1
|
Hernandez ME, Motl RW, Foley FW, Picone MA, Izzetoglu M, Lipton ML, Wagshul M, Holtzer R. Disability Moderates Dual Task Walking Performance and Neural Efficiency in Older Adults With Multiple Sclerosis. Neurorehabil Neural Repair 2024; 38:795-807. [PMID: 39177188 PMCID: PMC11970354 DOI: 10.1177/15459683241273411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Mobility and cognitive impairment are prevalent and co-occurring in older adults with multiple sclerosis (OAMS), yet there is limited research concerning the role of disability status in the cognitive control of gait among OAMS. OBJECTIVE We investigated the levels of prefrontal cortex (PFC) activation, using oxygenated hemoglobin (HbO2), during cognitively-demanding tasks in OAMS with lower and higher disability using functional near-infrared spectroscopy (fNIRS) to: (1) identify PFC activation differences in single task walk and cognitively-demanding tasks in OAMS with different levels of disability; and (2) evaluate if disability may moderate practice-related changes in neural efficiency in OAMS. METHODS We gathered data from OAMS with lower (n = 51, age = 65 ± 4 years) or higher disability (n = 48, age = 65 ± 5 years), using a cutoff of 3 or more, in the Patient Determined Disease Steps, for higher disability, under 3 different conditions (single-task walk, Single-Task-Alpha, and Dual-Task-Walk [DTW]) administered over 3 counterbalanced, repeated trials. RESULTS OAMS who had a lower disability level exhibited decreased PFC activation levels during Single-Task-Walk (STW) and larger increases in PFC activation levels, when going from STW to a cognitively-demanding task, such as a DTW, than those with higher disability. OAMS with a lower disability level exhibited greater declines in PFC activation levels with additional within session practice than those with a higher disability level. CONCLUSIONS These findings suggest that disability moderates brain adaptability to cognitively-demanding tasks and demonstrate the potential for fNIRS-derived outcome measures to complement neurorehabilitation outcomes.
Collapse
Affiliation(s)
- Manuel E Hernandez
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, United States
| | - Mary Ann Picone
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, United States
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, United States
| | - Michael L Lipton
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mark Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
2
|
Rispoli MG, D'Apolito M, Pozzilli V, Tomassini V. Lessons from immunotherapies in multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:293-311. [PMID: 36803817 DOI: 10.1016/b978-0-323-85555-6.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The improved understanding of multiple sclerosis (MS) neurobiology alongside the development of novel markers of disease will allow precision medicine to be applied to MS patients, bringing the promise of improved care. Combinations of clinical and paraclinical data are currently used for diagnosis and prognosis. The addition of advanced magnetic resonance imaging and biofluid markers has been strongly encouraged, since classifying patients according to the underlying biology will improve monitoring and treatment strategies. For example, silent progression seems to contribute significantly more than relapses to overall disability accumulation, but currently approved treatments for MS act mainly on neuroinflammation and offer only a partial protection against neurodegeneration. Further research, involving traditional and adaptive trial designs, should strive to halt, repair or protect against central nervous system damage. To personalize new treatments, their selectivity, tolerability, ease of administration, and safety must be considered, while to personalize treatment approaches, patient preferences, risk-aversion, and lifestyle must be factored in, and patient feedback used to indicate real-world treatment efficacy. The use of biosensors and machine-learning approaches to integrate biological, anatomical, and physiological parameters will take personalized medicine a step closer toward the patient's virtual twin, in which treatments can be tried before they are applied.
Collapse
Affiliation(s)
- Marianna G Rispoli
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, SS. Annunziata University Hospital, Chieti, Italy
| | - Maria D'Apolito
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, SS. Annunziata University Hospital, Chieti, Italy
| | - Valeria Pozzilli
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, SS. Annunziata University Hospital, Chieti, Italy
| | - Valentina Tomassini
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, SS. Annunziata University Hospital, Chieti, Italy.
| |
Collapse
|
3
|
Tahedl M, Levine SM, Weissert R, Kohl Z, Lee DH, Linker RA, Schwarzbach JV. Early remission in multiple sclerosis is linked to altered coherence of the Cerebellar Network. J Transl Med 2022; 20:488. [PMID: 36303221 PMCID: PMC9615296 DOI: 10.1186/s12967-022-03576-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/06/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The development of permanent disability in multiple sclerosis (MS) is highly variable among patients, and the exact mechanisms that contribute to this disability remain unknown. METHODS Following the idea that the brain has intrinsic network organization, we investigated changes of functional networks in MS patients to identify possible links between network reorganization and remission from clinical episodes in MS. Eighteen relapsing-remitting MS patients (RRMS) in their first clinical manifestation underwent resting-state functional MRI and again during remission. We used ten template networks, identified from independent component analysis, to compare changes in network coherence for each patient compared to those of 44 healthy controls from the Human Connectome Project test-retest dataset (two-sample t-test of pre-post differences). Combining a binomial test with Monte Carlo procedures, we tested four models of how functional coherence might change between the first clinical episode and remission: a network can change its coherence (a) with itself ("one-with-self"), (b) with another network ("one-with-other"), or (c) with a set of other networks ("one-with-many"), or (d) multiple networks can change their coherence with respect to one common network ("many-with-one"). RESULTS We found evidence supporting two of these hypotheses: coherence decreased between the Executive Control Network and several other networks ("one-with-many" hypothesis), and a set of networks altered their coherence with the Cerebellar Network ("many-with-one" hypothesis). CONCLUSION Given the unexpected commonality of the Cerebellar Network's altered coherence with other networks (a finding present in more than 70% of the patients, despite their clinical heterogeneity), we conclude that remission in MS may result from learning processes mediated by the Cerebellar Network.
Collapse
Affiliation(s)
- Marlene Tahedl
- grid.7727.50000 0001 2190 5763Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany ,grid.7727.50000 0001 2190 5763Institute for Psychology, University of Regensburg, 93053 Regensburg, Germany
| | - Seth M. Levine
- grid.5252.00000 0004 1936 973XDepartment of Psychology, LMU Munich, 80802 Munich, Germany ,grid.411095.80000 0004 0477 2585NeuroImaging Core Unit Munich (NICUM), University Hospital LMU, 80336 Munich, Germany
| | - Robert Weissert
- grid.7727.50000 0001 2190 5763Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - Zacharias Kohl
- grid.7727.50000 0001 2190 5763Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - De-Hyung Lee
- grid.7727.50000 0001 2190 5763Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - Ralf A. Linker
- grid.7727.50000 0001 2190 5763Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - Jens V. Schwarzbach
- grid.7727.50000 0001 2190 5763Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Rocca MA, Schoonheim MM, Valsasina P, Geurts JJG, Filippi M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin 2022; 35:103076. [PMID: 35691253 PMCID: PMC9194954 DOI: 10.1016/j.nicl.2022.103076] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/12/2023]
Abstract
Functional MRI is able to detect adaptive and maladaptive abnormalities at different MS stages. Increased fMRI activity is a feature of early MS, while progressive exhaustion of adaptive mechanisms is detected later on in the disease. Collapse of long-range connections and impaired hub integration characterize MS network reorganization. Time-varying connectivity analysis provides useful and complementary pieces of information to static functional connectivity. New perspectives might be the use of multimodal MRI and artificial intelligence.
Multiple sclerosis (MS) is a neurological disorder affecting the central nervous system and features extensive functional brain changes that are poorly understood but relate strongly to clinical impairments. Functional magnetic resonance imaging (fMRI) is a non-invasive, powerful technique able to map activity of brain regions and to assess how such regions interact for an efficient brain network. FMRI has been widely applied to study functional brain changes in MS, allowing to investigate functional plasticity consequent to disease-related structural injury. The first studies in MS using active fMRI tasks mainly aimed to study such plastic changes by identifying abnormal activity in salient brain regions (or systems) involved by the task. In later studies the focus shifted towards resting state (RS) functional connectivity (FC) studies, which aimed to map large-scale functional networks of the brain and to establish how MS pathology impairs functional integration, eventually leading to the hypothesized network collapse as patients clinically progress. This review provides a summary of the main findings from studies using task-based and RS fMRI and illustrates how functional brain alterations relate to clinical disability and cognitive deficits in this condition. We also give an overview of longitudinal studies that used task-based and RS fMRI to monitor disease evolution and effects of motor and cognitive rehabilitation. In addition, we discuss the results of studies using newer technologies involving time-varying FC to investigate abnormal dynamism and flexibility of network configurations in MS. Finally, we show some preliminary results from two recent topics (i.e., multimodal MRI analysis and artificial intelligence) that are receiving increasing attention. Together, these functional studies could provide new (conceptual) insights into disease stage-specific mechanisms underlying progression in MS, with recommendations for future research.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
5
|
Swanberg KM, Landheer K, Pitt D, Juchem C. Quantifying the Metabolic Signature of Multiple Sclerosis by in vivo Proton Magnetic Resonance Spectroscopy: Current Challenges and Future Outlook in the Translation From Proton Signal to Diagnostic Biomarker. Front Neurol 2019; 10:1173. [PMID: 31803127 PMCID: PMC6876616 DOI: 10.3389/fneur.2019.01173] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) offers a growing variety of methods for querying potential diagnostic biomarkers of multiple sclerosis in living central nervous system tissue. For the past three decades, 1H-MRS has enabled the acquisition of a rich dataset suggestive of numerous metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord of individuals with multiple sclerosis, but this body of information is not free of seeming internal contradiction. The use of 1H-MRS signals as diagnostic biomarkers depends on reproducible and generalizable sensitivity and specificity to disease state that can be confounded by a multitude of influences, including experiment group classification and demographics; acquisition sequence; spectral quality and quantifiability; the contribution of macromolecules and lipids to the spectroscopic baseline; spectral quantification pipeline; voxel tissue and lesion composition; T1 and T2 relaxation; B1 field characteristics; and other features of study design, spectral acquisition and processing, and metabolite quantification about which the experimenter may possess imperfect or incomplete information. The direct comparison of 1H-MRS data from individuals with and without multiple sclerosis poses a special challenge in this regard, as several lines of evidence suggest that experimental cohorts may differ significantly in some of these parameters. We review the existing findings of in vivo1H-MRS on central nervous system metabolic abnormalities in multiple sclerosis and its subtypes within the context of study design, spectral acquisition and processing, and metabolite quantification and offer an outlook on technical considerations, including the growing use of machine learning, by future investigations into diagnostic biomarkers of multiple sclerosis measurable by 1H-MRS.
Collapse
Affiliation(s)
- Kelley M Swanberg
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States
| | - Karl Landheer
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States
| | - David Pitt
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States.,Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
6
|
Musella A, Gentile A, Rizzo FR, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Centonze D, Mandolesi G. Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Front Aging Neurosci 2018; 10:238. [PMID: 30135651 PMCID: PMC6092506 DOI: 10.3389/fnagi.2018.00238] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is one of the main risk factors for the development of many neurodegenerative diseases. Emerging evidence has acknowledged neuroinflammation as potential trigger of the functional changes occurring during normal and pathological aging. Two main determinants have been recognized to cogently contribute to neuroinflammation in the aging brain, i.e., the systemic chronic low-grade inflammation and the decline in the regulation of adaptive and innate immune systems (immunosenescence, ISC). The persistence of the inflammatory status in the brain in turn may cause synaptopathy and synaptic plasticity impairments that underlie both motor and cognitive dysfunctions. Interestingly, such inflammation-dependent synaptic dysfunctions have been recently involved in the pathophysiology of multiple sclerosis (MS). MS is an autoimmune neurodegenerative disease, typically affecting young adults that cause an early and progressive deterioration of both cognitive and motor functions. Of note, recent controlled studies have clearly shown that age at onset modifies prognosis and exerts a significant effect on presenting phenotype, suggesting that aging is a significant factor associated to the clinical course of MS. Moreover, some lines of evidence point to the different impact of age on motor disability and cognitive deficits, being the former most affected than the latter. The precise contribution of aging-related factors to MS neurological disability and the underlying molecular and cellular mechanisms are still unclear. In the present review article, we first emphasize the importance of the neuroinflammatory dependent mechanisms, such as synaptopathy and synaptic plasticity impairments, suggesting their potential exacerbation or acceleration with advancing age in the MS disease. Lastly, we provide an overview of clinical and experimental studies highlighting the different impact of age on motor disability and cognitive decline in MS, raising challenging questions on the putative age-related mechanisms involved.
Collapse
Affiliation(s)
- Alessandra Musella
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| | - Antonietta Gentile
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Francesca Romana Rizzo
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca De Vito
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Livia Guadalupi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Fabio Buttari
- Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Diego Centonze
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Georgia Mandolesi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| |
Collapse
|
7
|
Peterson DS, Fling BW. How changes in brain activity and connectivity are associated with motor performance in people with MS. Neuroimage Clin 2017; 17:153-162. [PMID: 29071209 PMCID: PMC5651557 DOI: 10.1016/j.nicl.2017.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
People with multiple sclerosis (MS) exhibit pronounced changes in brain structure, activity, and connectivity. While considerable work has begun to elucidate how these neural changes contribute to behavior, the heterogeneity of symptoms and diagnoses makes interpretation of findings and application to clinical practice challenging. In particular, whether MS related changes in brain activity or brain connectivity protect against or contribute to worsening motor symptoms is unclear. With the recent emergence of neuromodulatory techniques that can alter neural activity in specific brain regions, it is critical to establish whether localized brain activation patterns are contributing to (i.e. maladaptive) or protecting against (i.e. adaptive) progression of motor symptoms. In this manuscript, we consolidate recent findings regarding changes in supraspinal structure and activity in people with MS and how these changes may contribute to motor performance. Furthermore, we discuss a hypothesis suggesting that increased neural activity during movement may be either adaptive or maladaptive depending on where in the brain this increase is observed. Specifically, we outline preliminary evidence suggesting sensorimotor cortex activity in the ipsilateral cortices may be maladaptive in people with MS. We also discuss future work that could supply data to support or refute this hypothesis, thus improving our understanding of this important topic.
Collapse
Affiliation(s)
- Daniel S Peterson
- Arizona State University, Tempe, AZ, USA; Veterans Affairs Phoenix Medical Center Phoenix, AZ, USA.
| | | |
Collapse
|
8
|
Neuroimaging Techniques to Assess Inflammation in Multiple Sclerosis. Neuroscience 2017; 403:4-16. [PMID: 28764938 DOI: 10.1016/j.neuroscience.2017.07.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/07/2023]
Abstract
Multiple Sclerosis (MS) is a chronic neurological disease that represents a leading cause of disability in young adults and is characterized by inflammation and degeneration of both white matter (WM) and gray matter (GM). Defining the presence or absence of inflammation on individual basis is a key point in choosing the therapy and monitoring the treatment response. Magnetic resonance imaging (MRI) represents the most sensitive non-invasive tool to monitor inflammation in the clinical practice. Indeed, in the early phase of inflammation MRI detects new lesions as extrusion of gadolinium contrast agents across the altered blood-brain-barrier (BBB). The occurrence of MRI lesions is used to confirm diagnosis and has been validated as surrogate marker of relapse to monitor response to treatments. However, focal gadolinium-enhancing lesions represent only an aspect of neuroinflammation. Recent studies have suggested the presence of a widespread inflammation of the central nervous system (CNS), which is mainly related to microglial cells activation occurring both at the edge of chronic focal lesions and throughout the normal-appearing brain tissue. New imaging techniques have been developed to study diffuse inflammation taking place outside the focal plaques. The scope of this review is to examine the various neuroimaging techniques and those biophysical quantities that can be non-invasively detected to enlighten the different aspects of neuroinflammation. Some techniques are commonly used in the clinical practice, while others are used in the research field to better understand the pathophysiological mechanisms of the disease and the role of inflammation.
Collapse
|
9
|
Straudi S, Manfredini F, Lamberti N, Zamboni P, Bernardi F, Marchetti G, Pinton P, Bonora M, Secchiero P, Tisato V, Volpato S, Basaglia N. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial. Trials 2017; 18:88. [PMID: 28241776 PMCID: PMC5330064 DOI: 10.1186/s13063-017-1838-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 02/12/2017] [Indexed: 11/22/2022] Open
Abstract
Background Gait and mobility impairments affect the quality of life (QoL) of patients with progressive multiple sclerosis (MS). Robot-assisted gait training (RAGT) is an effective rehabilitative treatment but evidence of its superiority compared to other options is lacking. Furthermore, the response to rehabilitation is multidimensional, person-specific and possibly involves functional reorganization processes. The aims of this study are: (1) to test the effectiveness on gait speed, mobility, balance, fatigue and QoL of RAGT compared to conventional therapy (CT) in progressive MS and (2) to explore changes of clinical and circulating biomarkers of neural plasticity. Methods This will be a parallel-group, randomized controlled trial design with the assessor blinded to the group allocation of participants. Ninety-eight (49 per arm) progressive MS patients (EDSS scale 6–7) will be randomly assigned to receive twelve 2-h training sessions over a 4-week period (three sessions/week) of either: (1) RAGT intervention on a robotic-driven gait orthosis (Lokomat, Hocoma, Switzerland). The training parameters (torque of the knee and hip drives, treadmill speed, body weight support) are set during the first session and progressively adjusted during training progression or (2) individual conventional physiotherapy focusing on over-ground walking training performed with the habitual walking device. The same assessors will perform outcome measurements at four time points: baseline (before the first intervention session); intermediate (after six training sessions); end of treatment (after the completion of 12 sessions); and follow-up (after 3 months from the end of the training program). The primary outcome is gait speed, assessed by the Timed 25-Foot Walk Test. We will also assess walking endurance, balance, depression, fatigue and QoL as well as instrumental laboratory markers (muscle metabolism, cerebral venous hemodynamics, cortical activation) and circulating laboratory markers (rare circulating cell populations pro and anti-inflammatory cytokines/chemokines, growth factors, neurotrophic factors, coagulation factors, other plasma proteins suggested by transcriptomic analysis and metabolic parameters). Discussion The RAGT training is expected to improve mobility compared to the active control intervention in progressive MS. Unique to this study is the analysis of various potential markers of plasticity in relation with clinical outcomes. Trial registration ClinicalTrials.gov, identifier: NCT02421731. Registered on 19 January 2015 (retrospectively registered). Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1838-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Via Aldo Moro 8, 44124, Ferrara, Italy
| | - Fabio Manfredini
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Via Aldo Moro 8, 44124, Ferrara, Italy. .,Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| | - Nicola Lamberti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Unit of Translational Surgery and Vascular Diseases Center, Ferrara University Hospital, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giovanna Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Stefano Volpato
- Center for Clinical Epidemiology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Via Aldo Moro 8, 44124, Ferrara, Italy
| |
Collapse
|
10
|
Kelly M, Shah S. Axonal Sprouting and Neuronal Connectivity following Central Nervous System Insult: Implications for Occupational Therapy. Br J Occup Ther 2016. [DOI: 10.1177/030802260206501006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Based on selected contemporary research, this paper presents a critical analysis of central nervous system (CNS) reorganisation following insult and the need for therapists better to understand the processes that constitute reorganisation and their possible contribution to the development of spasticity. In the treatment of the sequelae of CNS lesions, the synaptic reorganisation as a result of losses caused by injury - in the form of axonal sprouting - is illustrated, focusing on neuronal reconnectivity. Critical analysis of laboratory, electron microscopy and other animal and human studies is also conducted to integrate the controversies identified and to highlight the concepts that become relevant for occupational therapists, in order to optimise therapeutic intervention for maximising restitution in patients with CNS insult. The paper further discusses the capacity of the CNS to compensate and the need to utilise occupational therapy interventions, such as imagining, mental rehearsals, constraint-induced therapy, virtual reality, biofeedback and the traditional repetitive tasks, which leads to ensuring and facilitating the emergence of new synapses to perform motor tasks and manual skills and to prevent secondary changes. These external stimulations provided by the therapists are likely to stimulate both the damaged hemisphere cross-innervation and/or collateral sprouting. These scientifically based treatment strategies and neurological rehabilitation programmes would, in turn, contribute to improving the quality of life of people with CNS insult.
Collapse
|
11
|
Hernandez ME, Holtzer R, Chaparro G, Jean K, Balto JM, Sandroff BM, Izzetoglu M, Motl RW. Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis. J Neurol Sci 2016; 370:277-283. [DOI: 10.1016/j.jns.2016.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
12
|
Enzinger C, Pinter D, Rocca MA, De Luca J, Sastre-Garriga J, Audoin B, Filippi M. Longitudinal fMRI studies: Exploring brain plasticity and repair in MS. Mult Scler 2015; 22:269-78. [DOI: 10.1177/1352458515619781] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/04/2015] [Indexed: 11/17/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has greatly advanced our understanding of cerebral functional changes occurring in patients with multiple sclerosis (MS). However, most of our knowledge regarding brain plasticity and repair in MS as evidenced by fMRI has been extrapolated from cross-sectional studies across different phenotypes of the disease. This topical review provides an overview of this research, but also highlights limitations of existing fMRI studies with cross-sectional design. We then review the few existing longitudinal fMRI studies and discuss the feasibility and constraints of serial fMRI in individuals with MS. We further emphasize the potential to track fMRI changes in evolving disease and the insights this may give in terms of mechanisms of adaptation and repair, focusing on serial fMRI to monitor response to disease-modifying therapies or rehabilitation interventions. Finally, we offer recommendations for designing future research studies to overcome previous methodological shortcomings.
Collapse
Affiliation(s)
- Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria/Division of Neuroradiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Maria A Rocca
- Neuroimaging Research Unit and Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - John De Luca
- Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Jaume Sastre-Garriga
- Department of Neurology-Neuroimmunology and Multiple Sclerosis Centre of Catalonia (Cemcat), Edifici Cemcat, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bertrand Audoin
- Aix-Marseille University, National Center for Scientific Research, Center for Magnetic Resonance in Biology and Medicine UMR 7339; Department of Neurology and Clinical Neurosciences, Timone University Hospital, Marseille, France
| | - Massimo Filippi
- Neuroimaging Research Unit and Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
13
|
Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background. Neural Plast 2015; 2015:307175. [PMID: 26229689 PMCID: PMC4503575 DOI: 10.1155/2015/307175] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/09/2015] [Accepted: 06/21/2015] [Indexed: 01/19/2023] Open
Abstract
Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets.
Collapse
|
14
|
Zhuang Y, Zhou F, Gong H. Intrinsic functional plasticity of the sensorimotor network in relapsing-remitting multiple sclerosis: evidence from a centrality analysis. PLoS One 2015; 10:e0130524. [PMID: 26110420 PMCID: PMC4482320 DOI: 10.1371/journal.pone.0130524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/21/2015] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Advanced MRI studies have revealed regional alterations in the sensorimotor cortex of patients with relapsing-remitting multiple sclerosis (RRMS). However, the organizational features underlying the relapsing phase and the subsequent remitting phase have not been directly shown at the functional network or the connectome level. Therefore, this study aimed to characterize MS-related centrality disturbances of the sensorimotor network (SMN) and to assess network integrity and connectedness. Methods Thirty-four patients with clinically definite RRMS and well-matched healthy controls participated in the study. Twenty-three patients in the remitting phase underwent one resting-state functional MRI, and 11 patients in the relapsing-remitting phase underwent two different MRIs. We measured voxel-wise centrality metrics to determine direct (degree centrality, DC) and global (eigenvector centrality, EC) functional relationships across the entire SMN. Results In the relapsing phase, DC was significantly decreased in the bilateral primary motor and somatosensory cortex (M1/S1), left dorsal premotor (PMd), and operculum-integrated regions. However, DC was increased in the peripheral SMN areas. The decrease in DC in the bilateral M1/S1 was associated with the expanded disability status scale (EDSS) and total white matter lesion loads (TWMLLs), suggesting that this adaptive response is related to the extent of brain damage in the rapid-onset attack stage. During the remission process, these alterations in centrality were restored in the bilateral M1/S1 and peripheral SMN areas. In the remitting phase, DC was reduced in the premotor, supplementary motor, and operculum-integrated regions, reflecting an adaptive response due to brain atrophy. However, DC was enhanced in the right M1 and left parietal-integrated regions, indicating chronic reorganization. In both the relapsing and remitting phases, the changes in EC and DC were similar. Conclusions The alterations in centrality within the SMN indicate rapid plasticity and chronic reorganization with a biased impairment of specific functional areas in RRMS patients.
Collapse
Affiliation(s)
- Ying Zhuang
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Oncology, the Second Hospital of Nanchang, Nanchang, Jiangxi Province, China
| | - Fuqing Zhou
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, China
- * E-mail:
| | - Honghan. Gong
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, China
| |
Collapse
|
15
|
Lipp I, Tomassini V. Neuroplasticity and motor rehabilitation in multiple sclerosis. Front Neurol 2015; 6:59. [PMID: 25852638 PMCID: PMC4364082 DOI: 10.3389/fneur.2015.00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ilona Lipp
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine , Cardiff , UK ; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University , Cardiff , UK
| | - Valentina Tomassini
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine , Cardiff , UK ; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University , Cardiff , UK ; IRCCS Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
16
|
Plasticity of the motor system in multiple sclerosis. Neuroscience 2014; 283:222-30. [DOI: 10.1016/j.neuroscience.2014.05.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/20/2022]
|
17
|
Brichetto G, Piccardo E, Pedullà L, Battaglia MA, Tacchino A. Tailored balance exercises on people with multiple sclerosis: A pilot randomized, controlled study. Mult Scler 2014; 21:1055-63. [PMID: 25392337 DOI: 10.1177/1352458514557985] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 10/10/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Altered integration of signals from visual (VIS), somatosensory (PROP) and vestibular system (VEST) lead to balance control impairments affecting the daily living activities of patients with multiple sclerosis (PwMS). As a consequence, tailored interventions could be crucial in improving efficacy of balance rehabilitation treatments. OBJECTIVE The objective of this paper is to assess the efficacy of tailored rehabilitation treatments for balance disorders based on visual, somatosensory and vestibular deficits versus traditional rehabilitation exercises. METHODS Thirty-two PwMS were assessed with the Berg Balance Scale (BBS), the composite score (CS) obtained by computerized dynamic posturography (CDP) test and the Modified Fatigue Impact Scale (MFIS). Based on CDP analysis, prevalent VIS, PROP or VEST deficits were identified and patients randomly allocated to a personalized (PRG) or traditional (TRG) rehabilitation group. RESULTS BBS score showed a significant difference between pre- and post-treatment scores of 6.3 and 2.0 points respectively for PRG and TRG. CS showed a significant difference between pre- and post-treatment scores of 16.6 and 7.6 points respectively for PRG and TRG. No interaction effect was found for MFIS score. CONCLUSIONS BBS and CS showed changes in the PRG group that met clinical relevant difference, underlining that tailored rehabilitation interventions based on patient-specific sensory system impairment could improve balance and postural control in PwMS.
Collapse
Affiliation(s)
- Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Italy
| | - Elisa Piccardo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Ludovico Pedullà
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Italy
| | - Mario Alberto Battaglia
- Department of Physiopathology, Experimental Medicine and Public Health, University of Siena, Italy
| | - Andrea Tacchino
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Italy
| |
Collapse
|
18
|
Weiss S, Mori F, Rossi S, Centonze D. Disability in multiple sclerosis: When synaptic long-term potentiation fails. Neurosci Biobehav Rev 2014; 43:88-99. [DOI: 10.1016/j.neubiorev.2014.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
|
19
|
Affiliation(s)
- Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College London, Burlington Danes, Hammersmith Hospital, London, UK
| |
Collapse
|
20
|
Matthews PM, Comley R. Advances in the molecular imaging of multiple sclerosis. Expert Rev Clin Immunol 2014; 5:765-77. [DOI: 10.1586/eci.09.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Swanton J, Fernando K, Miller D. Early prognosis of multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:371-91. [DOI: 10.1016/b978-0-444-52001-2.00015-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
22
|
The Contribution of Resting State Networks to the Study of Cortical Reorganization in MS. Mult Scler Int 2013; 2013:857807. [PMID: 24288613 PMCID: PMC3833123 DOI: 10.1155/2013/857807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 09/17/2013] [Indexed: 12/13/2022] Open
Abstract
Resting State fMRI (RS-fMRI) represents an emerging and powerful tool to explore brain functional connectivity (FC) changes associated with neurologic disorders. Compared to activation/task-related fMRI, RS-fMRI has the advantages that (i) BOLD fMRI signals are self-generated and independent of subject's performance during the task and (ii) a single dataset is sufficient to extract a set of RS networks (RSNs) that allows to explore whole brain FC. According to these features RS-fMRI appears particularly suitable for the study of FC changes related to multiple sclerosis (MS). In the present review we will first give a brief description of RS-fMRI methodology and then an overview of most relevant studies conducted so far in MS by using this approach. The most interesting results, in particular, regard the default-mode network (DMN), whose FC changes have been correlated with cognitive status of MS patients, and the visual RSN (V-RSN) whose FC changes have been correlated with visual recovery after optic neuritis. The executive control network (ECN), the lateralized frontoparietal network (FPN), and the sensory motor network (SMN) have also been investigated in MS, showing significant FC rearrangements. All together, RS-fMRI studies conducted so far in MS suggest that prominent RS-FC changes can be detected in many RSNs and correlate with clinical and/or structural MRI measures. Future RS-fMRI studies will further clarify the dynamics and clinical impact of RSNs changes in MS.
Collapse
|
23
|
|
24
|
Tomassini V, Matthews PM, Thompson AJ, Fuglø D, Geurts JJ, Johansen-Berg H, Jones DK, Rocca MA, Wise RG, Barkhof F, Palace J. Neuroplasticity and functional recovery in multiple sclerosis. Nat Rev Neurol 2012; 8:635-46. [PMID: 22986429 PMCID: PMC3770511 DOI: 10.1038/nrneurol.2012.179] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of therapeutic strategies that promote functional recovery is a major goal of multiple sclerosis (MS) research. Neuroscientific and methodological advances have improved our understanding of the brain's recovery from damage, generating novel hypotheses about potential targets and modes of intervention, and laying the foundation for development of scientifically informed recovery-promoting strategies in interventional studies. This Review aims to encourage the transition from characterization of recovery mechanisms to development of strategies that promote recovery in MS. We discuss current evidence for functional reorganization that underlies recovery and its implications for development of new recovery-oriented strategies in MS. Promotion of functional recovery requires an improved understanding of recovery mechanisms that can be modulated by interventions and the development of robust measurements of therapeutic effects. As imaging methods can be used to measure functional and structural alterations associated with recovery, this Review discusses their use to obtain reliable markers of the effects of interventions.
Collapse
|
25
|
Filippi M, Agosta F, Spinelli EG, Rocca MA. Imaging resting state brain function in multiple sclerosis. J Neurol 2012; 260:1709-13. [DOI: 10.1007/s00415-012-6695-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 12/14/2022]
|
26
|
Neuropathologic Correlates of Magnetic Resonance Imaging in Multiple Sclerosis. J Neuropathol Exp Neurol 2012; 71:762-78. [DOI: 10.1097/nen.0b013e3182676388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Tomassini V, Johansen-Berg H, Jbabdi S, Wise RG, Pozzilli C, Palace J, Matthews PM. Relating brain damage to brain plasticity in patients with multiple sclerosis. Neurorehabil Neural Repair 2012; 26:581-93. [PMID: 22328685 PMCID: PMC3674542 DOI: 10.1177/1545968311433208] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Failure of adaptive plasticity with increasing pathology is suggested to contribute to progression of disability in multiple sclerosis (MS). However, functional impairments can be reduced with practice, suggesting that brain plasticity is preserved even in patients with substantial damage. OBJECTIVE . Here, functional magnetic resonance imaging (fMRI) was used to probe systems-level mechanisms of brain plasticity associated with improvements in visuomotor performance in MS patients and related to measures of microstructural damage. METHODS 23 MS patients and 12 healthy controls underwent brain fMRI during the first practice session of a visuomotor task (short-term practice) and after 2 weeks of daily practice with the same task (longer-term practice). Participants also underwent a structural brain MRI scan. RESULTS Patients performed more poorly than controls at baseline. Nonetheless, with practice, patients showed performance improvements similar to controls and independent of the extent of MRI measures of brain pathology. Different relationships between performance improvements and activations were found between groups: greater short-term improvements were associated with lower activation in the sensorimotor, posterior cingulate, and parahippocampal cortices for patients, whereas greater long-term improvements correlated with smaller activation reductions in the visual cortex of controls. CONCLUSIONS Brain plasticity for visuomotor practice is preserved in MS patients despite a high burden of cerebral pathology. Cognitive systems different from those acting in controls contribute to this plasticity in patients. These findings challenge the notion that increasing pathology is accompanied by an outright failure of adaptive plasticity, supporting a neuroscientific rationale for recovery-oriented strategies even in chronically disabled patients.
Collapse
Affiliation(s)
- Valentina Tomassini
- Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Richiardi J, Gschwind M, Simioni S, Annoni JM, Greco B, Hagmann P, Schluep M, Vuilleumier P, Van De Ville D. Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage 2012; 62:2021-33. [PMID: 22677149 DOI: 10.1016/j.neuroimage.2012.05.078] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS), a variable and diffuse disease affecting white and gray matter, is known to cause functional connectivity anomalies in patients. However, related studies published to-date are post hoc; our hypothesis was that such alterations could discriminate between patients and healthy controls in a predictive setting, laying the groundwork for imaging-based prognosis. Using functional magnetic resonance imaging resting state data of 22 minimally disabled MS patients and 14 controls, we developed a predictive model of connectivity alterations in MS: a whole-brain connectivity matrix was built for each subject from the slow oscillations (<0.11 Hz) of region-averaged time series, and a pattern recognition technique was used to learn a discriminant function indicating which particular functional connections are most affected by disease. Classification performance using strict cross-validation yielded a sensitivity of 82% (above chance at p<0.005) and specificity of 86% (p<0.01) to distinguish between MS patients and controls. The most discriminative connectivity changes were found in subcortical and temporal regions, and contralateral connections were more discriminative than ipsilateral connections. The pattern of decreased discriminative connections can be summarized post hoc in an index that correlates positively (ρ=0.61) with white matter lesion load, possibly indicating functional reorganisation to cope with increasing lesion load. These results are consistent with a subtle but widespread impact of lesions in white matter and in gray matter structures serving as high-level integrative hubs. These findings suggest that predictive models of resting state fMRI can reveal specific anomalies due to MS with high sensitivity and specificity, potentially leading to new non-invasive markers.
Collapse
Affiliation(s)
- Jonas Richiardi
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Colorado RA, Shukla K, Zhou Y, Wolinsky JS, Narayana PA. Multi-task functional MRI in multiple sclerosis patients without clinical disability. Neuroimage 2012; 59:573-581. [PMID: 21840409 PMCID: PMC3195884 DOI: 10.1016/j.neuroimage.2011.07.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/09/2011] [Accepted: 07/22/2011] [Indexed: 12/28/2022] Open
Abstract
While the majority of individuals with multiple sclerosis (MS) develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). Functional magnetic resonance imaging (fMRI) in MS patients with low disability suggests that increased use of the cognitive control system may limit the clinical manifestation of the disease. The current fMRI studies tested the hypothesis that nondisabled MS patients show increased recruitment of cognitive control regions while performing sensory, motor and cognitive tasks. Twenty two patients with relapsing-remitting MS and an Expanded Disability Status Scale (EDSS) score of ≤1.5 and 23 matched healthy controls were recruited. Subjects underwent fMRI while observing flashing checkerboards, performing right or left hand movements, or executing the 2-back working memory task. Compared to control subjects, patients demonstrated increased activation of the right dorsolateral prefrontal cortex and anterior cingulate cortex during the performance of the working memory task. This pattern of functional recruitment also was observed during the performance of non-dominant hand movements. These results support the mounting evidence of increased functional recruitment of cognitive control regions in the working memory system of MS patients with low disability and provide new evidence for the role of increased cognitive control recruitment in the motor system.
Collapse
Affiliation(s)
- René A. Colorado
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Karan Shukla
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Yuxiang Zhou
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Jerry S. Wolinsky
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| |
Collapse
|
30
|
Steens A, de Vries A, Hemmen J, Heersema T, Heerings M, Maurits N, Zijdewind I. Fatigue perceived by multiple sclerosis patients is associated with muscle fatigue. Neurorehabil Neural Repair 2011; 26:48-57. [PMID: 21856990 DOI: 10.1177/1545968311416991] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Fatigue is a debilitating symptom in multiple sclerosis (MS). Previous studies showed no association between fatigue as perceived by the patient and physiological measures of fatigability. OBJECTIVE The authors investigated associations between perceived fatigue and measures of fatigability after correction for differences in maximal voluntary contraction (MVC). METHODS A total of 20 people with relapsing-remitting MS with an Extended Disability Severity Score less than 5.5 and 20 healthy controls filled out the Fatigue Severity Score questionnaire of perceived fatigue. The authors obtained the MVC from the first dorsal interosseus muscle, voluntary muscle activation, and force decline during a sustained MVC (124 s, muscle fatigue). RESULTS Patients perceived increased levels of fatigue compared with controls (P < .001). Although patients and controls developed similar amounts of muscle fatigue during the sustained contraction, a linear regression model that included both muscle fatigue and MVC was positively associated with perceived fatigue in patients only (R (2) = 0.45; P = .01). Voluntary activation during the sustained contraction was negatively associated with perceived fatigue (R (2) = 0.25; P = .02). CONCLUSION The data indicate that fatigue perceived by MS patients is associated with measures of fatigability. This observation helps in the understanding of mechanisms underlying the increased levels of fatigue perceived by MS patients. These data also emphasize that for comparison of fatigue-related parameters between groups, correction for individual maximal force is essential.
Collapse
Affiliation(s)
- Anneke Steens
- Deptartment of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Pantano P, Bernardi S, Tinelli E, Pontecorvo S, Lenzi D, Raz E, Tona F, Gasperini C, Pozzilli C. Impaired cortical deactivation during hand movement in the relapsing phase of multiple sclerosis: a cross-sectional and longitudinal fMRI study. Mult Scler 2011; 17:1177-84. [PMID: 21677022 DOI: 10.1177/1352458511411757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Little is known about the cortical activation changes during clinical relapses in multiple sclerosis (MS). OBJECTIVE To assess cross-sectional and longitudinal differences in functional magnetic resonance imaging (fMRI) cortical patterns between the relapsing and stable phases of MS. METHODS We studied 32 patients with relapsing-remitting MS with mild disability: 19 within 48 h of symptom onset of a new relapse (G1) and 13 in the stable phase, relapse-free for at least 6 months (G2). All patients underwent fMRI twice, upon entry (time 1) and 30-50 days later (time 2), during right-hand movement. RESULTS No between-group differences were observed in age, disability or T2 lesion load. Between-group analysis showed a significant difference in the ipsilateral precentral gyrus (IPG) activation at time 1. Activity differences in the IPG expressed reduced deactivation in G1 compared with G2. Longitudinal changes in brain activity in the IPG were significantly greater in G1 than G2. G1 patients with a slow clinical recovery (n = 8) showed different activity at baseline and greater activity changes over time in the IPG than patients with a fast recovery (n = 11). CONCLUSION This study shows that the relapsing phase is associated with reduced brain deactivation in the IPG, which is more marked in patients with a slow clinical recovery. Increased cortical excitability associated with inflammation may determine functional modifications within the ipsilateral motor area.
Collapse
Affiliation(s)
- Patrizia Pantano
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tomassini V, Johansen-Berg H, Leonardi L, Paixão L, Jbabdi S, Palace J, Pozzilli C, Matthews PM. Preservation of motor skill learning in patients with multiple sclerosis. Mult Scler 2011; 17:103-15. [PMID: 20834040 PMCID: PMC3671324 DOI: 10.1177/1352458510381257] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Several studies have demonstrated benefits of rehabilitation in multiple sclerosis (MS). However, the neuroscientific foundations for rehabilitation in MS are poorly established. OBJECTIVES As rehabilitation and motor learning share similar mechanisms of brain plasticity, we test whether the dynamics of skill learning are preserved in MS patients relative to controls. METHODS MS patients and controls learned a repeating sequence of hand movements and were assessed for short-term learning. Long-term learning was tested in another cohort of patients and controls practising the same sequence daily for two weeks. RESULTS Despite differences in baseline performance, the dynamics and extent of improvements were comparable between MS and control groups for both the short- and long-term learning. Even the most severely damaged patients were capable of performance improvements of similar magnitude to that seen in controls. After one week of training patients performed as well as the controls at baseline. CONCLUSIONS Mechanisms for short- and long-term plasticity may compensate for impaired functional connectivity in MS to mediate behavioural improvements. Future studies are needed to define the neurobiological substrates of this plasticity and the extent to which mechanisms of plasticity in patients may be distinct from those used for motor learning in controls.
Collapse
Affiliation(s)
- Valentina Tomassini
- Oxford Centre for Functional MRI of the Brain (FMRIB), Department of Clinical Neurology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Codecà C, Mori F, Kusayanagi H, Monteleone F, Boffa L, Paolillo A, Bernardi G, Koch G, Centonze D. Differential patterns of interhemispheric functional disconnection in mild and advanced multiple sclerosis. Mult Scler 2010; 16:1308-16. [PMID: 20702503 DOI: 10.1177/1352458510376957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients with multiple sclerosis may present altered patterns of connectivity between the two brain hemispheres. To date, only transcallosal connectivity between the two primary motor cortices (M1) has been investigated functionally in patients with multiple sclerosis. OBJECTIVES The aim of this study was to investigate whether connectivity between the dorsal premotor cortex and the contralateral M1 was altered in patients with multiple sclerosis, and to see whether clinical progression is accompanied by exacerbated dorsal premotor cortex-M1 disconnectivity. METHODS A twin-coil transcranial magnetic stimulation approach was used to investigate both excitatory and inhibitory interhemispheric connections between the left dorsal premotor cortex and the contralateral M1 in 18 multiple sclerosis patients without disability, in 18 multiple sclerosis patients with advanced disease and in 12 age-matched healthy subjects. To activate distinct inhibitory and facilitatory transcallosal pathways, the intensity of dorsal premotor cortex stimulation was adjusted to be either suprathreshold (110% of resting motor threshold) or subthreshold (80% of active motor threshold). RESULTS Our sample of patients with multiple sclerosis showed altered patterns of interhemispheric dorsal premotor cortex-M1 functional connectivity even in the absence of clinical deficits. Facilitatory connections originating from dorsal premotor cortex were reduced in multiple sclerosis patients with or without disability, while inhibitory dorsal premotor cortex-M1 connections were altered only in disabled patients. CONCLUSIONS The current study demonstrates that functional excitatory connectivity originating from non-primary motor areas is compromised in multiple sclerosis patients even in the absence of clinical disability. Clinical disease progression leads to an impairment of both excitatory and inhibitory transcallosal connections.
Collapse
Affiliation(s)
- Claudia Codecà
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Giorgio A, Portaccio E, Stromillo ML, Marino S, Zipoli V, Battaglini M, Blandino A, Bartolozzi ML, Siracusa G, Amato MP, De Stefano N. Cortical functional reorganization and its relationship with brain structural damage in patients with benign multiple sclerosis. Mult Scler 2010; 16:1326-34. [DOI: 10.1177/1352458510377333] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Patients with multiple sclerosis (MS) who have a favourable clinical status several years after disease onset are classified as ‘benign’. In many cases brain tissue damage does not differ between benign MS and the ‘classical’ MS forms. Objective: To assess whether the favourable clinical course in benign MS could be explained by the presence of an efficient functional cortical reorganization. Method: Twenty-five right-handed patients with benign MS (defined as having Expanded Disability Status Scale ≤ 3 and disease duration >15 years) underwent functional MRI during a simple motor task (right-hand tapping) to assess movement-associated brain activation. This was compared with that of 10 patients with relapsing—remitting MS and 10 normal controls. Benign MS patients also underwent conventional brain MRI and magnetization transfer imaging, which was compared with an identical examination obtained 1 year before. Quantitative structural magnetic resonance measures were baseline and changes over time in T2-lesion volume, magnetization transfer ratio in T2 lesions and normal-appearing brain and total brain volume. Results: Movement-related activation was greater in patients with benign MS than in those with relapsing—remitting MS or normal controls, extensively involving bilateral regions of the sensorimotor network as well as basal ganglia, insula and cerebellum. Greater activation correlated with lower T2-lesion magnetization transfer ratio, and with decreasing brain volume and increasing T2 lesion volume. Conclusions: The results suggest that bilateral brain networks, beyond those normally engaged in motor tasks, are recruited during a simple hand movement in patients with benign MS. This increased activation is probably the expression of an extensive, compensatory and tissue-damage related functional cortical reorganization. This can explain, at least in part, the favourable clinical expression of patients with benign MS.
Collapse
Affiliation(s)
- Antonio Giorgio
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy
| | | | - Maria Laura Stromillo
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy
| | - Silvia Marino
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy, IRCCS Centro Neurolesi, 'Bonino-Pulejo', Messina, Italy
| | | | - Marco Battaglini
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy
| | - Anita Blandino
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy
| | | | | | | | - Nicola De Stefano
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy,
| |
Collapse
|
35
|
Harirchian MH, Rezvanizadeh A, Fakhri M, Oghabian MA, Ghoreishi A, Zarei M, Firouznia K, Ghanaati H. Non-invasive brain mapping of motor-related areas of four limbs in patients with clinically isolated syndrome compared to healthy normal controls. J Clin Neurosci 2010; 17:736-41. [DOI: 10.1016/j.jocn.2009.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 09/09/2009] [Accepted: 10/12/2009] [Indexed: 11/16/2022]
|
36
|
Unfolding the long-term pathophysiological processes following an acute inflammatory demyelinating lesion of multiple sclerosis. Magn Reson Imaging 2010; 28:477-86. [DOI: 10.1016/j.mri.2009.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/14/2009] [Accepted: 12/06/2009] [Indexed: 11/18/2022]
|
37
|
Rocca MA, Filippi M. FMRI correlates of execution and observation of foot movements in left-handers. J Neurol Sci 2010; 288:34-41. [DOI: 10.1016/j.jns.2009.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/18/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
38
|
Tomassini V, Palace J. Multiple sclerosis lesions: insights from imaging techniques. Expert Rev Neurother 2009; 9:1341-59. [PMID: 19769449 DOI: 10.1586/ern.09.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hallmark of multiple sclerosis (MS) pathology is the presence of inflammatory demyelinated lesions distributed throughout the CNS. Along with more diffuse tissue abnormalities, it is considered one of the major determinants of neurological deficit in MS. Conventional MRI has contributed to improve our understanding of MS pathology and has provided objective and reliable measures to monitor the effect of treatments. Advanced MRI techniques have offered the opportunity to quantify pathological changes in lesions, as well as in normal-appearing brain tissue and to characterize their dynamics. This review will discuss the characteristics and development of MS lesions and the contribution of conventional and quantitative MRI techniques to understanding pathological changes associated with them.
Collapse
Affiliation(s)
- Valentina Tomassini
- Oxford Centre for Functional MRI of the Brain (FMRIB), The University of Oxford, Department of Clinical Neurology, John Radcliffe Hospital, Headley Way, Headigton, Oxford OX39DU, UK.
| | | |
Collapse
|
39
|
Rocca MA, Absinta M, Valsasina P, Ciccarelli O, Marino S, Rovira A, Gass A, Wegner C, Enzinger C, Korteweg T, Sormani MP, Mancini L, Thompson AJ, De Stefano N, Montalban X, Hirsch J, Kappos L, Ropele S, Palace J, Barkhof F, Matthews PM, Filippi M. Abnormal connectivity of the sensorimotor network in patients with MS: a multicenter fMRI study. Hum Brain Mapp 2009; 30:2412-25. [PMID: 19034902 DOI: 10.1002/hbm.20679] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In this multicenter study, we used dynamic causal modeling to characterize the abnormalities of effective connectivity of the sensorimotor network in 61 patients with multiple sclerosis (MS) compared with 74 age-matched healthy subjects. We also investigated the correlation of such abnormalities with findings derived from structural MRI. In a subgroup of subjects, diffusion tensor (DT) MRI metrics of the corpus callosum and the left corticospinal tract (CST) were also assessed. MS patients showed increased effective connectivity relative to controls between: (a) the left primary SMC and the left dorsal premotor cortex (PMd), (b) the left PMd and the supplementary motor areas (SMA), (c) the left secondary sensorimotor cortex (SII) and the SMA, (d) the right SII and the SMA, (e) the left SII and the right SII, and (f) the right SMC and the SMA. MS patients had relatively reduced effective connectivity between the left SMC and the right cerebellum. No interaction was found between disease group and center. Coefficients of altered connectivity were weakly correlated with brain T2 LV, but moderately correlated with DT MRI-measured damage of the left CST. In conclusion, large multicenter fMRI studies of effective connectivity changes in diseased people are feasible and can facilitate studies with sample size large enough for robust outcomes. Increased effective connectivity in the patients for the simple motor task suggests local network modulation contributing to enhanced long-distance effective connectivity in MS patients. This extends and generalizes previous evidence that enhancement of effective connectivity may provide an important compensatory mechanism in MS.
Collapse
Affiliation(s)
- Maria A Rocca
- Department of Neurology, Scientific Institute and University, Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
MR imaging has had a major impact on understanding the dynamic neuropathologic findings of multiple sclerosis (MS), early diagnosis of the disease, and clinical trial conduct. The next 10 years can be expected to see further advances with a greater emphasis on large multicenter studies, new techniques and hardware allowing greater imaging sensitivity and resolution, and the exploitation of positron emission tomography molecular imaging for MS. The impact should be felt with a new emphasis on gray matter disease and processes of repair. With new ways of monitoring the disease, new treatment targets should become practical, helping to translate advances in the understanding of immunology and regenerative medicine into novel therapies.
Collapse
Affiliation(s)
- Paul M Matthews
- Glaxo Smith Kline Clinical Imaging Centre, Hammersmith Hospital, London, UK.
| |
Collapse
|
41
|
|
42
|
|
43
|
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) provides tissue metabolic information in vivo. This article reviews the role of MRS-determined metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord in advancing our knowledge of pathologic changes in multiple sclerosis (MS). In addition, the role of MRS in objectively evaluating therapeutic efficacy is reviewed. This potential metabolic information makes MRS a unique tool to follow MS disease evolution, understand its pathogenesis, evaluate the disease severity, establish a prognosis, and objectively evaluate the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Balasrinivasa R. Sajja
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE 68198-1045, (402) 559-3861, (402) 559-4829 (fax), (email)
| | - Jerry S. Wolinsky
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, (713) 500-7048, (713) 500-7041 (fax), (email)
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, (713) 500-7677, (713) 500-7684 (fax), (email)
| |
Collapse
|
44
|
A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. Neuroimage 2008; 43:421-9. [DOI: 10.1016/j.neuroimage.2008.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 07/25/2008] [Accepted: 08/04/2008] [Indexed: 11/21/2022] Open
|
45
|
Mezzapesa DM, Rocca MA, Rodegher M, Comi G, Filippi M. Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Hum Brain Mapp 2008; 29:562-73. [PMID: 17538952 PMCID: PMC6870672 DOI: 10.1002/hbm.20418] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE To assess the early cortical changes following an acute motor relapse secondary to a pseudotumoral lesion in MS patients, the longitudinal cortical functional correlates of clinical recovery, and the evolution over time of cortical reorganization. METHODS FMRI during the performance of a simple motor task were obtained from 12 MS patients (after a clinical attack involving the motor system secondary to a pseudotumoral lesion) and 15 matched controls. In six patients and five controls, a longitudinal fMRI study was also performed. RESULTS In patients, at baseline, the primary sensorimotor cortex (SMC) of the ipsilateral (contralesional) hemisphere was significantly more active during task performance with the impaired than the unimpaired hand. During task performance with the unimpaired hand, the ipsilateral cerebellum and several motor areas in the contralateral hemisphere were significantly more active. Pseudotumoral lesion volume was correlated with activation of the primary SMC bilaterally (r = -0.86 and -0.85) and the nine-hole peg test score with activation of the primary SMC of the affected hemisphere (r = 0.88). A recovery of function of the primary SMC of the affected hemisphere was found in the four patients with clinical improvement. In the two patients without clinical recovery, there was a persistent recruitment of the primary SMC of the unaffected hemisphere. CONCLUSIONS Pseudotumoral MS lesions affecting the motor system can determine short-term cortical changes characterized by the recruitment of pathways in the unaffected hemisphere. The regain of function of motor areas of the affected hemisphere seems to be a critical factor for a favorable recovery.
Collapse
Affiliation(s)
- Domenico M. Mezzapesa
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Mariaemma Rodegher
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
46
|
Impaired object manipulation in mildly involved individuals with multiple sclerosis. Motor Control 2008; 12:3-20. [PMID: 18209246 DOI: 10.1123/mcj.12.1.3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We investigated hand function in mildly involved multiple sclerosis (MS) patients (N = 16; Expanded Disability Status Scale 1-5, 9-hole peg test 14-32 s) during static and dynamic manipulation tasks using an instrumented device. When compared with healthy controls (N = 16), the patients revealed impaired task performance regarding their ability to exert prescribed patterns of load force (L; force acting tangentially at the digits-object surface). Regarding the coordination of grip force (G; normal component) and L, the data only revealed an elevated G/L ratio, although both the G and L coupling (maximum correlation coefficients and the time lags between them) and the G modulation (gain and offset of G with respect to L) remained comparable in the two groups. Finally, most of the data suggested no MS-specific effects of switching from uni- to bimanual tasks, from available visual feedback to deprived feedback conditions. We conclude that the deterioration in the ability for precise control of external forces and overgripping could precede the decoupling of G and L and decreased G modulation in early phases of the disease. The results also suggest that the applied methodology could be sensitive enough to detect mild levels of impairment of hand function in MS and, possibly, other neurological diseases.
Collapse
|
47
|
Wegner C, Filippi M, Korteweg T, Beckmann C, Ciccarelli O, De Stefano N, Enzinger C, Fazekas F, Agosta F, Gass A, Hirsch J, Johansen-Berg H, Kappos L, Barkhof F, Polman C, Mancini L, Manfredonia F, Marino S, Miller DH, Montalban X, Palace J, Rocca M, Ropele S, Rovira A, Smith S, Thompson A, Thornton J, Yousry T, Matthews PM. Relating functional changes during hand movement to clinical parameters in patients with multiple sclerosis in a multi-centre fMRI study. Eur J Neurol 2008; 15:113-22. [PMID: 18217881 DOI: 10.1111/j.1468-1331.2007.02027.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We performed a prospective multi-centre study using functional magnetic resonance imaging (fMRI) to better characterize the relationships between clinical expression and brain function in patients with multiple sclerosis (MS) at eight European sites (56 MS patients and 60 age-matched, healthy controls). Patients showed greater task-related activation bilaterally in brain regions including the pre- and post-central, inferior and superior frontal, cingulate and superior temporal gyri and insula (P < 0.05, all statistics corrected for multiple comparisons). Both patients and healthy controls showed greater brain activation with increasing age in the ipsilateral pre-central and inferior frontal gyri (P < 0.05). Patients, but not controls, showed greater brain activation in the anterior cingulate gyrus and the bilateral ventral striatum (P < 0.05) with less hand dexterity. An interaction between functional activation changes in MS and age was found. This large fMRI study over a broadly selected MS patient population confirms that movement for patients demands significantly greater cognitive 'resource allocation' and suggests age-related differences in brain responses to the disease. These observations add to evidence that brain functional responses (including potentially adaptive brain plasticity) contribute to modulation of clinical expression of MS pathology and demonstrate the feasibility of a multi-site functional MRI study of MS.
Collapse
Affiliation(s)
- C Wegner
- Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
During the past decade, functional MRI studies in patients with multiple sclerosis (MS) have consistently shown that the variable effectiveness of recovery mechanisms following disease-related tissue injury is one of the factors that might explain, at least partially, the paucity of the correlation between clinical and MRI findings in these patients. More recently, technical developments resulted in an improvement of acquisition and post-processing schemes that, in turn, allowed us to further characterize the functional and structural abnormalities of specific regions of the CNS, thus ameliorating the understanding of the mechanisms associated with the clinical manifestations and disability accumulation in MS. This review focuses on such recent achievements and provides an update of functional MRI studies of MS performed in the past few years.
Collapse
Affiliation(s)
- Massimo Filippi
- Scientific Institute & University Ospedale San Raffaele, Neuroimaging Research Unit, Department of Neurology, via Olgettina 60, 20132 Milan, Italy
| | - Maria A Rocca
- Scientific Institute & University Ospedale San Raffaele, Neuroimaging Research Unit, Department of Neurology, Milan, Italy
| |
Collapse
|
49
|
Impairment of movement-associated brain deactivation in multiple sclerosis: further evidence for a functional pathology of interhemispheric neuronal inhibition. Exp Brain Res 2008; 187:25-31. [PMID: 18236036 DOI: 10.1007/s00221-008-1276-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
Motor control demands coordinated excitation and inhibition across distributed brain neuronal networks. Recent work has suggested that multiple sclerosis (MS) may be associated with impairments of neuronal inhibition as part of more general progressive impairments of connectivity. Here, we report results from a prospective, multi-centre fMRI study designed to characterise the changes in patients relative to healthy controls during a simple cued hand movement task. This study was conducted at eight European sites using 1.5 Tesla scanners. Brain deactivation during right hand movement was assessed in 56 right-handed patients with relapsing-remitting or secondary progressive MS without clinically evident hand impairment and in 60 age-matched, healthy subjects. The MS patients showed reduced task-associated deactivation relative to healthy controls in the pre- and postcentral gyri of the ipsilateral hemisphere in the region functionally specialised for hand movement control. We hypothesise that this impairment of deactivation is related to deficits of transcallosal connectivity and GABAergic neurotransmission occurring with the progression of pathology in the MS patients. This study has substantially extended previous observations with a well-powered, multicentre study. The clinical significance of these deactivation changes is still uncertain, but the functional anatomy of the affected region suggests that they could contribute to impairments of motor control.
Collapse
|
50
|
Rocca MA, Agosta F, Colombo B, Mezzapesa DM, Falini A, Comi G, Filippi M. fMRI changes in relapsing-remitting multiple sclerosis patients complaining of fatigue after IFNbeta-1a injection. Hum Brain Mapp 2007; 28:373-82. [PMID: 16933299 PMCID: PMC6871322 DOI: 10.1002/hbm.20279] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
If fatigue in multiple sclerosis (MS) is related to an abnormal activation of the sensorimotor brain network, the activity of such a network should vary with varying fatigue. We studied 22 patients treated with interferon beta 1a (IFNbeta-1a; Avonex, Biogen, Cambridge, MA) with no fatigue (10) and with reversible fatigue (12). fMRI examinations were performed: 1) the same day of IFNbeta-1a injection (no fatigue; entry), 2) the day after IFNbeta-1a injection (fatigue; time 1), and 3) 4 days after IFNbeta-1a injection (no fatigue; time 2). Patients performed a simple motor task with the right, clinically unaffected hand. At time 1, compared with entry and time 2, MS patients with reversible fatigue showed an increased activation of the thalamus bilaterally. In MS patients without fatigue thalamus was more activated at entry than at time 1. In both groups at entry the primary SMC and the SMA were more activated than at times 1 and 2. At entry and time 1, when compared to patients with reversible fatigue, those without showed increased activations of the SII. Conversely, patients with reversible fatigue had increased activations of the thalamus and of several regions of the frontal lobes. An abnormal recruitment of the fronto-thalamic circuitry is associated with IFNbeta-1a-induced fatigue in MS patients.
Collapse
Affiliation(s)
- Maria A. Rocca
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Bruno Colombo
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Domenico M. Mezzapesa
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
- Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| |
Collapse
|