1
|
Maschio M, Perversi F, Maialetti A. Brain tumor-related epilepsy: an overview on neuropsychological, behavioral, and quality of life issues and assessment methodology. Front Neurol 2024; 15:1480900. [PMID: 39722690 PMCID: PMC11668670 DOI: 10.3389/fneur.2024.1480900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Brain tumor-related epilepsy (BTRE) is a rare disease in which brain tumor (BT) and epilepsy overlap simultaneously and can have a negative impact on a patient's neuropsychological, behavioral, and quality of life (QoL) spheres. In this review we (a) addressed the main neuropsychological, behavioral, and QoL issues that may occur in BTRE patients, (b) described how BT, BTRE, and their respective treatments can impact these domains, and (c) identified tools and standardized evaluation methodologies specific for BTRE patients. Neuropsychological disorders and behavioral issues can be direct consequences of BTRE and all related treatments, such as surgery, anti-cancer and anti-seizure medication, corticosteroids, etc., which can alter the structure of specific brain areas and networks, and by emotional aspects reactive to BTRE diagnosis, including the possible loss of autonomy, poor prognosis, and fear of death. Unfortunately, it seems there is a lack of uniformity in assessment methodologies, such as the administration of different batteries of neuropsychological tests, different times, frames, and purposes. Further research is needed to establish causality and deepen our understanding of the interplay between all these variables and our intervention in terms of diagnosis, treatment, psychosocial assessment, and their timing. We propose that the care of these patients to rely on the concepts of "BTRE-induced disability" and "biopsychosocial model" of BTRE, to prompt healthcare providers to handle and monitor BTRE-related psychological and social aspects, as to maintain the patient's best possible QoL.
Collapse
Affiliation(s)
- Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuro-oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Andrea Maialetti
- Center for Tumor-Related Epilepsy, UOSD Neuro-oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
2
|
Ehara T, Ohka F, Motomura K, Saito R. Epilepsy in Patients with Gliomas. Neurol Med Chir (Tokyo) 2024; 64:253-260. [PMID: 38839295 PMCID: PMC11304448 DOI: 10.2176/jns-nmc.2023-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/02/2024] [Indexed: 06/07/2024] Open
Abstract
Brain tumor-related epilepsy (BTRE) is a complication that significantly impairs the quality of life and course of treatment of patients with brain tumors. Several recent studies have shed further light on the mechanisms and pathways by which genes and biological molecules in the tumor microenvironment can cause epilepsy. Moreover, epileptic seizures have been found to promote the growth of brain tumors, making the control of epilepsy a critical factor in treating brain tumors. In this study, we summarize the previous research and recent findings concerning BTRE. Expectedly, a deeper understanding of the underlying genetic and molecular mechanisms leads to safer and more effective treatments for suppressing epileptic symptoms and tumor growth.
Collapse
Affiliation(s)
- Takuro Ehara
- Department of Neuro-Oncology/Neurosurgery, International Medical Center, Saitama Medical University
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
| |
Collapse
|
3
|
Maciel CB, Busl KM. Neuro-oncologic Emergencies. Continuum (Minneap Minn) 2024; 30:845-877. [PMID: 38830073 DOI: 10.1212/con.0000000000001435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Neuro-oncologic emergencies have become more frequent as cancer remains one of the leading causes of death in the United States, second only to heart disease. This article highlights key aspects of epidemiology, diagnosis, and management of acute neurologic complications in primary central nervous system malignancies and systemic cancer, following three thematic classifications: (1) complications that are anatomically or intrinsically tumor-related, (2) complications that are tumor-mediated, and (3) complications that are treatment-related. LATEST DEVELOPMENTS The main driver of mortality in patients with brain metastasis is systemic disease progression; however, intracranial hypertension, treatment-resistant seizures, and overall decline due to increased intracranial burden of disease are the main factors underlying neurologic-related deaths. Advances in the understanding of tumor-specific characteristics can better inform risk stratification of neurologic complications. Following standardized grading and management algorithms for neurotoxic syndromes related to newer immunologic therapies is paramount to achieving favorable outcomes. ESSENTIAL POINTS Neuro-oncologic emergencies span the boundaries of subspecialties in neurology and require a broad understanding of neuroimmunology, neuronal hyperexcitability, CSF flow dynamics, intracranial compliance, and neuroanatomy.
Collapse
|
4
|
Zhai W, Yu Q, Wu H. The efficacy and safety of novel antiepileptic drugs in treatment of epilepsy of patients with brain tumors. Front Neurol 2024; 15:1344775. [PMID: 38523608 PMCID: PMC10958780 DOI: 10.3389/fneur.2024.1344775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Objective This meta-analysis aimed to assess the effectiveness and safety of novel antiepileptic drugs (AEDs) in treating epilepsy in patients with brain tumors (BTRE). Methods A search was conducted on PubMed, EMBASE, Web of Science, and the Cochrane Library from inception to February 2023, with English language restriction. Results In this meta-analysis, 18 clinical trials involving 755 BTRE patients were included to assess the efficacy and safety of novel AEDs in BTRE treatment. At the last follow-up, a ≥50% reduction in seizure frequency was experienced by 72% of patients (random-effects model, 95% CI = 0.64-0.78) using novel AEDs. At the last follow-up, seizure freedom was experienced by 34% of patients (random-effects model, 95% CI = 0.28-0.41) using novel AEDs. The pooled incidence of AEs was found to be 19% (95% CI: 13%-26%), with a withdrawal rate due to adverse effects of only 3%. Comparable efficacy and incidence of adverse effects were observed between lacosamide and perampanel. Conclusion This meta-analysis suggests that novel antiepileptic drugs are deemed effective for seizure control in brain tumor patients, particularly when used as adjunctive therapy. Although lacosamide and perampanel received more focus in studies, no significant difference was observed in the efficacy and adverse reactions of these two drugs in seizure control. Further randomized controlled trials are deemed necessary to validate our findings.
Collapse
Affiliation(s)
- Weiwei Zhai
- Graduate School of Hebei Medical University, Shijiazhuang, China
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Qiaoling Yu
- Graduate School of Hebei Medical University, Shijiazhuang, China
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Huizhen Wu
- Graduate School of Hebei Medical University, Shijiazhuang, China
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
5
|
Li H, Song C, Zhang Y, Liu G, Mi H, Li Y, Chen Z, Ma X, Zhang P, Cheng L, Peng P, Zhu H, Chen Z, Dong M, Chen S, Meng H, Xiao Q, Li H, Wu Q, Wang B, Zhang S, Shu K, Wan F, Guo D, Zhou W, Zhou L, Mao F, Rich JN, Yu X. Transgelin Promotes Glioblastoma Stem Cell Hypoxic Responses and Maintenance Through p53 Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305620. [PMID: 38087889 PMCID: PMC10870072 DOI: 10.1002/advs.202305620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 02/17/2024]
Abstract
Glioblastoma (GBM) is a lethal cancer characterized by hypervascularity and necrosis associated with hypoxia. Here, it is found that hypoxia preferentially induces the actin-binding protein, Transgelin (TAGLN), in GBM stem cells (GSCs). Mechanistically, TAGLN regulates HIF1α transcription and stabilizes HDAC2 to deacetylate p53 and maintain GSC self-renewal. To translate these findings into preclinical therapeutic paradigm, it is found that sodium valproate (VPA) is a specific inhibitor of TAGLN/HDAC2 function, with augmented efficacy when combined with natural borneol (NB) in vivo. Thus, TAGLN promotes cancer stem cell survival in hypoxia and informs a novel therapeutic paradigm.
Collapse
Affiliation(s)
- Huan Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chao Song
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yang Zhang
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guohao Liu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hailong Mi
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yachao Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhiye Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Ma
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Po Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lidong Cheng
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Peng Peng
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hongtao Zhu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zirong Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Minhai Dong
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Sui Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Meng
- Intelligent Pathology InstituteThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230031China
| | - QunGen Xiao
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Honglian Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Qiulian Wu
- UPMC Hillman Cancer CenterDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA15219USA
| | - Baofeng Wang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Suojun Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kai Shu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Feng Wan
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Dongsheng Guo
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenchao Zhou
- Intelligent Pathology InstituteThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230031China
| | - Lin Zhou
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Feng Mao
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jeremy N. Rich
- UPMC Hillman Cancer CenterDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA15219USA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Xingjiang Yu
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
6
|
V Bonm A, Taylor LP. Management of Neurologic Complications in Patients with Brain and Spine Tumors. Semin Neurol 2024; 44:53-63. [PMID: 38176424 DOI: 10.1055/s-0043-1777422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Patients with brain and spine tumors represent a distinct population with unique needs. We provide a practical review of neurologic care in this group with an emphasis on familiarizing the general neurologist to the nuances of neuro-oncologic supportive care. We review the management of cerebral edema, steroid dosing, and pertinent side effects. We discuss seizure management, including choice of anticonvulsants, putative antitumor effects, and important seizure mimics like drop attacks. We review the presentation and symptomatology of stroke-like migraine attack after radiation therapy (SMART syndrome). We describe the signs and symptoms that should prompt concern for metastatic spinal cord compression, as well as both acute and definitive treatment options. Finally, we discuss the underappreciated incidence of venous thromboembolic events, particularly in patients with gliomas, and review the data on management.
Collapse
Affiliation(s)
- Alipi V Bonm
- Department of Neurology, Swedish Neuroscience Institute, Seattle, Washington
| | - Lynne P Taylor
- Department of Neurology, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Tang T, Wang Y, Dai Y, Liu Q, Fan X, Cheng Y, Tang J, Xiao X, Shan Y, Wei P, Zhao G. IDH1 mutation predicts seizure occurrence and prognosis in lower-grade glioma adults. Pathol Res Pract 2024; 254:155165. [PMID: 38286053 DOI: 10.1016/j.prp.2024.155165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Epileptic seizures are frequently the first symptom in glioma patients. However, the causal relationship between glioma and epilepsy is not yet fully understood, as it cannot be explained solely by tumor mass effect or peritumoral factors. In this study, we retrospectively enrolled 320 patients with grade 2-4 glioma who received treatment between January 2019 and July 2022, and explored the biomarkers of seizure occurrence and seizure outcome prediction using univariate and multivariate logistic regression analyses. Our results showed that IDH1 R132H mutation was an independent risk factor for seizure occurrence in lower-grade glioma (LGG) patients (OR = 4.915, 95%CI = 1.713 - 14.103, P = 0.003). Additionally, IDH1 R132H mutation predicted higher seizure-free ratios in LGG patients with intact ATRX expression (OR = 6.793, 95%CI = 1.217 - 37.923, P = 0.029) one year after diagnosis. Therefore, our findings suggest that IDH1 mutation can predict seizure occurrence and control in LGG patients, providing further insights into the relationship between glioma and epilepsy.
Collapse
Affiliation(s)
- Ting Tang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yihe Wang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yang Dai
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Quanlei Liu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China
| | - Ye Cheng
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy, Capital Medical University, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China.
| |
Collapse
|
8
|
Avila EK, Tobochnik S, Inati SK, Koekkoek JAF, McKhann GM, Riviello JJ, Rudà R, Schiff D, Tatum WO, Templer JW, Weller M, Wen PY. Brain tumor-related epilepsy management: A Society for Neuro-oncology (SNO) consensus review on current management. Neuro Oncol 2024; 26:7-24. [PMID: 37699031 PMCID: PMC10768995 DOI: 10.1093/neuonc/noad154] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Tumor-related epilepsy (TRE) is a frequent and major consequence of brain tumors. Management of TRE is required throughout the course of disease and a deep understanding of diagnosis and treatment is key to improving quality of life. Gross total resection is favored from both an oncologic and epilepsy perspective. Shared mechanisms of tumor growth and epilepsy exist, and emerging data will provide better targeted therapy options. Initial treatment with antiseizure medications (ASM) in conjunction with surgery and/or chemoradiotherapy is typical. The first choice of ASM is critical to optimize seizure control and tolerability considering the effects of the tumor itself. These agents carry a potential for drug-drug interactions and therefore knowledge of mechanisms of action and interactions is needed. A review of adverse effects is necessary to guide ASM adjustments and decision-making. This review highlights the essential aspects of diagnosis and treatment of TRE with ASMs, surgery, chemotherapy, and radiotherapy while indicating areas of uncertainty. Future studies should consider the use of a standardized method of seizure tracking and incorporating seizure outcomes as a primary endpoint of tumor treatment trials.
Collapse
Affiliation(s)
- Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Sara K Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Guy M McKhann
- Department of Neurosurgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - James J Riviello
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Italy
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Center, and Division of Neuro-Oncology, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Gunasekera CL, Sirven JI, Feyissa AM. The evolution of antiseizure medication therapy selection in adults: Is artificial intelligence -assisted antiseizure medication selection ready for prime time? J Cent Nerv Syst Dis 2023; 15:11795735231209209. [PMID: 37868934 PMCID: PMC10586013 DOI: 10.1177/11795735231209209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Antiseizure medications (ASMs) are the mainstay of symptomatic epilepsy treatment. The primary goal of pharmacotherapy with ASMs in epilepsy is to achieve complete seizure remission while minimizing therapy-related adverse events. Over the years, more ASMs have been introduced, with approximately 30 now in everyday use. With such a wide variety, much guidance is needed in choosing ASMs for initial therapy, subsequent replacement monotherapy, or adjunctive therapy. The specific ASMs are typically tailored by the patient's related factors, including epilepsy syndrome, age, sex, comorbidities, and ASM characteristics, including the spectrum of efficacy, pharmacokinetic properties, safety, and tolerability. Weighing these key clinical variables requires experience and expertise that may be limited. Furthermore, with this approach, patients may endure multiple trials of ineffective treatments before the most appropriate ASM is found. A more reliable way to predict response to different ASMs is needed so that the most effective and tolerated ASM can be selected. Soon, alternative approaches, such as deep machine learning (ML), could aid the individualized selection of the first and subsequent ASMs. The recognition of epilepsy as a network disorder and the integration of personalized epilepsy networks in future ML platforms can also facilitate the prediction of ASM response. Augmenting the conventional approach with artificial intelligence (AI) opens the door to personalized pharmacotherapy in epilepsy. However, more work is needed before these models are ready for primetime clinical practice.
Collapse
|
10
|
van der Meer PB, Dirven L, Hertler C, Boele FW, Batalla A, Walbert T, Rooney AG, Koekkoek JAF. Depression and anxiety in glioma patients. Neurooncol Pract 2023; 10:335-343. [PMID: 37457222 PMCID: PMC10346395 DOI: 10.1093/nop/npad019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
AbstractGlioma patients carry the burden of having both a progressive neurological disease and cancer, and may face a variety of symptoms, including depression and anxiety. These symptoms are highly prevalent in glioma patients (median point prevalence ranging from 16-41% for depression and 24-48% for anxiety when assessed by self-report questionnaires) and have a major impact on health-related quality of life and even overall survival time. A worse overall survival time for glioma patients with depressive symptoms might be due to tumor progression and/or its supportive treatment causing depressive symptoms, an increased risk of suicide or other (unknown) factors. Much is still unclear about the etiology of depressive and anxiety symptoms in glioma. These psychiatric symptoms often find their cause in a combination of neurophysiological and psychological factors, such as the tumor and/or its treatment. Although these patients have a particular idiosyncrasy, standard treatment guidelines for depressive and anxiety disorders apply, generally recommending psychological and pharmacological treatment. Only a few nonpharmacological trials have been conducted evaluating the efficacy of psychological treatments (eg, a reminiscence therapy-based care program) in this population, which significantly reduced depressive and anxiety symptoms. No pharmacological trials have been conducted in glioma patients specifically. More well-designed trials evaluating the efficacy of nonpharmacological treatments for depressive and anxiety disorders in glioma are urgently needed to successfully treat psychiatric symptoms in brain tumor patients and to improve (health-related) quality of life.
Collapse
Affiliation(s)
- Pim B van der Meer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Caroline Hertler
- Competence Center for Palliative Care, Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Florien W Boele
- Department of Psychology, Leeds Institute of Medical Research at St. James’s, St. James’s University Hospital, University of Leeds, Leeds, United Kingdom
- Department of Psychology, Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Albert Batalla
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Tobias Walbert
- Department of Neurology and Neurosurgery Henry Ford Health, Department of Neurology Wayne State University and Michigan State University, Detroit, Michigan, The United States of America
| | - Alasdair G Rooney
- Department of Neurology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
11
|
van der Meer PB, Dirven L, Fiocco M, Vos MJ, Kouwenhoven MCM, van den Bent MJ, Taphoorn MJB, Koekkoek JAF. Effectiveness of Antiseizure Medication Triple Therapy in Patients With Glioma With Refractory Epilepsy: An Observational Cohort Study. Neurology 2023; 100:e1488-e1496. [PMID: 36754633 PMCID: PMC10104607 DOI: 10.1212/wnl.0000000000206852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/07/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Approximately 10% of patients with glioma with epilepsy need antiseizure medication (ASM) triple therapy due to refractory epilepsy. The aim of this study was to evaluate whether levetiracetam combined with valproic acid and clobazam (LEV + VPA + CLB), a frequently prescribed triple therapy, has favorable effectiveness compared with other triple therapy combinations in patients with glioma. METHODS This was a multicenter retrospective observational cohort study. The primary outcome was the cumulative incidence of time to treatment failure for any reason, from the start of ASM triple therapy treatment. The secondary outcomes included cumulative incidences of the following: (1) time to treatment failure due to uncontrolled seizures; (2) time to treatment failure due to adverse effects; and (3) time to recurrent seizures. Patients were followed up for a maximum duration of 36 months. RESULTS Of 1,435 patients in the original cohort, 90 patients received ASM triple therapy after second-line ASM treatment failure due to uncontrolled seizures. LEV + VPA + CLB was prescribed to 48% (43/90) and other ASM triple therapy to 52% (47/90) of patients. The cumulative incidence of treatment failure for any reason of LEV + VPA + CLB did not statistically significantly differ from that of other ASM triple therapy combinations (12 months: 47% [95% CI 31%-62%] vs 42% [95% CI 27%-56%], p = 0.892). No statistically significant differences for treatment failure due to uncontrolled seizures (12 months: 12% [95% CI 4%-25%] vs 18% [95% CI 8%-30%], p = 0.445), adverse effects (12 months: 22% [95% CI 11%-36%] vs 15% [95% CI 7%-27%], p = 0.446), or recurrent seizures (1 month: 65% [95% CI 48%-78%] vs 63% [95% CI 47%-75%], p = 0.911) were found. DISCUSSION LEV + VPA + CLB might show equivalent effectiveness compared with other ASM triple therapy combinations in patients with glioma. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that for patients with glioma with refractory epilepsy on triple therapy ASMs, LEV + VPA + CLB demonstrated similar effectiveness and tolerability compared with other ASM triple therapy combinations.
Collapse
Affiliation(s)
- Pim B van der Meer
- From the Leiden University Medical Center (P.B.v.d.M., L.D., M.F., M.J.V., M.J.B.T., J.A.F.K.); Haaglanden Medical Center (P.B.v.d.M., L.D., M.J.V., J.A.F.K.), The Hague; Amsterdam University Medical Centers (M.C.M.K.); and Erasmus Medical Center (M.J.v.d.B.), Rotterdam, the Netherlands.
| | - Linda Dirven
- From the Leiden University Medical Center (P.B.v.d.M., L.D., M.F., M.J.V., M.J.B.T., J.A.F.K.); Haaglanden Medical Center (P.B.v.d.M., L.D., M.J.V., J.A.F.K.), The Hague; Amsterdam University Medical Centers (M.C.M.K.); and Erasmus Medical Center (M.J.v.d.B.), Rotterdam, the Netherlands
| | - Marta Fiocco
- From the Leiden University Medical Center (P.B.v.d.M., L.D., M.F., M.J.V., M.J.B.T., J.A.F.K.); Haaglanden Medical Center (P.B.v.d.M., L.D., M.J.V., J.A.F.K.), The Hague; Amsterdam University Medical Centers (M.C.M.K.); and Erasmus Medical Center (M.J.v.d.B.), Rotterdam, the Netherlands
| | - Maaike J Vos
- From the Leiden University Medical Center (P.B.v.d.M., L.D., M.F., M.J.V., M.J.B.T., J.A.F.K.); Haaglanden Medical Center (P.B.v.d.M., L.D., M.J.V., J.A.F.K.), The Hague; Amsterdam University Medical Centers (M.C.M.K.); and Erasmus Medical Center (M.J.v.d.B.), Rotterdam, the Netherlands
| | - Mathilde C M Kouwenhoven
- From the Leiden University Medical Center (P.B.v.d.M., L.D., M.F., M.J.V., M.J.B.T., J.A.F.K.); Haaglanden Medical Center (P.B.v.d.M., L.D., M.J.V., J.A.F.K.), The Hague; Amsterdam University Medical Centers (M.C.M.K.); and Erasmus Medical Center (M.J.v.d.B.), Rotterdam, the Netherlands
| | - Martin J van den Bent
- From the Leiden University Medical Center (P.B.v.d.M., L.D., M.F., M.J.V., M.J.B.T., J.A.F.K.); Haaglanden Medical Center (P.B.v.d.M., L.D., M.J.V., J.A.F.K.), The Hague; Amsterdam University Medical Centers (M.C.M.K.); and Erasmus Medical Center (M.J.v.d.B.), Rotterdam, the Netherlands
| | - Martin J B Taphoorn
- From the Leiden University Medical Center (P.B.v.d.M., L.D., M.F., M.J.V., M.J.B.T., J.A.F.K.); Haaglanden Medical Center (P.B.v.d.M., L.D., M.J.V., J.A.F.K.), The Hague; Amsterdam University Medical Centers (M.C.M.K.); and Erasmus Medical Center (M.J.v.d.B.), Rotterdam, the Netherlands
| | - Johan A F Koekkoek
- From the Leiden University Medical Center (P.B.v.d.M., L.D., M.F., M.J.V., M.J.B.T., J.A.F.K.); Haaglanden Medical Center (P.B.v.d.M., L.D., M.J.V., J.A.F.K.), The Hague; Amsterdam University Medical Centers (M.C.M.K.); and Erasmus Medical Center (M.J.v.d.B.), Rotterdam, the Netherlands
| |
Collapse
|
12
|
Zhao B, Xia Y, Ma W. Reader Response: Effectiveness of Antiseizure Medication Duotherapies in Patients With Glioma: A Multicenter Observational Cohort Study. Neurology 2023; 100:105-106. [PMID: 36623918 DOI: 10.1212/wnl.0000000000201718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 01/11/2023] Open
|
13
|
van der Meer PB. Author Response: Effectiveness of Antiseizure Medication Duotherapies in Patients With Glioma: A Multicenter Observational Cohort Study. Neurology 2023; 100:106. [PMID: 36623916 DOI: 10.1212/wnl.0000000000201719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 01/10/2023] Open
|
14
|
van der Meer PB, Maschio M, Dirven L, Taphoorn MJB, Koekkoek JAF, Coppola A, Maialetti A, Pietrella A, Rigamonti A, Zarabla A, Frigeni B, Salis B, Di. Bonaventura C, Marras CE, Palestini C, Ferlazzo E, Venturelli E, Dainese F, Martella F, Paladin F, Villani F, Capizzi G, Napoleoni L, Stanzani L, Stragapede L, Zummo L, Balducci M, Eoli M, Rizzi M, Vernaleone M, Messina R, Vittorini R, Gasparini S, Ius T, Cianci V, Manfioli V, Mariani V, Capovilla G. First-line levetiracetam versus enzyme-inducing antiseizure medication in glioma patients with epilepsy. Epilepsia 2023; 64:162-169. [PMID: 36380710 PMCID: PMC10100008 DOI: 10.1111/epi.17464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to directly compare the effectiveness of first-line monotherapy levetiracetam (LEV) versus enzyme-inducing antiseizure medications (EIASMs) in glioma patients. METHODS In this nationwide retrospective observational cohort study, Grade 2-4 glioma patients were included, with a maximum duration of follow-up of 36 months. Primary outcome was antiseizure medication (ASM) treatment failure for any reason, and secondary outcomes were treatment failure due to uncontrolled seizures and due to adverse effects. For estimation of the association between ASM treatment and ASM treatment failure, multivariate cause-specific cox proportional hazard models were estimated, adjusting for potential confounders. RESULTS In the original cohort, a total of 808 brain tumor patients with epilepsy were included, of whom 109 glioma patients were prescribed first-line LEV and 183 glioma patients first-line EIASMs. The EIASM group had a significantly higher risk of treatment failure for any reason compared to LEV (adjusted hazard ratio [aHR] = 1.82, 95% confidence interval [CI] = 1.20-2.75, p = .005). Treatment failure due to uncontrolled seizures did not differ significantly between EIASMs and LEV (aHR = 1.32, 95% CI = .78-2.25, p = .300), but treatment failure due to adverse effects differed significantly (aHR = 4.87, 95% CI = 1.89-12.55, p = .001). SIGNIFICANCE In this study, it was demonstrated that LEV had a significantly better effectiveness (i.e., less ASM treatment failure for any reason or due to adverse effects) compared to EIASMs, supporting the current neuro-oncology guideline recommendations to avoid EIASMs in glioma patients.
Collapse
Affiliation(s)
- Pim B van der Meer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marta Maschio
- Center for Tumor-Related Epilepsy, Unità Operativa Semplice Dipartimentale Neuro-oncology, Istituto di Ricovero e Cura a Carattere Scientifico Regina Elena National Cancer Institute, Rome, Italy
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, Haaglanden Medical Center, the Hague, the Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, Haaglanden Medical Center, the Hague, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|