1
|
Buneeva O, Medvedev A. Ubiquitin Carboxyl-Terminal Hydrolase L1 and Its Role in Parkinson's Disease. Int J Mol Sci 2024; 25:1303. [PMID: 38279302 PMCID: PMC10816476 DOI: 10.3390/ijms25021303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), also known as Parkinson's disease protein 5, is a highly expressed protein in the brain. It plays an important role in the ubiquitin-proteasome system (UPS), where it acts as a deubiquitinase (DUB) enzyme. Being the smallest member of the UCH family of DUBs, it catalyzes the reaction of ubiquitin precursor processing and the cleavage of ubiquitinated protein remnants, thus maintaining the level of ubiquitin monomers in the brain cells. UCHL1 mutants, containing amino acid substitutions, influence catalytic activity and its aggregability. Some of them protect cells and transgenic mice in toxin-induced Parkinson's disease (PD) models. Studies of putative protein partners of UCHL1 revealed about sixty individual proteins located in all major compartments of the cell: nucleus, cytoplasm, endoplasmic reticulum, plasma membrane, mitochondria, and peroxisomes. These include proteins related to the development of PD, such as alpha-synuclein, amyloid-beta precursor protein, ubiquitin-protein ligase parkin, and heat shock proteins. In the context of the catalytic paradigm, the importance of these interactions is not clear. However, there is increasing understanding that UCHL1 exhibits various effects in a catalytically independent manner through protein-protein interactions. Since this protein represents up to 5% of the soluble protein in the brain, PD-related changes in its structure will have profound effects on the proteomes/interactomes in which it is involved. Growing evidence is accumulating that the role of UCHL1 in PD is obviously determined by a balance of canonic catalytic activity and numerous activity-independent protein-protein interactions, which still need better characterization.
Collapse
Affiliation(s)
| | - Alexei Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia;
| |
Collapse
|
2
|
Saini P, Rudakou U, Yu E, Ruskey JA, Asayesh F, Laurent SB, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Espay AJ, Rouleau GA, Alcalay RN, Fon EA, Postuma RB, Gan-Or Z. Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson's disease. Neurobiol Aging 2020; 100:119.e7-119.e13. [PMID: 33239198 DOI: 10.1016/j.neurobiolaging.2020.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
Rare mutations in genes originally discovered in multigenerational families have been associated with increased risk of Parkinson's disease (PD). The involvement of rare variants in DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 loci has been poorly studied or has produced conflicting results across cohorts. However, they are still being often referred to as "PD genes" and used in different models. To further elucidate the role of these 5 genes in PD, we fully sequenced them using molecular inversion probes in 2408 patients with PD and 3444 controls from 3 different cohorts. A total of 788 rare variants were identified across the 5 genes and 3 cohorts. Burden analyses and optimized sequence Kernel association tests revealed no significant association between any of the genes and PD after correction for multiple comparisons. Our results do not support an association of the 5 tested genes with PD. Combined with previous studies, it is unlikely that any of these genes plays an important role in PD. Their designation as "PARK" genes should be reconsidered.
Collapse
Affiliation(s)
- Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Uladzislau Rudakou
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Sandra B Laurent
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Oury Monchi
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Yves Dauvilliers
- Department of Neurology, National Reference Center for Narcolepsy, Sleep Unit, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Lior Greenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Alberto J Espay
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ronald B Postuma
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
3
|
Association between ubiquitin carboxy-terminal hydrolase-L1 S18Y variant and risk of Parkinson's disease: the impact of ethnicity and onset age. Neurol Sci 2014; 36:179-88. [PMID: 25370916 DOI: 10.1007/s10072-014-1987-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/21/2014] [Indexed: 01/06/2023]
Abstract
The Ubiquitin carboxy-terminal hydrolase-L1 (UCHL1) is a candidate risk gene for Parkinson' disease (PD), and a function SNP (rs5030732) in the coding region of this gene has been studied for the association with the disease extensively among worldwide populations, but the results were inconsistent and controversial. Here, to estimate the association between UCHL1 S18Y polymorphism and risk of PD in general population, we conducted a systematic meta-analysis by combining all available case-control subjects in Asian, European, and American populations, with a total of 7742 PD cases and 8850 healthy controls, and the pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) for UCHL1 S18Y polymorphism and PD were calculated using the Mantel-Haenszel method with a fixed- or random-effects model. Subgroup analysis was also performed in different onset age-matched groups. Among high-quality studies, UCHL1 S18Y polymorphism was moderately associated with the risk of PD (allele contrasts, OR = 1.063, 95% CI 1.008-1.122; p = 0.024; regressive genetic model, OR = 1.078, 95% CI 1.005-1.157; p = 0.035). When stratifying for ethnicity, none association were observed in subgroups. Analysis of early-onset PD (EOPD) and late-onset PD (LOPD) revealed that the polymorphism was not associated with the risk of PD. In conclusion, our meta-analysis suggests that UCHL1 S18Y polymorphism is moderately associated with susceptibility to PD, and more studies are needed to confirm our conclusion.
Collapse
|
4
|
Miyake Y, Tanaka K, Fukushima W, Kiyohara C, Sasaki S, Tsuboi Y, Yamada T, Oeda T, Shimada H, Kawamura N, Sakae N, Fukuyama H, Hirota Y, Nagai M. UCHL1 S18Y variant is a risk factor for Parkinson's disease in Japan. BMC Neurol 2012; 12:62. [PMID: 22839974 PMCID: PMC3488468 DOI: 10.1186/1471-2377-12-62] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/16/2012] [Indexed: 01/28/2023] Open
Abstract
Background A recent meta-analysis on the UCHL1 S18Y variant and Parkinson’s disease (PD) showed a significant inverse association between the Y allele and PD; the individual studies included in that meta-analysis, however, have produced conflicting results. We examined the relationship between UCHL1 S18Y single nucleotide polymorphism (SNP) and sporadic PD in Japan. Methods Included were 229 cases within 6 years of onset of PD, defined according to the UK PD Society Brain Bank clinical diagnostic criteria. Controls were 357 inpatients and outpatients without neurodegenerative disease. Adjustment was made for sex, age, region of residence, smoking, and caffeine intake. Results Compared with subjects with the CC or CA genotype of UCHL1 S18Y SNP, those with the AA genotype had a significantly increased risk of sporadic PD: the adjusted OR was 1.57 (95 % CI: 1.06 − 2.31). Compared with subjects with the CC or CA genotype of UCHL1 S18Y and the CC or CT genotype of SNCA SNP rs356220, those with the AA genotype of UCHL1 S18Y and the TT genotype of SNP rs356220 had a significantly increased risk of sporadic PD; the interaction, however, was not significant. Our previous investigation found significant inverse relationships between smoking and caffeine intake and PD in this population. There were no significant interactions between UCHL1 S18Y and smoking or caffeine intake affecting sporadic PD. Conclusions This study reveals that the UCHL1 S18Y variant is a risk factor for sporadic PD. We could not find evidence for interactions affecting sporadic PD between UCHL1 S18Y and SNCA SNP rs356220, smoking, or caffeine intake.
Collapse
Affiliation(s)
- Yoshihiro Miyake
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Xilouri M, Kyratzi E, Pitychoutis PM, Papadopoulou-Daifoti Z, Perier C, Vila M, Maniati M, Ulusoy A, Kirik D, Park DS, Wada K, Stefanis L. Selective neuroprotective effects of the S18Y polymorphic variant of UCH-L1 in the dopaminergic system. Hum Mol Genet 2011; 21:874-89. [DOI: 10.1093/hmg/ddr521] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Wang L, Guo JF, Nie LL, Luo L, Zuo X, Shen L, Jiang H, Yan XX, Xia K, Pan Q, Tang BS. Case-control study of the UCH-L1 S18Y variant in sporadic Parkinson's disease in the Chinese population. J Clin Neurosci 2011; 18:541-4. [PMID: 21315600 DOI: 10.1016/j.jocn.2010.07.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/27/2010] [Accepted: 07/24/2010] [Indexed: 10/18/2022]
Abstract
The ubiquitin carboxy-terminal hydrolase L1 gene (UCH-L1) has been implicated in the etiology of Parkinson's disease (PD). In several previous studies, an S18Y (C54A) polymorphism in exon 3 of the UCH-L1 gene has been found to be protective against PD. We performed polymerase chain reaction-restriction fragment length polymorphism analysis for DNA samples from 408 Chinese patients with PD and 398 Chinese healthy controls. For the S18Y variant, there was no significant difference either in the individual allele or genotype frequencies between cases and control subjects. Possession of the S18Y variant did not alter the risk of developing PD (odds ratio: 0.827; 95% confidence interval=0.596-1.147). There was no statistically significant difference in terms of age or sex distribution between the patients and controls (p>0.05). Overall, considering our present results together with those of our previous studies, we now have access to data from more than 1000 patients from different regions of China, supporting the conclusion that the S18Y polymorphism may not have a protective effect against PD in the Chinese population.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ragland M, Hutter C, Zabetian C, Edwards K. Association between the ubiquitin carboxyl-terminal esterase L1 gene (UCHL1) S18Y variant and Parkinson's Disease: a HuGE review and meta-analysis. Am J Epidemiol 2009; 170:1344-57. [PMID: 19864305 PMCID: PMC2778765 DOI: 10.1093/aje/kwp288] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 08/13/2009] [Indexed: 01/26/2023] Open
Abstract
The ubiquitin carboxyl-terminal esterase L1 gene, UCHL1, located on chromosome 4p14, has been studied as a potential candidate gene for Parkinson's disease risk. The authors conducted a Human Genome Epidemiology review and meta-analysis of published case-control studies of the UCHL1 S18Y variant and Parkinson's disease in Asian and Caucasian samples. The meta-analysis of studies in populations of Asian ancestry showed a statistically significant association between the Y allele and reduced risk of Parkinson's disease under a recessive model (odds ratio (OR) for YY vs. SY + SS = 0.79, 95% confidence interval (CI): 0.67, 0.94; P = 0.006). For a dominant model, the association was not significant in Asian populations (OR for YY + SY vs. SS = 0.88, 95% CI: 0.68, 1.14; P = 0.33). For populations of European ancestry, the meta-analysis showed a significant association between the Y allele and decreased risk of Parkinson's disease under a dominant model (OR = 0.89, 95% CI: 0.81, 0.98; P = 0.02) but not under a recessive model (OR = 0.92, 95% CI: 0.66, 1.30; P = 0.65). Using the Venice criteria, developed by the Human Genome Epidemiology Network Working Group on the assessment of cumulative evidence, the authors concluded that moderate evidence exists for an association between the S18Y variant and Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Karen Edwards
- Correspondence to Dr. Karen Edwards, University of Washington, Center for Genomics and Public Health, Box 354921, 6200 NE 74th Street, Building 29, Suite 250, Seattle, WA 98115 (e-mail: )
| |
Collapse
|
8
|
Westerlund M, Hoffer B, Olson L. Parkinson's disease: Exit toxins, enter genetics. Prog Neurobiol 2009; 90:146-56. [PMID: 19925845 DOI: 10.1016/j.pneurobio.2009.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/15/2009] [Accepted: 11/10/2009] [Indexed: 12/21/2022]
Abstract
Parkinson's disease was long considered a non-hereditary disorder. Despite extensive research trying to find environmental risk factors for the disease, genetic variants now stand out as the major causative factor. Since a number of genes have been implicated in the pathogenesis it seems likely that several molecular pathways and downstream effectors can affect the trophic support and/or the survival of dopamine neurons, subsequently leading to Parkinson's disease. The present review describes how toxin-based animal models have been valuable tools in trying to find the underlying mechanisms of disease, and how identification of disease-linked genes in humans has led to the development of new transgenic rodent models. The review also describes the current status of the most common genetic susceptibility factors for Parkinson's disease identified up to today.
Collapse
Affiliation(s)
- Marie Westerlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
9
|
Hutter CM, Samii A, Factor SA, Nutt JG, Higgins DS, Bird TD, Griffith A, Roberts JW, Leis BC, Montimurro JS, Kay DM, Edwards KL, Payami H, Zabetian CP. Lack of evidence for an association between UCHL1 S18Y and Parkinson's disease. Eur J Neurol 2008; 15:134-9. [PMID: 18093156 PMCID: PMC2823263 DOI: 10.1111/j.1468-1331.2007.02012.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UCHL1 has been proposed as a candidate gene for Parkinson's disease (PD). A meta-analysis of white and Asian subjects reported an inverse association between the non-synonymous UCHL1 S18Y polymorphism and PD risk. However, this finding was not replicated in a large case-control study and updated meta-analysis restricted to white subjects. We performed a case-control study of 1757 PD patients recruited from movement disorder clinics and 2016 unrelated controls from four regions of the United States. All subjects self-reported as white. We did not observe evidence for an association between S18Y genotypes and PD (overall P-value for association: P = 0.42). After adjustment for age, sex, and recruitment region, the odds ratio for Y/S versus S/S was 0.91 (95% CI: 0.78-1.06) and for Y/Y versus S/S was 0.87 (95% CI: 0.58-1.29). We also did not observe a significant association for recessive or dominant models of inheritance, or after stratification by age at onset, age at blood draw, sex, family history of PD, or recruitment region. Our results suggest that UCHL1 S18Y is not a major susceptibility factor for PD in white populations although we cannot exclude the possibility that the S18Y variant exerts weak effects on risk, particularly in early-onset disease.
Collapse
Affiliation(s)
- Carolyn M Hutter
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Much has been learned in recent years about the genetics of familial Parkinson's disease. However, far less is known about those malfunctioning genes which contribute to the emergence and/or progression of the vast majority of cases, the 'sporadic Parkinson's disease', which is the focus of our current review. Drastic differences in the reported prevalence of Parkinson's disease in different continents and countries suggest ethnic and/or environmental-associated multigenic contributions to this disease. Numerous association studies showing variable involvement of multiple tested genes in these distinct locations support this notion. Also, variable increases in the risk of Parkinson's disease due to exposure to agricultural insecticides indicate complex gene-environment interactions, especially when genes involved in protection from oxidative stress are explored. Further consideration of the brain regions damaged in Parkinson's disease points at the age-vulnerable cholinergic-dopaminergic balance as being involved in the emergence of sporadic Parkinson's disease in general and in the exposure-induced risks in particular. More specifically, the chromosome 7 ACHE/PON1 locus emerges as a key region controlling this sensitive balance, and animal model experiments are compatible with this concept. Future progress in the understanding of the genetics of sporadic Parkinson's disease depends on globally coordinated, multileveled studies of gene-environment interactions.
Collapse
Affiliation(s)
- Liat Benmoyal-Segal
- Department of Biological Chemistry, The Life Sciences Institute, Jerusalem, Israel
| | | |
Collapse
|
11
|
Healy DG, Abou-Sleiman PM, Casas JP, Ahmadi KR, Lynch T, Gandhi S, Muqit MMK, Foltynie T, Barker R, Bhatia KP, Quinn NP, Lees AJ, Gibson JM, Holton JL, Revesz T, Goldstein DB, Wood NW. UCHL-1 is not a Parkinson's disease susceptibility gene. Ann Neurol 2006; 59:627-33. [PMID: 16450370 DOI: 10.1002/ana.20757] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The UCHL-1 gene is widely cited as a susceptibility factor for sporadic Parkinson's disease (PD). The strongest evidence comes from a meta-analysis of small studies that reported the S18Y polymorphism as protective against PD, after pooling studies of white and Asian subjects. Here, we present data that challenge this association. METHODS In a new large case-control study in white individuals (3,023 subjects), the S18Y variant was not protective against PD under any genetic model of inheritance. Similarly, a more powerful haplotype-tagging approach did not detect other associated variants. RESULTS Finally, in an updated S18Y-PD meta-analysis (6,594 subjects), no significant association was observed under additive, recessive, or dominant models (odds ratio = 1.00 [95% confidence interval: 0.74-1.33]; odds ratio = 1.01 [95% confidence interval: 0.76-1.35]; and odds ratio = 0.96 [95% confidence interval: 0.86-1.08], respectively), and a cumulative meta-analysis showed a trend toward a null effect. INTERPRETATION Based on the current evidence, the UCHL-1 gene does not exhibit a protective effect in PD.
Collapse
Affiliation(s)
- Daniel G Healy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tan EK, Puong KY, Fook-Chong S, Chua E, Shen H, Yuen Y, Pavanni R, Wong MC, Puvan K, Zhao Y. Case–control study of UCHL1 S18Y variant in Parkinson's disease. Mov Disord 2006; 21:1765-8. [PMID: 16941465 DOI: 10.1002/mds.21064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A recent meta-analysis observed a greater significant inverse association of the ubiquitin carboxy-terminal hydrolase L1 (UCHL1) S18Y variant with Parkinson's disease (PD) for Asian (predominantly Japanese) populations compared with Caucasian populations. We performed an independent case-control study in 335 PD and 341 control subjects with data from a Chinese population to investigate the age-of-onset effect of the UCHL1 variant in PD. The Y/Y and Y/S genotypes were less frequent in the PD young-onset group than in controls and the frequency of the Y alleles was higher in young controls compared to young-onset PD (age at examination <or= 65 years; P = 0.003). Multivariate analysis revealed the Y/Y genotype was significantly lower (P = 0.008) in the young-onset PD (Y/Y vs. S/S: odds ratio [OR]: 0.42; 95% confidence interval [CI]: 0.24, 0.74; S/Y vs. S/S: OR: 0.66, 95% CI: 0.41, 1.08) compared with controls, but this difference was not seen for the late-onset PD. Kaplan-Meier analysis carried out on PD subjects demonstrated that the Y/Y genotype was associated with a later onset of PD than Y/S plus S/S genotypes (P = 0.05). We provided an independent confirmation of the protective effect of the UCHL1 S18Y variant (Y/Y genotype) against PD in young Chinese subjects. Further functional studies of the S18Y variant in both cell and animal models will be of interest.
Collapse
Affiliation(s)
- Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jain S, Wood NW, Healy DG. Molecular genetic pathways in Parkinson's disease: a review. Clin Sci (Lond) 2005; 109:355-64. [PMID: 16171459 DOI: 10.1042/cs20050106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major progress has been made in the last decade in understanding the genetic basis of PD (Parkinson's disease) with five genes unequivocally associated with disease. As a result, multiple pathways have been implicated in the pathogenesis of PD, including proteasome impairment and mitochondrial dysfunction. Although Mendelian genetics has been successful in establishing a genetic predisposition for familial PD, this has not been reiterated in the sporadic form. In fact no genetic factors have been unequivocally associated with increased risk for sporadic PD. The difficulty in identifying susceptibility factors in PD has not only been because of numerous underpowered studies, but we have been unable to dissect out the genetic component in a multifactorial disease. This review aims to summarize the genetic findings within PD.
Collapse
Affiliation(s)
- Shushant Jain
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, U.K
| | | | | |
Collapse
|
14
|
Healy DG, Abou-Sleiman PM, Wood NW. Genetic causes of Parkinson?s disease: UCHL-1. Cell Tissue Res 2004; 318:189-94. [PMID: 15221445 DOI: 10.1007/s00441-004-0917-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 05/07/2004] [Indexed: 01/02/2023]
Abstract
The ubiquitin proteasome system is an important cellular pathway that ubiquitinates damaged proteins and degrades them via the 26S proteasome. Abnormalities of this pathway can result in molecular protein aggregation and have been associated with Parkinson's disease (PD). UCHL-1, an enzyme central to the system, possesses catalytic hydrolase activity that can hydrolyze peptide-ubiquitin bonds and recycle ubiquitin monomers for re-use in the same process. Recently, UCHL-1 has been shown to possess a second dimerisation-dependent ligase activity and, at least in vitro, this ligase activity promotes alpha synuclein aggregation. UCHL-1 was first implicated in PD by the discovery of an I93M mutation identified in a German sib-pair with probable autosomal dominant PD. Although no further UCHL-1 mutations have been identified, a common non-synonymous S18Y polymorphism has been suggested to reduce disease susceptibility in non-mendelian forms of PD. In vitro functional data support this protective effect, with evidence that S18Y possesses reduced ligase activity compared with wild type UCHL-1. One study has found increased hydrolase activity associated with S18Y, although another study has not. Important issues regarding UCHL-1 and its role in PD remain inconclusive, especially regarding the pathogenicity of the mendelian I93M mutation. This review tries to address some of these uncertainties.
Collapse
Affiliation(s)
- Daniel G Healy
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| | | | | |
Collapse
|
15
|
Maraganore DM, Lesnick TG, Elbaz A, Chartier-Harlin MC, Gasser T, Krüger R, Hattori N, Mellick GD, Quattrone A, Satoh JI, Toda T, Wang J, Ioannidis JPA, de Andrade M, Rocca WA, Toda T. UCHL1 is a Parkinson's disease susceptibility gene. Ann Neurol 2004; 55:512-21. [PMID: 15048890 DOI: 10.1002/ana.20017] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reported inverse association between the S18Y variant of the ubiquitin carboxy-terminal hydrolase L1 (UCHL1) gene and Parkinson's disease (PD) has strong biological plausibility. If confirmed, genetic association of this variant with PD may support molecular targeting of the UCHL1 gene and its product as a therapeutic strategy for PD. In this light, we performed a collaborative pooled analysis of individual-level data from all 11 published studies of the UCHL1 S18Y gene variant and PD. There were 1,970 cases and 2,224 unrelated controls. We found a statistically significant inverse association of S18Y with PD. Carriers of the variant allele (Y/Y plus Y/S vs S/S) had an odds ratio (OR) of 0.84 (95% confidence interval [CI], 0.73-0.95) and homozygotes for the variant allele (Y/Y vs S/S plus Y/S) had an OR of 0.71 (95% CI, 0.57-0.88). There was a linear trend in the log OR consistent with a gene dose effect (p = 0.01). The inverse association was most apparent for young cases compared with young controls. There was no evidence for publication bias and the associations remained significant after excluding the first published, hypothesis-generating study. These findings confirm that UCHL1 is a susceptibility gene for PD and a potential target for disease-modifying therapies.
Collapse
|
16
|
Maraganore DM, de Andrade M, Lesnick TG, Farrer MJ, Bower JH, Hardy JA, Rocca WA. Complex interactions in Parkinson's disease: a two-phased approach. Mov Disord 2003; 18:631-6. [PMID: 12784265 DOI: 10.1002/mds.10431] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The identification of pathogenic mutations in the three genes alpha-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 (UCHL1) has elucidated the ubiquitin proteasome system (UPS) and its potential role as a causal pathway in Parkinson's disease (PD). In addition, polymorphisms of these three genes have been shown to be independently associated with PD. In a sample of 298 unrelated PD cases and 185 controls, we applied a two-phased approach of recursive partitioning and logistic regression analyses to explore complex interactions. For women only, we observed an epistatic interaction of UCHL1 and alpha-synuclein genotypes with significant effects on PD risk (odds ratio = 2.42; P = 0.003). Our findings are consistent with the hypothesis that PD is a multigenic disorder of the UPS.
Collapse
Affiliation(s)
- Demetrius M Maraganore
- Department of Neurology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Lin JJ, Yueh KC, Chang DC, Chang CY, Yeh YH, Lin SZ. The homozygote 10-copy genotype of variable number tandem repeat dopamine transporter gene may confer protection against Parkinson's disease for male, but not to female patients. J Neurol Sci 2003; 209:87-92. [PMID: 12686408 DOI: 10.1016/s0022-510x(03)00002-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the role of variable number tandem repeat (VNTR) polymorphism of the dopamine transporter gene (DAT) in the pathogenesis of Parkinson's disease (PD) in Taiwanese. A case-control study was carried out to examine the association of the VNTR polymorphism within the DAT between 193 sporadic PD patients and 254 controls, matched by age and sex. Six alleles of VNTR polymorphism in the DAT, consisting of 6, 7, 8, 9, 10 and 11 copies of the 40-base-pair (bp) repeat sequence, were detected in the study. There were no differences of allele frequency (chi(2)=5.239, p=0.387) and genotype polymorphism of the DAT VNTR (chi(2)=11.873, p=0.157) in PD patients from the controls. Further analysis stratified by sex and age at onset did not show associations. However, PD patients carrying homozygote 10-copy genotype of the DAT VNTR polymorphism were 0.67 times fewer than controls (chi(2)=4.569, odds radio (OR)=0.67, 95% confidence interval (CI)=0.45-0.97, p=0.033). The reduced risk of the homozygosity with PD genotype was only in male PD patients (chi(2)=2.923, OR=0.48, 95% CI=0.25-0.93, p=0.026), but not in female PD patients (chi(2)=0.002, OR=1.02, 95% CI=0.49-2.11, p=0.966). In conclusion, the results of our study show that homozygote 10-copy genotype of the VNTR polymorphism within the DAT may confer a protective factor for male PD patients, but not for female PD patients.
Collapse
Affiliation(s)
- Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Nantou, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
18
|
Nishikawa K, Li H, Kawamura R, Osaka H, Wang YL, Hara Y, Hirokawa T, Manago Y, Amano T, Noda M, Aoki S, Wada K. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun 2003; 304:176-83. [PMID: 12705903 DOI: 10.1016/s0006-291x(03)00555-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a neuron-specific ubiquitin recycling enzyme. A mutation at residue 93 and polymorphism at residue 18 within human UCH-L1 are linked to familial Parkinson's disease and a decreased Parkinson's disease risk, respectively. Thus, we constructed recombinant human UCH-L1 variants and examined their structure (using circular dichroism) and hydrolase activities. We confirmed that an I93M substitution results in a decrease in kcat (45.6%) coincident with an alteration in alpha-helical content. These changes may contribute to the pathogenesis of Parkinson's disease. In contrast, an S18Y substitution results in an increase in kcat (112.6%) without altering the circular dichroistic spectrum. These data suggest that UCH-L1 hydrolase activity may be inversely correlated with Parkinson's disease risk and that the hydrolase activity is protective against the disease. Furthermore, we found that oxidation of UCH-L1 by 4-hydroxynonenal, a candidate for endogenous mediator of oxidative stress-induced neuronal cell death, results in a loss of hydrolase activity. Taken together, these results suggest that further studies of altered UCH-L1 hydrolase function may provide new insights into a possible common pathogenic mechanism between familial and sporadic Parkinson's disease.
Collapse
Affiliation(s)
- Kaori Nishikawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, 187-8502, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Elbaz A, Levecque C, Clavel J, Vidal JS, Richard F, Corrèze JR, Delemotte B, Amouyel P, Alpérovitch A, Chartier-Harlin MC, Tzourio C. S18Y polymorphism in the UCH-L1 gene and Parkinson's disease: evidence for an age-dependent relationship. Mov Disord 2003; 18:130-7. [PMID: 12539205 DOI: 10.1002/mds.10326] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We studied the relationship between Parkinson's disease (PD) and the S18Y polymorphism in the UCH-L1 gene and the effect on this relationship of age at onset, smoking, and pesticides. Patients requested free health coverage for PD to the Mutualité Sociale Agricole (MSA), the French health insurance organization for people whose work is related to agriculture. Controls requested reimbursement of health expenses to the MSA. A maximum of three controls were matched to each case. Analyses included participants with both parents born in Europe. There were no differences in S18Y genotypes between patients (n = 209; 67% SS, 32% SY, 1% YY) and controls (n = 488; 66% SS, 30% SY, 4% YY). The relationship between PD and S18Y was modified by age at onset (P = 0.03). The Y allele was inversely associated with PD for patients with onset before 61 years (odds ratio [OR] = 0.53; 95% confidence interval [CI], 0.29-0.99); there was no association for older patients (62-68 years: OR = 1.21; 95% CI, 0.67-2.20; >68 years: OR = 1.24; 95% CI, 0.67-2.31). Among patients, Y carriers had a later onset than noncarriers (P = 0.04). These findings were not modified or confounded by smoking and pesticides. In this community-based case-control study, carriers of the Y allele were at decreased risk of developing PD at a young age, independently of pesticides and smoking.
Collapse
Affiliation(s)
- Alexis Elbaz
- Institut National de la Santé et de la Recherche Médicale, Unit 360, Hôpital de la Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang J, Zhao CY, Si YM, Liu ZL, Chen B, Yu L. ACT and UCH-L1 polymorphisms in Parkinson's disease and age of onset. Mov Disord 2002; 17:767-71. [PMID: 12210873 DOI: 10.1002/mds.10179] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
alpha1-Antichymotrypsin (ACT) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) have been suggested as susceptibility factors for Parkinson's disease (PD). We replicated these findings in a Chinese case-control sample consisting of 160 PD cases and 160 carefully matched control subjects. Genotypes were determined using polymerase chain reaction and BstN1 or Rsa1 restriction enzyme assay. Analysis showed no significant difference between PD patients and controls for genotype or allele frequencies of the ACT and UCH-L1 S18Y polymorphisms. UCH-L1 S18Y polymorphism carriers, however, were found to be significantly less frequent in early-onset PD patients with a reduced risk of 0.557 (95% C.I. = 0.314-0.985; P = 0.043). These data suggest that ACT polymorphism does not influence the risk for developing PD. UCH-L1 S18Y polymorphism, however, may be a weak protective factor against early-onset PD.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Genetics, School of Life Science, Fudan University, Shanghai, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
21
|
Krüger R, Eberhardt O, Riess O, Schulz JB. Parkinson's disease: one biochemical pathway to fit all genes? Trends Mol Med 2002; 8:236-40. [PMID: 12067634 DOI: 10.1016/s1471-4914(02)02333-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although originally discounted, hereditary factors have emerged as the focus of research in Parkinson's disease (PD). Genetic studies have identified mutations in alpha-synuclein and ubiquitin C-terminal hydrolase as rare causes of autosomal dominant PD and mutations in parkin as a cause of autosomal recessive PD. Functional characterization of the identified disease genes implicates the ubiquitin-mediated protein degradation pathway in these hereditary forms of PD and also in the more common sporadic forms of PD. Subsequent identification of further loci in familial PD and diverse genetic factors modulating the risk for sporadic PD point to substantial genetic heterogeneity in the disease. Thus, new candidate genes are expected to encode proteins either involved in ubiquitin-mediated protein degradation or sequestrated in intracytoplasmic protein aggregations. Future identification of disease genes is required to confirm this hypothesis, thereby unifying the clinical and genetic heterogeneity of PD, including the common sporadic form of the disease, by one biochemical pathway.
Collapse
Affiliation(s)
- Rejko Krüger
- Dept of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|