1
|
Ng S, Duffau H. Brain Plasticity Profiling as a Key Support to Therapeutic Decision-Making in Low-Grade Glioma Oncological Strategies. Cancers (Basel) 2023; 15:3698. [PMID: 37509359 PMCID: PMC10378506 DOI: 10.3390/cancers15143698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The ability of neural circuits to compensate for damage to the central nervous system is called postlesional plasticity. In diffuse low-grade gliomas (LGGs), a crosstalk between the brain and the tumor activates modulations of plasticity, as well as tumor proliferation and migration, by means of paracrine and electrical intercommunications. Such adaptative mechanisms have a major impact on the benefits and risks of oncological treatments but are still disregarded by current neuro-oncological guidelines. In this review, the authors first aimed to highlight clinical, radiological, and oncological markers that robustly reflect the plasticity potentials and limitations in LGG patients, including the location of the tumor and the degree of critical white matter tract infiltration, the velocity of tumor expansion, and the reactional changes of neuropsychological performances over time. Second, the interactions between the potential/limitations of cerebral plasticity and the efficacy/tolerance of treatment options (i.e., surgery, chemotherapy, and radiotherapy) are reviewed. Finally, a longitudinal and multimodal treatment approach accounting for the evolutive profiles of brain plasticity is proposed. Such an approach integrates personalized predictive models of plasticity potentials with a step-by-step therapeutic decision making and supports onco-functional balanced strategies in patients with LGG, with the ultimate aim of optimizing overall survival and quality of life.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, Centre National de le Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale 1191, 34094 Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, Centre National de le Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale 1191, 34094 Montpellier, France
| |
Collapse
|
2
|
Duffau H. A Personalized Longitudinal Strategy in Low-Grade Glioma Patients: Predicting Oncological and Neural Interindividual Variability and Its Changes over Years to Think One Step Ahead. J Pers Med 2022; 12:jpm12101621. [PMID: 36294760 PMCID: PMC9604939 DOI: 10.3390/jpm12101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Diffuse low-grade glioma (LGG) is a rare cerebral cancer, mostly involving young adults with an active life at diagnosis. If left untreated, LGG widely invades the brain and becomes malignant, generating neurological worsening and ultimately death. Early and repeat treatments for this incurable tumor, including maximal connectome-based surgical resection(s) in awake patients, enable postponement of malignant transformation while preserving quality of life owing to constant neural network reconfiguration. Due to considerable interindividual variability in terms of LGG course and consecutive cerebral reorganization, a multistage longitudinal strategy should be tailored accordingly in each patient. It is crucial to predict how the glioma will progress (changes in growth rate and pattern of migration, genetic mutation, etc.) and how the brain will adapt (changes in patterns of spatiotemporal redistribution, possible functional consequences such as epilepsy or cognitive decline, etc.). The goal is to anticipate therapeutic management, remaining one step ahead in order to select the optimal (re-)treatment(s) (some of them possibly kept in reserve), at the appropriate time(s) in the evolution of this chronic disease, before malignization and clinical worsening. Here, predictive tumoral and non-tumoral factors, and their ever-changing interactions, are reviewed to guide individual decisions in advance based on patient-specific markers, for the treatment of LGG.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av. Augustin Fliche, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors”, National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France
| |
Collapse
|
3
|
Duffau H. Repeated Awake Surgical Resection(s) for Recurrent Diffuse Low-Grade Gliomas: Why, When, and How to Reoperate? Front Oncol 2022; 12:947933. [PMID: 35865482 PMCID: PMC9294369 DOI: 10.3389/fonc.2022.947933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Early maximal surgical resection is the first treatment in diffuse low-grade glioma (DLGG), because the reduction of tumor volume delays malignant transformation and extends survival. Awake surgery with intraoperative mapping and behavioral monitoring enables to preserve quality of life (QoL). However, because of the infiltrative nature of DLGG, relapse is unavoidable, even after (supra)total resection. Therefore, besides chemotherapy and radiotherapy, the question of reoperation(s) is increasingly raised, especially because patients with DLGG usually enjoy a normal life with long-lasting projects. Here, the purpose is to review the literature in the emerging field of iterative surgeries in DLGG. First, long-term follow-up results showed that patients with DLGG who underwent multiple surgeries had an increased survival (above 17 years) with preservation of QoL. Second, the criteria guiding the decision to reoperate and defining the optimal timing are discussed, mainly based on the dynamic intercommunication between the glioma relapse (including its kinetics and pattern of regrowth) and the reactional cerebral reorganization—i.e., mechanisms underpinning reconfiguration within and across neural networks to enable functional compensation. Third, how to adapt medico-surgical strategy to this individual spatiotemporal brain tumor interplay is detailed, by considering the perpetual changes in connectome. These data support early reoperation in recurrent DLGG, before the onset of symptoms and before malignant transformation. Repeat awake resection(s) should be integrated in a global management including (neo)adjuvant medical treatments, to enhance long-lasting functional and oncological outcomes. The prediction of potential and limitation of neuroplasticity at each step of the disease must be improved to anticipate personalized multistage therapeutic attitudes.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors”, National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, Montpellier, France
- *Correspondence: Hugues Duffau,
| |
Collapse
|
4
|
Lombard A, Duffau H. Sexual Dysfunction of Patients with Diffuse Low-Grade Glioma: A Qualitative Review of a Neglected Concern. Cancers (Basel) 2022; 14:cancers14123025. [PMID: 35740690 PMCID: PMC9221288 DOI: 10.3390/cancers14123025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Patients suffering from diffuse Low-Grade Glioma (LGG) are usually young adults and present long life expectancy thanks to multimodal therapeutic management. In this context, the preservation of quality of life (QoL) is essential, and sexual health is part of it. We reviewed here the current knowledge about sexual dysfunction in LGG patients. We highlighted how this issue has been largely neglected, despite an incidence from 44 to 62% in the rare series of the literature. Thus, there is a need to assess more systematically the occurrence of SD in clinical routine in order to adapt cancer treatments accordingly, to manage actively these troubles, and finally to improve patients’ QoL in the long run. Abstract Diffuse low-grade gliomas (LGG) commonly affect young adults and display a slow evolution, with a life expectancy that can surpass 15 years, thanks to multimodal therapeutic management. Therefore, preservation of quality of life (QoL), including sexual health, is mandatory. We systematically searched available medical databases of Pubmed, Cochrane, and Scopus for studies that reported data on sexual activity or dysfunction (SD) in LGG patients. We analyzed results to determine incidence of SD and its association with QoL in this population. Three studies focused on SD incidence in patients presenting specifically LGG, or brain tumors including LGG. They comprised 124 brain tumor patients, including 62 LGG, with SD incidence ranging from 44 to 63%. SD was reported by more than 50% of interrogated women in the three studies. Regarding QoL, two out of the three studies found significant associations between SD and alterations of QoL parameters, particularly in the field of social and functional wellbeing. Finally, we discussed those results regarding methods of evaluation, inherent biases, and therapeutic implications regarding antiseizure medications and also planning of surgery, chemo-, and radiotherapy. Our review showed that SD is highly prevalent but still poorly studied in LGG patients. As those patients are usually young and enjoy an active life, there is a need to assess more systematically the occurrence of SD in clinical routine, in order to adapt cancer treatments accordingly, to manage actively these troubles, and finally to improve patients’ QoL in the long run.
Collapse
Affiliation(s)
- Arnaud Lombard
- Department of Neurosurgery, Centre Hospitalier Universitaire of Liège, 4000 Liège, Belgium;
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, 4032 Liège, Belgium
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, 34295 Montpellier, France
- Team “Neuroplasticity, Stem Cells and Glial Tumors”, Institute of Functional Genomics, INSERM U-1191, University of Montpellier, 34090 Montpellier, France
- Correspondence:
| |
Collapse
|
5
|
Duffau H, Ng S, Lemaitre AL, Moritz-Gasser S, Herbet G. Constant Multi-Tasking With Time Constraint to Preserve Across-Network Dynamics Throughout Awake Surgery for Low-Grade Glioma: A Necessary Step to Enable Patients Resuming an Active Life. Front Oncol 2022; 12:924762. [PMID: 35712489 PMCID: PMC9196728 DOI: 10.3389/fonc.2022.924762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/18/2022] Open
Abstract
Awake surgery for brain gliomas improves resection while minimizing morbidity. Although intraoperative mapping was originally used to preserve motor and language functions, the considerable increase of life expectancy, especially in low-grade glioma, resulted in the need to enhance patients’ long-term quality of life. If the main goal of awake surgery is to resume normal familial and socio-professional activities, preventing hemiparesis and aphasia is not sufficient: cognitive and emotional functions must be considered. To monitor higher-order functions, e.g., executive control, semantics or mentalizing, further tasks were implemented into the operating theater. Beyond this more accurate investigation of function-specific neural networks, a better exploration of the inter-system communication is required. Advances in brain connectomics led to a meta-network perspective of neural processing, which emphasizes the pivotal role of the dynamic interplay between functional circuits to allow complex and flexible, goal-directed behaviors. Constant multi-tasking with time constraint in awake patients may be proposed during intraoperative mapping, since it provides a mirror of the (dys)synchronization within and across neural networks and it improves the sensitivity of behavioral monitoring by increasing cognitive demand throughout the resection. Electrical mapping may hamper the patient to perform several tasks simultaneously whereas he/she is still capable to achieve each task in isolation. Unveiling the meta-network organization during awake mapping by using a more ecological multi-demand testing, more representative of the real-life conditions, constitutes a reliable way to tailor the surgical onco-functional balance based upon the expectations of each patient, enabling him/her to resume an active life with long-lasting projects.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France
| | - Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| |
Collapse
|