive MS (PPMS) were randomized to ibudilast or placebo. OCT and MRI data were collected every 24 weeks for 96 weeks. Extensive OCT quality control and algorithmic segmentation produced consistent results across Cirrus HD-OCT and Spectralis devices. Primary endpoints were GCIPL, INL, and ONL atrophy, assessed by linear mixed-effects regression. Secondary endpoints were associations of OCT measures, brain parenchymal fraction, and cortical thickness, assessed by partial Pearson correlations. RESULTS One hundred thirty-four PPMS and 121 SPMS participants were included. GCIPL atrophy was 79% slower in the ibudilast (-0.07 ± 0.23 µm/y) vs placebo group (-0.32 ± 0.20 µm/y, p = 0.003). This effect predominated in the PPMS cohort (ibudilast: -0.08 ± 0.29 µm/y vs placebo: -0.60 ± 0.29 µm/y, a decrease of 87%, p < 0.001) and was not detected in the SPMS cohort (ibudilast: -0.21 ± 0.28 µm/y vs placebo: -0.14 ± 0.27 µm/y, p = 0.55). GCIPL, INL, and ONL atrophy rates correlated with whole brain atrophy rates across the cohort (r = 0.27, r = 0.26, and r = 0.20, respectively; p < 0.001). Power calculations from these data show future trials of similar size and design have ≥80% power to detect GCIPL atrophy effect sizes of approximately 40%. DISCUSSION Ibudilast treatment decreased GCIPL atrophy in PMS, driven by the PPMS cohort, with no effect seen in SPMS. Modulated atrophy of retinal layers may be detectable in sample sizes smaller than the SPRINT-MS trial and correlate with whole brain atrophy in PMS, further highlighting their utility as outcomes in PMS. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that ibudilast reduces composite ganglion cell + inner plexiform layer atrophy, without reduction of inner or outer nuclear layer atrophy, in patients with primary progressive MS but not those with secondary progressive MS.
Collapse
Affiliation(s)
- Henrik Ehrhardt
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Jeffrey Lambe
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Hussein Moussa
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Eleni S Vasileiou
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Grigorios Kalaitzidis
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Olwen C Murphy
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Angeliki G Filippatou
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Nicole Pellegrini
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Morgan Douglas
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Simidele Davis
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Natalia Nagy
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Agustina Quiroga
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Chen Hu
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Alexandra Zambriczki Lee
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Anna Duval
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Kathryn C Fitzgerald
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Jerry L Prince
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Peter A Calabresi
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Elias S Sotirchos
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Robert Bermel
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH
| | - Shiv Saidha
- From the Department of Neurology (H.E., J.L., H.M., E.S.V., G.K., O.C.M., A.G.F., N.P., M.D., S.D., N.N., A.Q., C.H., A.Z.L., A.D., K.C.F., P.A.C., E.S.S., S.S.), Johns Hopkins University School of Medicine; Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD; and Mellen Center for Multiple Sclerosis (R.B.), Cleveland Clinic, OH.
| |
Collapse
|