1
|
Susin-Calle S, Martinez-Rodriguez JE, Munteis E, Villoslada P. Ongoing phase 2 agents for multiple sclerosis: could we break the phase 3 trial deadlock? Expert Opin Investig Drugs 2025; 34:217-229. [PMID: 40000925 DOI: 10.1080/13543784.2025.2472240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/13/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system. While disease-modifying therapies have significantly improved the management of relapsing MS, progressive MS remains a major clinical challenge. AREAS COVERED This review provides a general overview of recent and ongoing phase 2 clinical trials investigating treatments for MS, summarizing emerging results when available. The trials are categorized based on the desired therapeutic effect: immunomodulatory treatments, neuroprotection, and remyelination. A comprehensive literature search was conducted using databases such as PubMed and ClinicalTrials.gov to identify relevant studies, with a focus on promising therapies that address both inflammatory and neurodegenerative processes in MS. EXPERT OPINION Despite promising results from phase 2 trials, many phase 3 trials fail to demonstrate significant efficacy. This discrepancy is partly due to limitations in biomarkers, which often lack disease specificity and fail to predict long-term outcomes. Additionally, smaller, narrowly focused phase 2 trials may overestimate efficacy, leading to challenges when transitioning to larger, more inclusive phase 3 trials. Recruitment of patients with less aggressive disease further complicates phase 3 success. Addressing these challenges requires the refinement of biomarkers, adoption of unified definitions for outcomes like progression independent of relapse activity (PIRA), and trial designs that better capture the complexity of MS progression.
Collapse
Affiliation(s)
- Silvia Susin-Calle
- Department of Neurology, Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | | | - Elvira Munteis
- Department of Neurology, Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| | - Pablo Villoslada
- Department of Neurology, Hospital del Mar Research Institute and Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
2
|
Coerver EME, Fung WH, de Beukelaar J, Bouvy WH, Canta LR, Gerlach OHH, Hoitsma E, Hoogervorst ELJ, de Jong BA, Kalkers NF, van Kempen ZLE, Lövenich H, van Munster CEP, van Oosten BW, Smolders J, Vennegoor A, Zeinstra EMPE, Barrantes-Cepas M, Kooij G, Schoonheim MM, Lissenberg-Witte BI, Teunissen CE, Moraal B, Barkhof F, Uitdehaag BMJ, Mostert J, Killestein J, Strijbis EMM. Discontinuation of First-Line Disease-Modifying Therapy in Patients With Stable Multiple Sclerosis: The DOT-MS Randomized Clinical Trial. JAMA Neurol 2025; 82:123-131. [PMID: 39652340 PMCID: PMC11811793 DOI: 10.1001/jamaneurol.2024.4164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/11/2024] [Indexed: 02/11/2025]
Abstract
Importance Increasing numbers of people with multiple sclerosis (MS) use disease-modifying therapy (DMT). Long-term stable disease while taking such medications provides a rationale for considering DMT discontinuation given patient burden, costs, and potential adverse effects of immunomodulating therapy. Objective To investigate whether first-line DMT can be safely discontinued in patients with long-term stable MS. Design, Setting, and Participants This multicenter, rater-blinded, noninferiority randomized clinical trial was conducted between July 1, 2020, and March 20, 2023, at 14 Dutch centers. Data analysis was performed between July 2023 and January 2024. Key inclusion criteria were relapse-onset MS, aged 18 years or older, without relapses, and without substantial magnetic resonance imaging (MRI) activity in the previous 5 years under first-line DMT. Participants were randomized 1:1 to discontinue or continue first-line DMT. Intervention Discontinuation of first-line DMT. Main Outcome and Measure The primary outcome was significant inflammatory disease activity, defined as relapse and/or 3 or more new T2 lesions or 2 or more contrast-enhancing lesions on brain MRI. Results Of 163 potentially eligible participants, 89 participants were included in the trial at the moment of early termination. Forty-four participants (49.4%) were assigned to the continue group and 45 participants (50.6%) were assigned to the discontinue group. Median (IQR) age was 54.0 (49.0-59.0) years, and 60 participants (67.4%) were female. Two participants in the continue group were lost to follow-up. After a median (IQR) follow-up time of 15.3 (11.4-23.9) months, the trial was prematurely terminated because of inflammatory disease activity recurrence above the predefined limit. In total, 8 of 45 participants in the discontinue group (17.8%) vs 0 of 44 participants in the continue group reached the primary end point and had recurrent, mostly radiological inflammation. Two of these 8 participants had a clinical relapse. Median (IQR) time to disease activity was 12.0 (6.0-12.0) months. Conclusions and Relevance In this randomized clinical trial, even in patients with long-term MS stable for over 5 years, first-line DMT discontinuation can lead to recurrence of inflammatory disease activity. Although this study cohort was relatively small, the recurrence of inflammation in the discontinue group was significantly higher than in the continue group and also higher than in the previously published DISCOMS trial, which only included individuals aged 55 years or older. This study provides additional data, especially in a younger population and including longitudinal biomarker measurements, for informed decision-making in cases when treatment discontinuation is considered. Trial Registration ClinicalTrials.gov Identifier: NCT04260711.
Collapse
Affiliation(s)
- Eline M. E. Coerver
- Multiple Sclerosis Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center location VUmc, Amsterdam, the Netherlands
| | - Wing Hee Fung
- Multiple Sclerosis Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center location VUmc, Amsterdam, the Netherlands
| | | | | | - Leo R. Canta
- Neurology, Catharina Hospital, Eindhoven, the Netherlands
| | - Oliver H. H. Gerlach
- Neurology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Elske Hoitsma
- Neurology, Alrijne Hospital, Leiden, the Netherlands
| | | | - Brigit A. de Jong
- Multiple Sclerosis Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center location VUmc, Amsterdam, the Netherlands
| | | | - Zoé L. E. van Kempen
- Multiple Sclerosis Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center location VUmc, Amsterdam, the Netherlands
| | | | | | - Bob W. van Oosten
- Multiple Sclerosis Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center location VUmc, Amsterdam, the Netherlands
| | - Joost Smolders
- MS Center ErasMS, Neurology & Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Mar Barrantes-Cepas
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gijs Kooij
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam University Medical Center, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Menno M. Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Center, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Birgit I. Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan Moraal
- MS Center Amsterdam, Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frederik Barkhof
- MS Center Amsterdam, Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Bernard M. J. Uitdehaag
- Multiple Sclerosis Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center location VUmc, Amsterdam, the Netherlands
| | - Jop Mostert
- Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Joep Killestein
- Multiple Sclerosis Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center location VUmc, Amsterdam, the Netherlands
| | - Eva M. M. Strijbis
- Multiple Sclerosis Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Center location VUmc, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Gajewski B, Karlińska I, Domowicz M, Bednarski I, Świderek-Matysiak M, Stasiołek M. No Relation Between Cognitive Impairment, Physical Disability and Serum Biomarkers in a Cohort of Progressive Multiple Sclerosis Patients. Biomolecules 2025; 15:68. [PMID: 39858462 PMCID: PMC11763174 DOI: 10.3390/biom15010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Despite significant efforts, there is still an existing need to identify diagnostic tools that would enable fast and reliable detection of the progressive stage of multiple sclerosis (MS) and help in monitoring the disease course and/or treatment effects. The aim of this prospective study in a group of people with progressive MS was to determine whether changes in the levels of selected serum biomarkers and in cognitive function may predict disease progression, and therefore refine the decision-making process in the evaluation of MS patients. Forty two (42) patients with progressive MS completed all the study procedures; the mean duration of follow-up was 12.97 months. During the observation period, serum concentration of chitinase-3 like-protein-1 (CHI3L1/YKL-40) decreased significantly in the whole study group (from 4034.95 ± 262.62 to 2866.43 ± 173.37; p = 0.0005), as well as in subgroups of people with secondary progressive and primary progressive MS (SPMS: from 3693.81 ± 388.68 to 2542.76 ± 256.59; p = 0.0207; and PPMS: from 4376.09 ± 353.27 to 3190.09 ± 233.22; p = 0.0089, respectively). A significant worsening of Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) scores was detected in the whole study group (from 1.18 ± 0.14 to 1.34 ± 0.15; p = 0.0331) as well as in the PPMS subgroup (from 1.04 ± 0.18 to 1.26 ± 0.20; p = 0.0216). No correlations between the analyzed molecular parameters or the results of neuropsychological tests and physical disability were observed. In conclusion, an emphasis should be placed on furthering the search for multimodal biomarkers of disease progression, especially in the PMS population, based on simultaneous analysis of several factors, such as blood biomarkers and cognitive profiles.
Collapse
Affiliation(s)
| | | | | | | | | | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, Kopcinskiego 22, 90-153 Lodz, Poland; (B.G.); (I.K.); (M.D.); (I.B.); (M.Ś.-M.)
| |
Collapse
|
4
|
Sainz-Amo R, Rodero-Romero A, Monreal E, Chico-García JL, Rodríguez-Jorge F, Fernández-Velasco JI, Villarrubia N, Veiga-González JL, de la Maza SS, Masjuan J, Costa-Frossard L, Villar LM. Effect of Natalizumab on sNfL and sGFAP Levels in Multiple Sclerosis Patients. Int J Mol Sci 2024; 25:13153. [PMID: 39684862 DOI: 10.3390/ijms252313153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Natalizumab is a highly effective therapy for multiple sclerosis (MS). The aim of this study was to evaluate serum neurofilament light chain (sNfL) and serum glial fibrillary acidic protein (sGFAP) in patients with relapsing-remitting MS treated with Natalizumab. sNfL and sGFAP were analyzed at baseline, 6 and 12 months post treatment using the single-molecule array (SiMoA) technique. We recruited matched healthy controls for comparison. The study included 54 patients, with a median age of 33 years (Interquartile range (IQR), 29-41), with 32 women (60%) and 76 healthy controls. A decrease in sNfL was observed at 6 (67%, p = 0.005) and 12 (72%, p < 0.0001) months compared to baseline. After two years, six patients experienced evidence of disease activity (EDA-3). The remaining ones had no evidence of disease activity (NEDA-3). NEDA-3 presented a remarkable reduction in sNfL (p < 0.0001) and sGFAP (p = 0.01) after 6 months of treatment that continued to be observed after 12 months compared to baseline. EDA-3 only reached a significant decrease in sNfL after 12 months; there were no significant changes in sGFAP values. Natalizumab leads to a decrease in sNfL, which is higher and occurs earlier in NEDA-3 patients. Patients also showed a significant reduction in sGFAP levels, which was not observed in the EDA-3 group.
Collapse
Affiliation(s)
- Raquel Sainz-Amo
- Neurology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
- Immunology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Alexander Rodero-Romero
- Immunology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Enric Monreal
- Neurology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Juan Luis Chico-García
- Neurology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Fernando Rodríguez-Jorge
- Neurology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Jose Ignacio Fernández-Velasco
- Immunology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Noelia Villarrubia
- Immunology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Jose Luis Veiga-González
- Immunology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Susana Sainz de la Maza
- Neurology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Jaime Masjuan
- Neurology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Lucienne Costa-Frossard
- Neurology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| | - Luisa Maria Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Multiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain
| |
Collapse
|
5
|
van Lierop ZY, Wessels MH, Lekranty WM, Moraal B, Hof SN, Hogenboom L, de Jong BA, Meijs N, Mensing LA, van Oosten BW, Sol N, van Kempen ZLE, Vermunt L, Willems MJ, Strijbis EM, Uitdehaag BM, Killestein J, Teunissen CE. Impact of serum neurofilament light on clinical decisions in a tertiary multiple sclerosis clinic. Mult Scler 2024; 30:1620-1629. [PMID: 39420574 PMCID: PMC11568682 DOI: 10.1177/13524585241277044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Serum neurofilament light (sNfL) is a biomarker for neuro-axonal damage in multiple sclerosis (MS). Clinical implementation remains limited. We investigated the impact of implementation on clinical decisions using questionnaires at the MS Center Amsterdam, a tertiary outpatient clinic. METHODS sNfL assessments were added to routine clinical practice (August 2021-December 2022). Before and after the results, clinicians filled in questionnaires on context of testing, clinical decisions, certainty herein, expectation of magnetic resonance imaging (MRI) activity, urgency, and motivation to receive the sNfL result and perceived value of sNfL. RESULTS sNfL was assessed in 166 cases (age 41 ± 12 years, 68% female, 64% disease-modifying therapy (DMT) use) for the following contexts: "DMT monitoring" (55%), "new symptoms" (18%), "differential diagnosis" (17%), and "DMT baseline" (11%). Clinical decisions changed in 19.3% of cases post-disclosure, particularly in context "new symptoms" (38%) and with higher sNfL levels (β = 0.03, p = 0.04). Certainty increased (p = 0.004), while expectation of MRI activity decreased with disclosure of low sNfL levels (p = 0.01). Motivation was highest in context "differential diagnosis" (p < 0.001); perceived value and urgency were highest in context "new symptoms" (p = 0.02). CONCLUSION In this study, sNfL implementation had considerable impact on clinical decision-making and certainty herein. Standard implementation may complement patient care but warrants caution and more exploration in diverse clinical settings.
Collapse
Affiliation(s)
- Zoë Ygj van Lierop
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark Hj Wessels
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Womei Ml Lekranty
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bastiaan Moraal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sam N Hof
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Laura Hogenboom
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Brigit A de Jong
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nandi Meijs
- Department of Neurology, Zuyderland Hospital, Sittard-Geleen, The Netherlands
| | | | - Bob W van Oosten
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nik Sol
- Department of Neuro-Oncology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Zoé LE van Kempen
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Myrthe J Willems
- Department of Neurology, Diakonessenhuis, Utrecht, The Netherlands
| | - Eva Mm Strijbis
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bernard Mj Uitdehaag
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC (Location VUmc), Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Rosenstein I, Nordin A, Sabir H, Malmeström C, Blennow K, Axelsson M, Novakova L. Association of serum glial fibrillary acidic protein with progression independent of relapse activity in multiple sclerosis. J Neurol 2024; 271:4412-4422. [PMID: 38668889 PMCID: PMC11233378 DOI: 10.1007/s00415-024-12389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE Insidious disability worsening is a common feature in relapsing-remitting multiple sclerosis (RRMS). Many patients experience progression independent of relapse activity (PIRA) despite being treated with high efficacy disease-modifying therapies. We prospectively investigated associations of body-fluid and imaging biomarkers with PIRA. METHODS Patients with early RRMS (n = 104) were prospectively included and followed up for 60 months. All patients were newly diagnosed and previously untreated. PIRA was defined using a composite score including the expanded disability status scale, 9-hole peg test, timed 25 foot walk test, and the symbol digit modalities test. Eleven body fluid and imaging biomarkers were determined at baseline and levels of serum neurofilament light (sNfL) and glial fibrillary acidic protein (sGFAP) were also measured annually thereafter. Association of baseline biomarkers with PIRA was investigated in multivariable logistic regression models adjusting for clinical and demographic confounding factors. Longitudinal serum biomarker dynamics were investigated in mixed effects models. RESULTS Only sGFAP was significantly higher in PIRA at baseline (median [IQR] 73.9 [60.9-110.1] vs. 60.3 [45.2-79.9], p = 0.01). A cut-off of sGFAP > 65 pg/mL resulted in a sensitivity of 68% and specificity of 61%, to detect patients at higher risk of PIRA. In a multivariable logistic regression, sGFAP > 65 pg/mL was associated with higher odds of developing PIRA (odds ratio 4.3, 95% CI 1.44-12.86, p = 0.009). Repeated measures of sGFAP levels showed that patients with PIRA during follow-up had higher levels of sGFAP along the whole follow-up compared to stable patients (p < 0.001). CONCLUSION Determination of sGFAP at baseline and follow-up may be useful in capturing disability accrual independent of relapse activity in early RRMS.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden.
- Department of Neurology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Anna Nordin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Hemin Sabir
- Department of Neurology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Department of Neurology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Department of Neurology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Department of Neurology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
7
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Abdelhak A, Benkert P, Schaedelin S, Boscardin WJ, Cordano C, Oechtering J, Ananth K, Granziera C, Melie-Garcia L, Montes SC, Beaudry-Richard A, Achtnichts L, Oertel FC, Lalive PH, Leppert D, Müller S, Henry RG, Pot C, Matthias A, Salmen A, Oksenberg JR, Disanto G, Zecca C, D’Souza M, Du Pasquier R, Bridel C, Gobbi C, Kappos L, Hauser SL, Cree BAC, Kuhle J, Green AJ. Neurofilament Light Chain Elevation and Disability Progression in Multiple Sclerosis. JAMA Neurol 2023; 80:1317-1325. [PMID: 37930670 PMCID: PMC10628837 DOI: 10.1001/jamaneurol.2023.3997] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/16/2023] [Indexed: 11/07/2023]
Abstract
Importance Mechanisms contributing to disability accumulation in multiple sclerosis (MS) are poorly understood. Blood neurofilament light chain (NfL) level, a marker of neuroaxonal injury, correlates robustly with disease activity in people with MS (MS); however, data on the association between NfL level and disability accumulation have been conflicting. Objective To determine whether and when NfL levels are elevated in the context of confirmed disability worsening (CDW). Design, Setting, and Participants This study included 2 observational cohorts: results from the Expression, Proteomics, Imaging, Clinical (EPIC) study at the University of California San Francisco (since 2004) were confirmed in the Swiss Multiple Sclerosis Cohort (SMSC), a multicenter study in 8 centers since 2012. Data were extracted from EPIC in April 2022 (sampling July 1, 2004, to December 20, 2016) and SMSC in December 2022 (sampling June 6, 2012, to September 2, 2021). The study included 2 observational cohorts in tertiary MS centers. All participants of both cohorts with available NfL results were included in the study, and no eligible participants were excluded or declined to participate. Exposure Association between NfL z scores and CDW. Main Outcome Measures CDW was defined as Expanded Disability Status Scale (EDSS) worsening that was confirmed after 6 or more months and classified into CDW associated with clinical relapses (CDW-R) or independent of clinical relapses (CDW-NR). Visits were classified in relation to the disability worsening events into CDW(-2) for 2 visits preceding event, CDW(-1) for directly preceding event, CDW(event) for first diagnosis of EDSS increase, and the confirmation visit. Mixed linear and Cox regression models were used to evaluate NfL dynamics and to assess the association of NfL with future CDW, respectively. Results A total of 3906 EPIC visits (609 participants; median [IQR] age, 42.0 [35.0-50.0] years; 424 female [69.6%]) and 8901 SMSC visits (1290 participants; median [IQR] age, 41.2 [32.5-49.9] years; 850 female [65.9%]) were included. In CDW-R (EPIC, 36 events; SMSC, 93 events), NfL z scores were 0.71 (95% CI, 0.35-1.07; P < .001) units higher at CDW-R(-1) in EPIC and 0.32 (95% CI, 0.14-0.49; P < .001) in SMSC compared with stable MS samples. NfL elevation could be detected preceding CDW-NR (EPIC, 191 events; SMSC, 342 events) at CDW-NR(-2) (EPIC: 0.23; 95% CI, 0.01-0.45; P = .04; SMSC: 0.28; 95% CI, 0.18-0.37; P < .001) and at CDW-NR(-1) (EPIC: 0.27; 95% CI, 0.11-0.44; P < .001; SMSC: 0.09; 95% CI, 0-0.18; P = .06). Those findings were replicated in the subgroup with relapsing-remitting MS. Time-to-event analysis confirmed the association between NfL levels and future CDW-R within approximately 1 year and CDW-NR (in approximately 1-2 years). Conclusions and Relevance This cohort study documents the occurrence of NfL elevation in advance of clinical worsening and may hint to a potential window of ongoing dynamic central nervous system pathology that precedes the diagnosis of CDW.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Pascal Benkert
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - W. John Boscardin
- Departments of Medicine and Epidemiology & Biostatistics, University of California at San Francisco, San Francisco
| | - Christian Cordano
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Johanna Oechtering
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Kirtana Ananth
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Cristina Granziera
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Shivany Condor Montes
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Alexandra Beaudry-Richard
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Lutz Achtnichts
- Department of Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Frederike C. Oertel
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Patrice H. Lalive
- Unit of Neuroimmunology, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - David Leppert
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Stefanie Müller
- Department of Neurology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Roland G. Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Caroline Pot
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Amandine Matthias
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Giulio Disanto
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, ECO, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Zecca
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, ECO, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Marcus D’Souza
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Claire Bridel
- Unit of Neuroimmunology, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Claudio Gobbi
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, ECO, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Bruce A. C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
| | - Jens Kuhle
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Center, Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ari J. Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco
- Department of Ophthalmology, University of California at San Francisco, San Francisco
| |
Collapse
|
9
|
Zhu W, Chen C, Zhang L, Hoyt T, Walker E, Venkatesh S, Zhang F, Qureshi F, Foley JF, Xia Z. Association between serum multi-protein biomarker profile and real-world disability in multiple sclerosis. Brain Commun 2023; 6:fcad300. [PMID: 38192492 PMCID: PMC10773609 DOI: 10.1093/braincomms/fcad300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 01/10/2024] Open
Abstract
Few studies examined blood biomarkers informative of patient-reported outcome (PRO) of disability in people with multiple sclerosis (MS). We examined the associations between serum multi-protein biomarker profiles and patient-reported MS disability. In this cross-sectional study (2017-2020), adults with diagnosis of MS (or precursors) from two independent clinic-based cohorts were divided into a training and test set. For predictors, we examined seven clinical factors (age at sample collection, sex, race/ethnicity, disease subtype, disease duration, disease-modifying therapy [DMT], and time interval between sample collection and closest PRO assessment) and 19 serum protein biomarkers potentially associated with MS disease activity endpoints identified from prior studies. We trained machine learning (ML) models (Least Absolute Shrinkage and Selection Operator regression [LASSO], Random Forest, Extreme Gradient Boosting, Support Vector Machines, stacking ensemble learning, and stacking classification) for predicting Patient Determined Disease Steps (PDDS) score as the primary endpoint and reported model performance using the held-out test set. The study included 431 participants (mean age 49 years, 81% women, 94% non-Hispanic White). For binary PDDS score, combined feature input of routine clinical factors and the 19 proteins consistently outperformed base models (comprising clinical features alone or clinical features plus one single protein at a time) in predicting severe (PDDS ≥ 4) versus mild/moderate (PDDS < 4) disability across multiple machine learning approaches, with LASSO achieving the best area under the curve (AUCPDDS = 0.91) and other metrics. For ordinal PDDS score, LASSO model comprising combined clinical factors and 19 proteins as feature input (R2PDDS = 0.31) again outperformed base models. The two best-performing LASSO models (i.e., binary and ordinal PDDS score) shared six clinical features (age, sex, race/ethnicity, disease subtype, disease duration, DMT efficacy) and nine proteins (cluster of differentiation 6, CUB-domain-containing protein 1, contactin-2, interleukin-12 subunit-beta, neurofilament light chain [NfL], protogenin, serpin family A member 9, tumor necrosis factor superfamily member 13B, versican). By comparison, LASSO models with clinical features plus one single protein at a time as feature input did not select either NfL or glial fibrillary acidic protein (GFAP) as a final feature. Forcing either NfL or GFAP as a single protein feature into models did not improve performance beyond clinical features alone. Stacking classification model using five functional pathways to represent multiple proteins as meta-features implicated those involved in neuroaxonal integrity as significant contributors to predictive performance. Thus, serum multi-protein biomarker profiles improve the prediction of real-world MS disability status beyond clinical profile alone or clinical profile plus single protein biomarker, reaching clinically actionable performance.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chenyi Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lili Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammy Hoyt
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT, USA
| | - Elizabeth Walker
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shruthi Venkatesh
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fujun Zhang
- Octave Bioscience, Inc., Menlo Park, CA, USA
| | | | - John F Foley
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT, USA
| | - Zongqi Xia
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Rosenstein I, Axelsson M, Novakova L, Malmeström C, Blennow K, Zetterberg H, Lycke J. Intrathecal kappa free light chain synthesis is associated with worse prognosis in relapsing-remitting multiple sclerosis. J Neurol 2023; 270:4800-4811. [PMID: 37314506 PMCID: PMC10511607 DOI: 10.1007/s00415-023-11817-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND While kappa free light chain (KFLC) index has become a useful diagnostic biomarker in multiple sclerosis (MS), its prognostic properties are less explored. B cells play a crucial role in MS pathogenesis, but the impact from increased intrathecal production of immunoglobulins and KFLC remains to be determined. Recently, it has become evident that insidious worsening is not confined to progressive MS but is also common in relapsing-remitting MS (RRMS), a feature known as progression independent of relapse activity (PIRA). METHODS We retrospectively identified 131 patients with clinically isolated syndrome or early RRMS who had determined KFLC index as part of their diagnostic workup. Demographic and clinical data were extracted from the Swedish MS registry. Associations of baseline KFLC index with evidence of disease activity (EDA) and PIRA were investigated in multivariable cox proportional hazards regression models. RESULTS KFLC index was significantly higher in PIRA (median 148.5, interquartile range [IQR] 106.9-253.5) compared with non-PIRA (78.26, IQR 28.93-186.5, p = 0.009). In a multivariable cox regression model adjusted for confounders, KFLC index emerged as an independent risk factor for PIRA (adjusted hazard ratio [aHR] 1.005, 95% confidence interval [CI] 1.002-1.008, p = 0.002). Dichotomized by the cut-off value KFLC index > 100, patients with KFLC index > 100 had an almost fourfold increase in the risk for developing PIRA. KFLC index was also predictive of evidence of disease activity during follow-up. CONCLUSIONS Our data indicate that high KFLC index at baseline is predictive of PIRA, EDA-3, and overall worse prognosis in MS.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden.
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| |
Collapse
|
11
|
Wessels MHJ, Van Lierop ZYGJ, Noteboom S, Strijbis EMM, Heijst JA, Van Kempen ZLE, Moraal B, Barkhof F, Uitdehaag BMJ, Schoonheim MM, Killestein J, Teunissen CE. Serum glial fibrillary acidic protein in natalizumab-treated relapsing-remitting multiple sclerosis: An alternative to neurofilament light. Mult Scler 2023; 29:1229-1239. [PMID: 37530045 PMCID: PMC10503252 DOI: 10.1177/13524585231188625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND There is a need in Relapsing-Remitting Multiple Sclerosis (RRMS) treatment for biomarkers that monitor neuroinflammation, neurodegeneration, treatment response, and disease progression despite treatment. OBJECTIVE To assess the value of serum glial fibrillary acidic protein (sGFAP) as a biomarker for clinical disease progression and brain volume measurements in natalizumab-treated RRMS patients. METHODS sGFAP and neurofilament light (sNfL) were measured in an observational cohort of natalizumab-treated RRMS patients at baseline, +3, +12, and +24 months and at the last sample follow-up (median 5.17 years). sGFAP was compared between significant clinical progressors and non-progressors and related to magnetic resonance imaging (MRI)-derived volumes of the whole brain, ventricle, thalamus, and lesion. The relationship between sGFAP and sNfL was assessed. RESULTS A total of 88 patients were included, and 47.7% progressed. sGFAP levels at baseline were higher in patients with gadolinium enhancement (1.3-fold difference, p = 0.04) and decreased in 3 months of treatment (adj. p < 0.001). No association was found between longitudinal sGFAP levels and progressor status. sGFAP at baseline and 12 months was significantly associated with normalized ventricular (positively), thalamic (negatively), and lesion volumes (positively). Baseline and 12-month sGFAP predicted annualized ventricle volume change rate after 1 year of treatment. sGFAP correlated with sNfL at baseline (p < 0.001) and last sample follow-up (p < 0.001) but stabilized earlier. DISCUSSION sGFAP levels related to MRI markers of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Mark HJ Wessels
- Mark HJ Wessels Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands.
| | - Zoë YGJ Van Lierop
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Samantha Noteboom
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eva MM Strijbis
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes A Heijst
- Department of Clinical Chemistry, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Zoé LE Van Kempen
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan Moraal
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Queen Square Institute of Neurology, Centre for Medical Image Computing, University College London, London, UK
| | - Bernard MJ Uitdehaag
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Bar-Or A, Thanei GA, Harp C, Bernasconi C, Bonati U, Cross AH, Fischer S, Gaetano L, Hauser SL, Hendricks R, Kappos L, Kuhle J, Leppert D, Model F, Sauter A, Koendgen H, Jia X, Herman AE. Blood neurofilament light levels predict non-relapsing progression following anti-CD20 therapy in relapsing and primary progressive multiple sclerosis: findings from the ocrelizumab randomised, double-blind phase 3 clinical trials. EBioMedicine 2023; 93:104662. [PMID: 37354600 DOI: 10.1016/j.ebiom.2023.104662] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Neurofilament light chain (NfL), a neuronal cytoskeletal protein that is released upon neuroaxonal injury, is associated with multiple sclerosis (MS) relapsing activity and has demonstrated some prognostic ability for future relapse-related disease progression, yet its value in assessing non-relapsing disease progression remains unclear. METHODS We examined baseline and longitudinal blood NfL levels in 1421 persons with relapsing MS (RMS) and 596 persons with primary progressive MS (PPMS) from the pivotal ocrelizumab MS trials. NfL treatment-response and risk for disease worsening (including disability progression into the open-label extension period and slowly expanding lesions [SELs] on brain MRI) at baseline and following treatment with ocrelizumab were evaluated using time-to-event analysis and linear regression models. FINDINGS In persons from the RMS control arms without acute disease activity and in the entire PPMS control arm, higher baseline NfL was prognostic for greater whole brain and thalamic atrophy, greater volume expansion of SELs, and clinical progression. Ocrelizumab reduced NfL levels vs. controls in persons with RMS and those with PPMS, and abrogated the prognostic value of baseline NfL on disability progression. Following effective suppression of relapse activity by ocrelizumab, NfL levels at weeks 24 and 48 were significantly associated with long-term risk for disability progression, including up to 9 years of observation in RMS and PPMS. INTERPRETATION Highly elevated NfL from acute MS disease activity may mask a more subtle NfL abnormality that reflects underlying non-relapsing progressive biology. Ocrelizumab significantly reduced NfL levels, consistent with its effects on acute disease activity and disability progression. Persistently elevated NfL levels, observed in a subgroup of persons under ocrelizumab treatment, demonstrate potential clinical utility as a predictive biomarker of increased risk for clinical progression. Suppression of relapsing biology with high-efficacy immunotherapy provides a window into the relationship between NfL levels and future non-relapsing progression. FUNDING F. Hoffmann-La Roche Ltd.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | - Anne H Cross
- Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | - Ludwig Kappos
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Sen MK, Hossain MJ, Mahns DA, Brew BJ. Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. J Neurol 2023; 270:1908-1930. [PMID: 36520240 DOI: 10.1007/s00415-022-11507-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Jakir Hossain
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| |
Collapse
|
14
|
Meier S, Willemse EA, Schaedelin S, Oechtering J, Lorscheider J, Melie-Garcia L, Cagol A, Barakovic M, Galbusera R, Subramaniam S, Barro C, Abdelhak A, Thebault S, Achtnichts L, Lalive P, Müller S, Pot C, Salmen A, Disanto G, Zecca C, D’Souza M, Orleth A, Khalil M, Buchmann A, Du Pasquier R, Yaldizli Ö, Derfuss T, Berger K, Hermesdorf M, Wiendl H, Piehl F, Battaglini M, Fischer U, Kappos L, Gobbi C, Granziera C, Bridel C, Leppert D, Maleska Maceski A, Benkert P, Kuhle J. Serum Glial Fibrillary Acidic Protein Compared With Neurofilament Light Chain as a Biomarker for Disease Progression in Multiple Sclerosis. JAMA Neurol 2023; 80:287-297. [PMID: 36745446 PMCID: PMC10011932 DOI: 10.1001/jamaneurol.2022.5250] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/23/2022] [Indexed: 02/07/2023]
Abstract
Importance There is a lack of validated biomarkers for disability progression independent of relapse activity (PIRA) in multiple sclerosis (MS). Objective To determine how serum glial fibrillary acidic protein (sGFAP) and serum neurofilament light chain (sNfL) correlate with features of disease progression vs acute focal inflammation in MS and how they can prognosticate disease progression. Design, Setting, and Participants Data were acquired in the longitudinal Swiss MS cohort (SMSC; a consortium of tertiary referral hospitals) from January 1, 2012, to October 20, 2022. The SMSC is a prospective, multicenter study performed in 8 centers in Switzerland. For this nested study, participants had to meet the following inclusion criteria: cohort 1, patients with MS and either stable or worsening disability and similar baseline Expanded Disability Status Scale scores with no relapses during the entire follow-up; and cohort 2, all SMSC study patients who had initiated and continued B-cell-depleting treatment (ie, ocrelizumab or rituximab). Exposures Patients received standard immunotherapies or were untreated. Main Outcomes and Measures In cohort 1, sGFAP and sNfL levels were measured longitudinally using Simoa assays. Healthy control samples served as the reference. In cohort 2, sGFAP and sNfL levels were determined cross-sectionally. Results This study included a total of 355 patients (103 [29.0%] in cohort 1: median [IQR] age, 42.1 [33.2-47.6] years; 73 female patients [70.9%]; and 252 [71.0%] in cohort 2: median [IQR] age, 44.3 [33.3-54.7] years; 156 female patients [61.9%]) and 259 healthy controls with a median [IQR] age of 44.3 [36.3-52.3] years and 177 female individuals (68.3%). sGFAP levels in controls increased as a function of age (1.5% per year; P < .001), were inversely correlated with BMI (-1.1% per BMI unit; P = .01), and were 14.9% higher in women than in men (P = .004). In cohort 1, patients with worsening progressive MS showed 50.9% higher sGFAP levels compared with those with stable MS after additional sNfL adjustment, whereas the 25% increase of sNfL disappeared after additional sGFAP adjustment. Higher sGFAP at baseline was associated with accelerated gray matter brain volume loss (per doubling: 0.24% per year; P < .001) but not white matter loss. sGFAP levels remained unchanged during disease exacerbations vs remission phases. In cohort 2, median (IQR) sGFAP z scores were higher in patients developing future confirmed disability worsening compared with those with stable disability (1.94 [0.36-2.23] vs 0.71 [-0.13 to 1.73]; P = .002); this was not significant for sNfL. However, the combined elevation of z scores of both biomarkers resulted in a 4- to 5-fold increased risk of confirmed disability worsening (hazard ratio [HR], 4.09; 95% CI, 2.04-8.18; P < .001) and PIRA (HR, 4.71; 95% CI, 2.05-9.77; P < .001). Conclusions and Relevance Results of this cohort study suggest that sGFAP is a prognostic biomarker for future PIRA and revealed its complementary potential next to sNfL. sGFAP may serve as a useful biomarker for disease progression in MS in individual patient management and drug development.
Collapse
Affiliation(s)
- Stephanie Meier
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Eline A.J. Willemse
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Johanna Oechtering
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Johannes Lorscheider
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Lester Melie-Garcia
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riccardo Galbusera
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Suvitha Subramaniam
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Barro
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco
| | - Simon Thebault
- Department of Medicine and the Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, Ontario, Canada
| | - Lutz Achtnichts
- Department of Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Patrice Lalive
- Unit of Neuroimmunology, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Stefanie Müller
- Department of Neurology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Caroline Pot
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Anke Salmen
- Department of Neurology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Giulio Disanto
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Zecca
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Marcus D’Souza
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Annette Orleth
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Renaud Du Pasquier
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Özgür Yaldizli
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tobias Derfuss
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Marco Battaglini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Urs Fischer
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Ludwig Kappos
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Claudio Gobbi
- Multiple Sclerosis Center, Department of Neurology, Neurocenter of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Cristina Granziera
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Claire Bridel
- Unit of Neuroimmunology, Division of Neurology, Department of Clinical Neurosciences, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Aleksandra Maleska Maceski
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| | - Pascal Benkert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre, Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Switzerland
| |
Collapse
|
15
|
Serum Neurofilament Light Chain as Biomarker for Cladribine-Treated Multiple Sclerosis Patients in a Real-World Setting. Int J Mol Sci 2023; 24:ijms24044067. [PMID: 36835478 PMCID: PMC9961994 DOI: 10.3390/ijms24044067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Serum neurofilament light chain (sNfL) is an intensely investigated biomarker in multiple sclerosis (MS). The aim of this study was to explore the impact of cladribine (CLAD) on sNfL and the potential of sNfL as a predictor of long-term treatment response. Data were gathered from a prospective, real-world CLAD cohort. We measured sNfL at baseline (BL-sNfL) and 12 months (12Mo-sNfL) after CLAD start by SIMOA. Clinical and radiological assessments determined fulfilment of "no evidence of disease activity" (NEDA-3). We evaluated BL-sNfL, 12M-sNfL and BL/12M sNfL ratio (sNfL-ratio) as predictors for treatment response. We followed 14 patients for a median of 41.5 months (range 24.0-50.0). NEDA-3 was fulfilled by 71%, 57% and 36% for a period of 12, 24 and 36 months, respectively. We observed clinical relapses in four (29%), MRI activity in six (43%) and EDSS progression in five (36%) patients. CLAD significantly reduced sNfL (BL-sNfL: mean 24.7 pg/mL (SD ± 23.8); 12Mo-sNfL: mean 8.8 pg/mL (SD ± 6.2); p = 0.0008). We found no correlation between BL-sNfL, 12Mo-sNfL and ratio-sNfL and the time until loss of NEDA-3, the occurrence of relapses, MRI activity, EDSS progression, treatment switch or sustained NEDA-3. We corroborate that CLAD decreases neuroaxonal damage in MS patients as determined by sNfL. However, sNfL at baseline and at 12 months failed to predict clinical and radiological treatment response in our real-world cohort. Long-term sNfL assessments in larger studies are essential to explore the predictive utility of sNfL in patients treated with immune reconstitution therapies.
Collapse
|
16
|
Buchmann A, Pirpamer L, Pinter D, Voortman M, Helmlinger B, Pichler A, Maceski AM, Benkert P, Bachmaier G, Ropele S, Reindl M, Leppert D, Kuhle J, Enzinger C, Khalil M. High serum neurofilament light chain levels correlate with brain atrophy and physical disability in multiple sclerosis. Eur J Neurol 2023; 30:1389-1399. [PMID: 36779855 DOI: 10.1111/ene.15742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/23/2022] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND AND PURPOSE Serum neurofilament light chain (sNfL) is a promising biomarker of neuroaxonal damage in persons with multiple sclerosis (pwMS). In cross-sectional studies, sNfL has been associated with disease activity and brain magnetic resonance imaging (MRI) changes; however, it is still unclear to what extent in particular high sNfL levels impact on subsequent disease evolution. METHODS sNfL was quantified by an ultrasensitive single molecule array (Simoa) in 199 pwMS (median age = 34.2 years, 64.3% female) and 49 controls. All pwMS underwent 3-T MRI to assess global and compartmental normalized brain volumes, T2-lesion load, and cortical mean thickness. Follow-up data and serum samples were available in 144 pwMS (median follow-up time = 3.8 years). Linear and binary logistic models were used to estimate the independent contribution of sNfL for changes in MRI and Expanded Disability Status Scale (EDSS). Age-corrected sNfL z-scores from a normative database of healthy controls were used for sensitivity analyses. RESULTS High sNfL levels at baseline were associated with atrophy measures of the whole brain (standardized beta coefficient βj = -0.352, p < 0.001), white matter (βj = -0.229, p = 0.007), thalamus (βj = -0.372, p = 0.004), and putamen (βj = -1.687, p = 0.012). pwMS with high levels of sNfL at baseline and follow-up had a greater risk of EDSS worsening (p = 0.007). CONCLUSIONS Already single time point elevation of sNfL has a distinct effect on brain volume changes over a short-term period, and repeated high levels of sNfL indicate accumulating physical disability. Serial assessment of sNfL may provide added value in the clinical management of pwMS.
Collapse
Affiliation(s)
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | | | | | - Aleksandra Maleska Maceski
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.,Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.,Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Gerhard Bachmaier
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - David Leppert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.,Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.,Multiple Sclerosis Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria.,Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Barro C, Healy BC, Liu Y, Saxena S, Paul A, Polgar-Turcsanyi M, Guttmann CR, Bakshi R, Kropshofer H, Weiner HL, Chitnis T. Serum GFAP and NfL Levels Differentiate Subsequent Progression and Disease Activity in Patients With Progressive Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2023; 10:10/1/e200052. [DOI: 10.1212/nxi.0000000000200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Background and ObjectivesNeurodegeneration and astrocytic activation are pathologic hallmarks of progressive multiple sclerosis (MS) and can be quantified by serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP). We investigated sNfL and sGFAP as tools for stratifying patients with progressive MS based on progression and disease activity status.MethodsWe leveraged our Comprehensive Longitudinal Investigation of MS at the Brigham and Women's Hospital (CLIMB) natural history study, which includes clinical, MRI data and serum samples collected over more than 20 years. We included patients with MS with a confirmed Expanded Disability Status Scale (EDSS) score ≥3 that corresponds with our classifier for patients at high risk of underlying progressive pathology. We analyzed sNfL and sGFAP within 6 months from the confirmed EDSS score ≥3 corresponding with our baseline visit. Patients who further developed 6-month confirmed disability progression (6mCDP) were classified as progressors. We further stratified our patients into active/nonactive based on new brain/spinal cord lesions or relapses in the 2 years before baseline or during follow-up. Statistical analysis on log-transformed sGFAP/sNfL assessed the baseline association with demographic, clinical, and MRI features and associations with future disability.ResultsWe included 257 patients with MS who had an average EDSS score of 4.0 and a median follow-up after baseline of 7.6 years. sNfL was higher in patients with disease activity in the 2 years before baseline (adjusted β = 1.21; 95% CI 1.04–1.42;p= 0.016), during the first 2 years of follow-up (adjusted β = 1.17; 95% CI = 1.01–1.36;p= 0.042). sGFAP was not increased in the presence of disease activity. Higher sGFAP levels, but not sNfL levels, were associated with higher risk of 6mCDP (adjusted hazard ratio [HR] = 1.71; 95% CI = 1.19–2.45;p= 0.004). The association was stronger in patients with low sNfL (adjusted HR = 2.44; 95% CI 1.32–4.52;p= 0.005) and patients who were nonactive in the 2 years prior or after the sample.DiscussionHigher levels of sGFAP correlated with subsequent progression, particularly in nonactive patients, whereas sNfL reflected acute disease activity in patients with MS at high risk of underlying progressive pathology. Thus, sGFAP and sNfL levels may be used to stratify patients with progressive MS for clinical research studies and clinical trials and may inform clinical care.
Collapse
|
18
|
Loonstra FC, de Ruiter LRJ, Koel-Simmelink MJA, Schoonheim MM, Strijbis EMM, Moraal B, Barkhof F, Uitdehaag BMJ, Teunissen C, Killestein J. Neuroaxonal and Glial Markers in Patients of the Same Age With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/2/e200078. [PMID: 36543540 PMCID: PMC9773420 DOI: 10.1212/nxi.0000000000200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES The specificity of novel blood biomarkers for multiple sclerosis (MS)-related neurodegeneration is unclear because neurodegeneration also occurs during normal aging. To understand which aspects of neurodegeneration the serum biomarkers neurofilament light (sNfL), serum glial fibrillary acidic protein (sGFAP), and serum contactin-1 (sCNTN1) reflect, we here explore their cross-sectional association with disability outcome measures and MRI volumes in a unique cohort of people with MS (PwMS) of the same age. METHODS sNfL, sGFAP (both singe-molecule array technology) and sCNTN1 (Luminex) were measured in serum samples of 288 PwMS and 125 healthy controls (HCs) of the Project Y cohort, a population-based cross-sectional study of PwMS born in the Netherlands in 1966 and age-matched HC. RESULTS sNfL (9.83 pg/mL [interquartile range {IQR}: 7.8-12.0]) and sGFAP (63.7 pg/mL [IQR: 48.5-84.5]) were higher in PwMS compared with HC (sNfL: 8.8 pg/mL [IQR: 7.0-10.5]; sGFAP: 51.7 pg/mL [IQR: 40.1-68.3]) (p < 0.001), whereas contactin-1 (7,461.3 pg/mL [IQR: 5,951.8-9,488.6]) did not significantly differ between PwMS compared with HC (7,891.2 pg/mL [IQR: 6,120.0-10,265.8]) (p = 0.068). sNfL and sGFAP levels were 1.2-fold higher in secondary progressive patients (SPMS) compared with relapsing remitting patients (p = 0.009 and p = 0.043). Stratified by MS subtype, no relations were seen for CNTN1, whereas sNfL and sGFAP correlated with the Expanded Disability Status Scale (ρ = 0.43 and ρ = 0.39), Nine-Hole Peg Test, Timed 25-Foot Walk Test, and Symbol Digit Modalities Test (average ρ = 0.38) only in patients with SPMS. Parallel to these clinical findings, correlations were only found for sNfL and sGFAP with MRI volumes. The strongest correlations were observed between sNfL and thalamic volume (ρ = -0.52) and between sGFAP with deep gray matter volume (ρ = - 0.56) in primary progressive patients. DISCUSSION In our cohort of patients of the same age, we report consistent correlations of sNfL and sGFAP with a range of metrics, especially in progressive MS, whereas contactin-1 was not related to clinical or MRI measures. This demonstrates the potential of sNfL and sGFAP as complementary biomarkers of neurodegeneration, reflected by disability, in progressive MS.
Collapse
Affiliation(s)
- Floor C Loonstra
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom.
| | - Lodewijk R J de Ruiter
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Marleen J A Koel-Simmelink
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Menno M Schoonheim
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Eva M M Strijbis
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Bastiaan Moraal
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Frederik Barkhof
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Bernard M J Uitdehaag
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Charlotte Teunissen
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Joep Killestein
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| |
Collapse
|
19
|
Valentino P, Malucchi S, Martire S, Bava CI, Capobianco MA, Bertolotto A. sNFL applicability as additional monitoring tool in natalizumab extended interval dosing regimen for RRMS patients. Mult Scler Relat Disord 2022; 67:104176. [PMID: 36126541 DOI: 10.1016/j.msard.2022.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Extended interval dosing (EID) of Natalizumab (NAT) has been proposed to reduce progressive multifocal leukoencephalopathy (PML) risk associated with standard interval dosing (SID) in people with multiple sclerosis (MS). Previous studies have suggested that NAT effectiveness is maintained in the great majority of patients who switch from SID to EID; monitoring of disease activity is currently based exclusively on clinical and MRI parameters. Frequent MRI are expensive and not always applicable, underlining the need for biological markers able to detect central nervous system lesions. Serum Neurofilament-light chain (sNFL) currently represents the most promising biomarker of disease activity, prognosis and treatment response in MS, and their clinical suitability is increasingly evident. The objective of the present study is to assess the applicability of sNFL as additional/alternative measure of treatment efficacy during EID regimen. METHODS We measured sNFL by Simoa technology in longitudinal samples from 63 Relapsing Remitting (RR) MS patients switched from SID to EID. INCLUSION CRITERIA diagnosis of RRMS, age 18-60 years; NAT SID for at least 12 months; NEDA-3 (no evidence of disease activity) for at least 12 months; availability of at least 2 serum samples collected 6 months apart. Patients' follow-up time during EID was at least 12 months and 2 blood samples were collected after at least 6 and 12 months. Clinical examination was performed before each infusion, while MRI 6 and 12 months after NAT initiation and according to PML risk during the whole study. RESULTS No patients showed clinical or MRI activity during the whole follow-up. sNFL levels measured during SID and EID were comparable, without significant difference between groups. The effect of EID on NFL levels did not show significant effects (LMM, p> 0.05) and sNFL levels did not vary with time during SID or EID protocols (LMM, p> 0.05). Intra-individual sNFL levels demonstrated overall stability during SID and EID (median CV=11% between SID and EID samples). According to our previously published reference values, sNFL levels were in the normal range in all samples, both during SID and EID. CONCLUSIONS Our results suggest that sNFL quantification can be used as an alternative/additional approach to MRI in managing individual patients. The present work provides a new clinical application of sNFL to monitor NAT efficacy.
Collapse
Affiliation(s)
- Paola Valentino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; CRESM Biobank, University Hospital San Luigi Gonzaga, Regione Gonzole 10, Orbassano 10043, Italy.
| | - Simona Malucchi
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Regione Gonzole 10, Orbassano 10043, Italy
| | - Serena Martire
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin 10100, Italy
| | - Cecilia Irene Bava
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Marco Alfonso Capobianco
- CRESM Biobank, University Hospital San Luigi Gonzaga, Regione Gonzole 10, Orbassano 10043, Italy; Department of Neurology, S. Croce e Carle Hospital, Via Michele Coppino, 26, Cuneo 12100, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Department of Neurology, Koelliker Hospital, C.so Galileo Ferraris, 247/255, Turin 10134, Italy
| |
Collapse
|
20
|
Barro C. Reader Response: Blood Neurofilament Light in Progressive Multiple Sclerosis: Post Hoc Analysis of 2 Randomized Controlled Trials. Neurology 2022; 99:630-631. [PMID: 36192183 DOI: 10.1212/wnl.0000000000201276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
van Lierop ZY, Noteboom S, Steenwijk MD, van Dam M, Toorop AA, van Kempen ZLE, Moraal B, Barkhof F, Uitdehaag BM, Schoonheim MM, Teunissen CE, Killestein J. Neurofilament-light and contactin-1 association with long-term brain atrophy in natalizumab-treated relapsing-remitting multiple sclerosis. Mult Scler 2022; 28:2231-2242. [PMID: 36062492 DOI: 10.1177/13524585221118676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite highly effective treatment strategies for patients with relapsing-remitting multiple sclerosis (RRMS), long-term neurodegeneration and disease progression are often considerable. Accurate blood-based biomarkers that predict long-term neurodegeneration are lacking. OBJECTIVE To assess the predictive value of serum neurofilament-light (sNfL) and serum contactin-1 (sCNTN1) for long-term magnetic resonance imaging (MRI)-derived neurodegeneration in natalizumab-treated patients with RRMS. METHODS sNfL and sCNTN1 were measured in an observational cohort of natalizumab-treated patients with RRMS at baseline (first dose) and at 3 months, Year 1, Year 2, and last follow-up (median = 5.2 years) of treatment. Disability progression was quantified using "EDSS-plus" criteria. Neurodegeneration was measured by calculating annualized percentage brain, ventricular, and thalamic volume change (PBVC, VVC, and TVC, respectively). Linear regression analysis was performed to identify longitudinal predictors of neurodegeneration. RESULTS In total, 88 patients (age = 37 ± 9 years, 75% female) were included, of whom 48% progressed. Year 1 sNfL level (not baseline or 3 months) was associated with PBVC (standardized (std.) β = -0.26, p = 0.013), VVC (standardized β = 0.36, p < 0.001), and TVC (standardized β = -0.24, p = 0.02). For sCNTN1, only 3-month level was associated with VVC (standardized β = -0.31, p = 0.002). CONCLUSION Year 1 (but not baseline) sNfL level was predictive for long-term brain atrophy in patients treated with natalizumab. sCNTN1 level did not show a clear predictive value.
Collapse
Affiliation(s)
- Zoë Ygj van Lierop
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Samantha Noteboom
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Martijn D Steenwijk
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Maureen van Dam
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alyssa A Toorop
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Zoé LE van Kempen
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Bastiaan Moraal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands/Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Bernard Mj Uitdehaag
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Williams T, Heslegrave A, Zetterberg H, Miszkiel KA, Barkhof F, Ciccarelli O, Brownlee WJ, Chataway J. The prognostic significance of early blood neurofilament light chain concentration and magnetic resonance imaging variables in relapse-onset multiple sclerosis. Brain Behav 2022; 12:e2700. [PMID: 35925940 PMCID: PMC9480937 DOI: 10.1002/brb3.2700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Improved prognostication remains vital in multiple sclerosis to inform personalized treatment approaches. Blood neurofilament light (bNfL) is a promising prognostic biomarker, but to what extent it provides additional information, independent of established MRI metrics, is yet to be established. METHODS We obtained all available bNfL data for 133 patients from a longitudinal observational cohort study. Patients were dichotomized into good or poor outcome groups based upon clinical and cognitive assessments performed 15 years after a clinically isolated syndrome. We performed longitudinal modeling of early NfL and MRI variables to examine differences between outcome groups. RESULTS The bNfL dataset was incomplete, with one to three (mean 1.5) samples available per participant. Within 3 months of onset, bNfL was similar between groups. The bNfL concentration subsequently decreased in those with a good outcome, and remained persistently elevated in those with a poor outcome. By year 5, NfL in the poor outcome group was approximately double that of those with a good outcome (14.58 [10.40-18.77] vs. 7.71 [6.39-9.04] pg/ml, respectively). Differences were reduced after adjustment for longitudinal changes in T2LV, but trends persisted for a greater rate of increase in NfL in those with a poor outcome, independent of T2LV. CONCLUSIONS This analysis requires replication in cohorts with more complete bNfL datasets, but suggests that persistently elevated blood NfL may be more common in patients with a poor long-term outcome. Persistent elevation of blood NfL may provide additional prognostic information not wholly accounted for by standard monitoring techniques.
Collapse
Affiliation(s)
- Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, University College London, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Katherine A Miszkiel
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Centre for Medical Image Computing (CMIC), Department of Computer Science, Faculty of Engineering Sciences, University College London, London, UK.,Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - Wallace J Brownlee
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
23
|
Lifestyle factors in multiple sclerosis disability progression and silent brain damage: A cross-sectional study. Mult Scler Relat Disord 2022; 65:104016. [DOI: 10.1016/j.msard.2022.104016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
|
24
|
Camara-Lemarroy C, Metz L, Kuhle J, Leppert D, Willemse E, Li DK, Traboulsee A, Greenfield J, Cerchiaro G, Silva C, Yong VW. Minocycline treatment in clinically isolated syndrome and serum NfL, GFAP, and metalloproteinase levels. Mult Scler 2022; 28:2081-2089. [PMID: 35848622 PMCID: PMC9574233 DOI: 10.1177/13524585221109761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: In the trial of Minocycline in Clinically Isolated Syndrome (MinoCIS), minocycline significantly reduced the risk of conversion to clinically definite multiple sclerosis (CDMS). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are emerging biomarkers in MS, and minocycline modulates matrix metalloproteinases (MMPs). Objective: To assess the value of blood NfL and GFAP as a biomarker of baseline and future disease activity and its utility to monitor treatment response in minocycline-treated patients with clinically isolated syndrome (CIS). Methods: We measured NfL, GFAP, and MMPs in blood samples from 96 patients with CIS from the MinoCIS study and compared biomarkers with clinical and radiologic characteristics and outcome. Results: At baseline, NfL levels correlated with T2 lesion load and number of gadolinium-enhancing lesions. Baseline NfL levels predicted conversion into CDMS at month 6. GFAP levels at baseline were correlated with T2 lesion volume. Minocycline treatment significantly increased NfL levels at 3 months but not at 6 months, and decreased GFAP levels at month 6. Minocycline decreased MMP-7 concentrations at month 1. Discussion: Blood NfL levels are associated with measures of disease activity in CIS and have prognostic value. Minocycline increased NfL levels at month 3, but reduced GFAP and MMP-7 levels.
Collapse
Affiliation(s)
- Carlos Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada/Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada/School of Medicine, UANL, Monterrey, Mexico
| | - Luanne Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada/Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Eline Willemse
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Kb Li
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada/Department of Radiology, The University of British Columbia, Vancouver, BC, Canada
| | - Anthony Traboulsee
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Jamie Greenfield
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graziela Cerchiaro
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Claudia Silva
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada/Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada/Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Fader KA, Pardo ID, Kovi RC, Somps CJ, Wang HH, Vaidya VS, Ramaiah SK, Sirivelu MP. Circulating neurofilament light chain as a promising biomarker of AAV-induced dorsal root ganglia toxicity in nonclinical toxicology species. Mol Ther Methods Clin Dev 2022; 25:264-277. [PMID: 35505662 PMCID: PMC9024379 DOI: 10.1016/j.omtm.2022.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV)-induced dorsal root ganglia (DRG) toxicity has been observed in several nonclinical species, where lesions are characterized by neuronal degeneration/necrosis, nerve fiber degeneration, and mononuclear cell infiltration. As AAV vectors become an increasingly common platform for novel therapeutics, non-invasive biomarkers are needed to better characterize and manage the risk of DRG neurotoxicity in both nonclinical and clinical studies. Based on biological relevance, reagent availability, antibody cross-reactivity, DRG protein expression, and assay performance, neurofilament light chain (NF-L) emerged as a promising biomarker candidate. Dose- and time-dependent changes in NF-L were evaluated in male Wistar Han rats and cynomolgus monkeys following intravenous or intrathecal AAV injection, respectively. NF-L profiles were then compared against microscopic DRG lesions on day 29 post-dosing. In animals exhibiting DRG toxicity, plasma/serum NF-L was strongly associated with the severity of neuronal degeneration/necrosis and nerve fiber degeneration, with elevations beginning as early as day 8 in rats (≥5 × 1013 vg/kg) and day 14 in monkeys (≥3.3 × 1013 vg/dose). Consistent with the unique positioning of DRGs outside the blood-brain barrier, NF-L in cerebrospinal fluid was only weakly associated with DRG findings. In summary, circulating NF-L is a promising biomarker of AAV-induced DRG toxicity in nonclinical species.
Collapse
Affiliation(s)
- Kelly A Fader
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Groton, CT 06340, USA
| | | | - Ramesh C Kovi
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Pfizer Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Christopher J Somps
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Groton, CT 06340, USA
| | - Helen Hong Wang
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Pfizer Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Vishal S Vaidya
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Pfizer Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Shashi K Ramaiah
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Pfizer Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Madhu P Sirivelu
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Pfizer Inc., 300 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
26
|
Lie IA, Kaçar S, Wesnes K, Brouwer I, Kvistad SS, Wergeland S, Holmøy T, Midgard R, Bru A, Edland A, Eikeland R, Gosal S, Harbo HF, Kleveland G, Sørenes YS, Øksendal N, Varhaug KN, Vedeler CA, Barkhof F, Teunissen CE, Bø L, Torkildsen Ø, Myhr KM, Vrenken H. Serum neurofilament as a predictor of 10-year grey matter atrophy and clinical disability in multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328568. [PMID: 35649699 PMCID: PMC9304101 DOI: 10.1136/jnnp-2021-328568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The predictive value of serum neurofilament light chain (sNfL) on long-term prognosis in multiple sclerosis (MS) is still unclear. OBJECTIVE Investigate the relation between sNfL levels over a 2-year period in patients with relapsing-remitting MS, and clinical disability and grey matter (GM) atrophy after 10 years. METHODS 85 patients, originally enrolled in a multicentre, randomised trial of ω-3 fatty acids, participated in a 10-year follow-up visit. sNfL levels were measured by Simoa quarterly until month 12, and then at month 24. The appearance of new gadolinium-enhancing (Gd+) lesions was assessed monthly between baseline and month 9, and then at months 12 and 24. At the 10-year follow-up visit, brain atrophy measures were obtained using FreeSurfer. RESULTS Higher mean sNfL levels during early periods of active inflammation (Gd+ lesions present or recently present) predicted lower total (β=-0.399, p=0.040) and deep (β=-0.556, p=0.010) GM volume, lower mean cortical thickness (β=-0.581, p=0.010) and higher T2 lesion count (β=0.498, p=0.018). Of the clinical outcomes, higher inflammatory sNfL levels were associated with higher disability measured by the dominant hand Nine-Hole Peg Test (β=0.593, p=0.004). Mean sNfL levels during periods of remission (no Gd+ lesions present or recently present) did not predict GM atrophy or disability progression. CONCLUSION Higher sNfL levels during periods of active inflammation predicted more GM atrophy and specific aspects of clinical disability 10 years later. The findings suggest that subsequent long-term GM atrophy is mainly due to neuroaxonal degradation within new lesions.
Collapse
Affiliation(s)
- Ingrid Anne Lie
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sezgi Kaçar
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kristin Wesnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Neurology, St. Olav's University Hospital, Trondheim, Norway
| | - Iman Brouwer
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Silje S Kvistad
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stig Wergeland
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Norwegian Multiple Sclerosis Registry and Biobank, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Trygve Holmøy
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Rune Midgard
- Department of Neurology, Molde Hospital, Molde, Norway
| | - Alla Bru
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Astrid Edland
- Department of Neurology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Randi Eikeland
- Department of Research and Education, Sørlandet Hospital Trust, Kristiansand, Norway
- Faculty of Health and Sport Science, University of Agder, Grimstad, Norway
| | - Sonia Gosal
- Department of Neurology, Østfold Hospital Kalnes, Grålum, Norway
| | - Hanne F Harbo
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Grethe Kleveland
- Department of Neurology, Innlandet Hospital Trust, Lillehammer, Norway
| | | | - Nina Øksendal
- Department of Neurology, Nordland Hospital Trust, Bodø, Norway
| | - Kristin N Varhaug
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Christian A Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Lars Bø
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Øivind Torkildsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is highly heterogenic disorder with respect to clinical course, diagnosis, and treatment response. There is an urgent need to search for simply and reliable fluid body biomarker which would assist the diagnosis and prediction of clinical and treatment prognosis. RECENT FINDINGS 'Traditional' MS biomarkers, with exception of cerebrospinal fluid oligoclonal bands, still are having limited clinical value. Therefore, there is growing interest in novel molecules and ingredients. The most robust results have been generated with regard to cerebrospinal fluid and serum levels of neurofilament light chains (NfL). However, there are still some limitations related to specificity of NfL which delays its use in everyday practice. We present a new approach to search for biomarkers involving extracellular RNA, particularly microRNA (miRNA), and small extracellular vesicles. MiRNA represents an important molecular mechanism influencing gene expression, including those involved in MS pathogenesis and extracellular vesicles transfer multiple cargo, including myelin molecules from parental cells of central nervous system to the long-distance targets. SUMMARY MiRNAs which control gene expression in cells involved in autoimmune processes in MS as well as extracellular vesicles transferring myelin content might generate a new promising categories of biomarkers of MS.
Collapse
|
28
|
LoPresti P. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10051077. [PMID: 35625814 PMCID: PMC9138270 DOI: 10.3390/biomedicines10051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
29
|
Masanneck L, Rolfes L, Regner-Nelke L, Willison A, Räuber S, Steffen F, Bittner S, Zipp F, Albrecht P, Ruck T, Hartung HP, Meuth SG, Pawlitzki M. Detecting ongoing disease activity in mildly affected multiple sclerosis patients under first-line therapies. Mult Scler Relat Disord 2022; 63:103927. [DOI: 10.1016/j.msard.2022.103927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
|
30
|
Leppert D, Kropshofer H, Häring DAA, Dahlke F, Patil A, Meinert R, Tomic D, Kappos L, Kuhle J. Blood Neurofilament Light in Progressive Multiple Sclerosis: Post Hoc Analysis of 2 Randomized Controlled Trials. Neurology 2022; 98:e2120-e2131. [PMID: 35379762 DOI: 10.1212/wnl.0000000000200258] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the potential of plasma neurofilament light (pNfL) as a biomarker of disease progression and treatment response in progressive multiple sclerosis (PMS) with and without acute disease activity. METHODS Post hoc blinded analysis of pNfL levels in two placebo-controlled, phase 3 studies in secondary progressive MS (SPMS; EXPAND) and primary progressive MS (PPMS; INFORMS) using siponimod and fingolimod, respectively, as active compounds. pNfL levels were quantified using a single molecule array ("Homebrew" Simoa) immunoassay from stored EDTA plasma samples of all patients who consented for exploratory biomarker analysis in either study; pNfL levels were divided into high (≥30 pg/mL) and low (<30 pg/mL) at baseline (BL). We investigated the association of pNfL levels with disability progression, cognitive decline and brain atrophy, and their sensitivity to indicate treatment response vis-à-vis clinical measures. RESULTS We analyzed pNfL in 4185 samples from 1452 SPMS patients and 1172 samples from 378 PPMS patients. BL pNfL levels were higher in SPMS (geomean 32.1pg/mL) than in PPMS (22.0pg/mL; p<0.0001) patients. In both studies, higher BL pNfL levels were associated with older age, higher EDSS score, more Gd+ lesions, and higher T2 lesion load (all p<0.05). Independent of treatment, high versus low BL pNfL levels were associated with significantly higher risks of confirmed 3-month (SPMS [32%], HR [95%CI]: 1.32 [1.09;1.61]; PPMS [49%], 1.49 [1.05;2.12]) and 6-month disability progression (SPMS [26%], 1.26 [1.01;1.57]; PPMS [48%], 1.48 [1.01;2.17]), earlier wheelchair dependence (SPMS [50%], 1.50 [0.96;2.34]; PPMS [197%], 2.97 [1.44;6.10]), cognitive decline (SPMS [41%], 1.41 [1.09;1.84]) and higher rates of brain atrophy (mean change at month [M]24: SPMS, -0.92; PPMS, -1.39). BL pNfL levels were associated with future disability progression and the degree of brain atrophy regardless of presence or absence of acute disease activity (gadolinium-enhancing lesions or recent occurrence of relapses before BL). pNfL levels were lower in patients treated with siponimod or fingolimod versus placebo-treated patients and higher in those having experienced disability progression. CONCLUSION pNfL was associated with future clinical and radiological disability progression features at the group level. pNfL was reduced by treatment and may be a meaningful outcome measure in PMS studies.
Collapse
Affiliation(s)
- David Leppert
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Ludwig Kappos
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
van der Post J, van Genderen JG, Heijst JA, Blokhuis C, Teunissen CE, Pajkrt D. Plasma Neurofilament Light Is Not Associated with Ongoing Neuroaxonal Injury or Cognitive Decline in Perinatally HIV Infected Adolescents: A Brief Report. Viruses 2022; 14:v14040671. [PMID: 35458401 PMCID: PMC9030750 DOI: 10.3390/v14040671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Despite combination antiretroviral therapy (cART), adolescents with perinatally acquired human immunodeficiency virus (PHIV) exhibit cerebral injury and cognitive impairment. Plasma neurofilament light (pNfL) is a biomarker identified as a promising marker associated with neuroaxonal injury and cognitive impairment. To investigate whether cerebral injury in cART-treated PHIV adolescents is persistent, we longitudinally measured pNfL. We included 21 PHIV adolescents and 23 controls, matched for age, sex, ethnic origin and socio-economic status. We measured pNfL in both groups and CSF NfL in PHIV adolescents using a highly sensitive Single Molecule Array (Simoa) immunoassay. We compared pNfL between groups over time with a mean follow-up time of 4.6 years and assessed its association with MRI outcomes, cognitive function and HIV-related characteristics using linear mixed models. The median age was 17.5 years (15.5–20.7) and 16.4 years (15.8–19.6) at the second assessment for PHIV adolescents and controls, respectively. We found comparable pNfL (PHIV vs. controls) at the first (2.9 pg/mL (IQR 2.0–3.8) and 3.0 pg/mL (IQR 2.3–3.5), p = 0.499) and second assessment (3.3 pg/mL (IQR 2.5–4.1) and 3.0 pg/mL (IQR 2.5–3.7), p = 0.658) and observed no longitudinal change (coefficient; −0.19, 95% −0.5 to 0.1, p = 0.244). No significant associations were found between pNfL and HIV- or cART-related variables, MRI outcomes or cognitive function. We observed low CSF NfL concentrations at the baseline in PHIV adolescents (100.8 pg/mL, SD = 47.5). Our results suggest that there is no ongoing neuroaxonal injury in cART-treated PHIV adolescents and that the neuroaxonal injury is acquired in the past, emphasizing the importance of early cART to mitigate HIV-related neuroaxonal damage.
Collapse
Affiliation(s)
- Julie van der Post
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
- Correspondence: ; Tel.: +31-630-595-488
| | - Jason G. van Genderen
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| | - Johannes A. Heijst
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands; (J.A.H.); (C.E.T.)
| | - Charlotte Blokhuis
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands; (J.A.H.); (C.E.T.)
| | - Dasja Pajkrt
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| |
Collapse
|
32
|
Bridel C, Killestein J, Teunissen C. Author Response: Serum Neurofilament Light Association With Progression in Natalizumab-Treated Patients With Relapsing-Remitting Multiple Sclerosis. Neurology 2022; 98:471. [PMID: 35288476 DOI: 10.1212/wnl.0000000000200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Kropshofer H, Häring DA, Kappos L, Leppert D, Kuhle J. Reader Response: Serum Neurofilament Light Association With Progression in Natalizumab-Treated Patients With Relapsing-Remitting Multiple Sclerosis. Neurology 2022; 98:470-471. [PMID: 35288475 DOI: 10.1212/wnl.0000000000200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Gafson AR, Jiang X, Shen C, Kapoor R, Zetterberg H, Fox RJ, Belachew S. Serum Neurofilament Light and Multiple Sclerosis Progression Independent of Acute Inflammation. JAMA Netw Open 2022; 5:e2147588. [PMID: 35133438 PMCID: PMC8826177 DOI: 10.1001/jamanetworkopen.2021.47588] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This cohort study investigates serum neurofilament light concentration as a biomarker associated with disability progression in multiple sclerosis in the absence of acute inflammation.
Collapse
Affiliation(s)
| | | | - Changyu Shen
- Biogen Digital Health, Biogen, Cambridge, Massachusetts
| | - Raj Kapoor
- Department of Neuroinflammation, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, United Kingdom
| | - Robert J. Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
35
|
Thompson AJ, Carroll W, Ciccarelli O, Comi G, Cross A, Donnelly A, Feinstein A, Fox RJ, Helme A, Hohlfeld R, Hyde R, Kanellis P, Landsman D, Lubetzki C, Marrie RA, Morahan J, Montalban X, Musch B, Rawlings S, Salvetti M, Sellebjerg F, Sincock C, Smith KE, Strum J, Zaratin P, Coetzee T. Charting a global research strategy for progressive MS-An international progressive MS Alliance proposal. Mult Scler 2021; 28:16-28. [PMID: 34850641 PMCID: PMC8688983 DOI: 10.1177/13524585211059766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Progressive forms of multiple sclerosis (MS) affect more than 1 million individuals globally. Recent approvals of ocrelizumab for primary progressive MS and siponimod for active secondary progressive MS have opened the therapeutic door, though results from early trials of neuroprotective agents have been mixed. The recent introduction of the term 'active' secondary progressive MS into the therapeutic lexicon has introduced potential confusion to disease description and thereby clinical management. OBJECTIVE This paper reviews recent progress, highlights continued knowledge and proposes, on behalf of the International Progressive MS Alliance, a global research strategy for progressive MS. METHODS Literature searches of PubMed between 2015 and May, 2021 were conducted using the search terms "progressive multiple sclerosis", "primary progressive multiple sclerosis", "secondary progressive MS". Proposed strategies were developed through a series of in-person and virtual meetings of the International Progressive MS Alliance Scientific Steering Committee. RESULTS Sustaining and accelerating progress will require greater understanding of underlying mechanisms, identification of potential therapeutic targets, biomarker discovery and validation, and conduct of clinical trials with improved trial design. Encouraging developments in symptomatic and rehabilitative interventions are starting to address ongoing challenges experienced by people with progressive MS. CONCLUSION We need to manage these challenges and realise the opportunities in the context of a global research strategy, which will improve quality of life for people with progressive MS.
Collapse
Affiliation(s)
| | | | | | | | - Anne Cross
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | - Reinhard Hohlfeld
- Munich Cluster for Systems Neurology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | | | | | - Xavier Montalban
- Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy/Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Finn Sellebjerg
- Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| | | | | | - Jon Strum
- International Progressive MS Alliance, Los Angeles, CA, USA
| | | | | |
Collapse
|
36
|
Goldschmidt C, Fox RJ. Relationship Between Serum Neurofilament Light and Multiple Sclerosis Disability Progression: Clear as Mud. Neurology 2021; 97:887-888. [PMID: 34504029 DOI: 10.1212/wnl.0000000000012755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Carolyn Goldschmidt
- From the Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, OH
| | - Robert J Fox
- From the Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, OH.
| |
Collapse
|
37
|
van Lierop ZY, Wieske L, Koel-Simmelink MJ, Chatterjee M, Dekker I, Leurs CE, Willemse EA, Moraal B, Barkhof F, Eftimov F, Uitdehaag BM, Killestein J, Teunissen CE. Serum contactin-1 as a biomarker of long-term disease progression in natalizumab-treated multiple sclerosis. Mult Scler 2021; 28:102-110. [PMID: 33890520 PMCID: PMC8689420 DOI: 10.1177/13524585211010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Natalizumab treatment provides a model for non-inflammation-induced disease progression in multiple sclerosis (MS). OBJECTIVE To study serum contactin-1 (sCNTN1) as a novel biomarker for disease progression in natalizumab-treated relapsing-remitting MS (RRMS) patients. METHODS Eighty-nine natalizumab-treated RRMS patients with minimum follow-up of 3 years were included. sCNTN1 was analyzed at baseline (before natalizumab initiation), 3, 12, 24 months (M) and last follow-up (median 5.2 years) and compared to 222 healthy controls (HC) and 15 primary progressive MS patients (PPMS). Results were compared between patients with progressive, stable, or improved disability according to EDSS-plus criteria. RESULTS Median sCNTN1 levels (ng/mL,) in RRMS (baseline: 10.7, 3M: 9.7, 12M: 10.4, 24M: 10.8; last follow-up: 9.7) were significantly lower compared to HC (12.5; p ⩽ 0.001). It was observed that 48% of patients showed progression during follow-up, 11% improved, and 40% remained stable. sCNTN1 levels were significantly lower in progressors both at baseline and at 12M compared to non-progressors. A 1 ng/mL decrease in baseline sCNTN1 was consistent with an odds ratio of 1.23 (95% confidence interval 1.04-1.45) (p = 0.017) for progression during follow-up. CONCLUSION Lower baseline sCNTN1 concentrations were associated with long-term disability progression during natalizumab treatment, making it a possible blood-based prognostic biomarker for RRMS.
Collapse
Affiliation(s)
- Zoë Ygj van Lierop
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam UMC, Academisch Medisch Centrum, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marleen Ja Koel-Simmelink
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Neurochemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Madhurima Chatterjee
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Neurochemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Iris Dekker
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands/Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Cyra E Leurs
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eline Aj Willemse
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Neurochemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bastiaan Moraal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands/Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam UMC, Academisch Medisch Centrum, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bernhard Mj Uitdehaag
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Neurochemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|