1
|
Ma X, Tian F, Li J, Wu Z, Cao L. In Vitro Simulated Ketogenic Diet Inhibits the Proliferation and Migration of Liver Cancer Cells by Reducing Insulin Production and Down-regulating FOXC2 Expression. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:726-734. [PMID: 39344752 PMCID: PMC11391236 DOI: 10.5152/tjg.2024.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 10/01/2024]
Abstract
Ketogenic diet (KD) may benefit patients with liver cancer, but the underlying mechanism of its anti-cancer effect remains an open issue. This work aimed to explore the influence of simulated KD on the proliferation and migration of cultured hepatoma cells. The low-glucose medium supplemented with β-hydroxybutyrate (BHB-Glow) was utilized to simulate clinical KD treatment. Western blot was utilized for detecting the expression of glycolysis-related proteins, Seahorse XF96 for oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), and ELISA for insulin content. Expression of FOXC2 in liver cancer cells was analyzed by bioinformatics and qPCR. Cell Count Kit-8 (CCK-8) testing kit was utilized for testing cell viability. KD treatment significantly reduced the expression of glycolysis-related proteins in Huh-7 cells, inhibited insulin production in β islet cells, reduced ECAR, and increased OCR. FOXC2 was significantly up-regulated in Huh-7 cell line, and sh-FOXC2 hindered the proliferation and migration of Huh-7 cells. The exogenous addition of insulin promoted the malignant progression of Huh-7 cells. Together, the medium simulating KD environment strengthened the protection of liver cancer cells by reducing insulin production and down-regulating FOXC2 expression. This study confirmed through in vitro cell experiments that KD could inhibit the proliferation and migration of liver cancer cells by targeting down regulation of insulin and FOXC2 expression, providing new theoretical basis for the treatment of liver cancer patients.
Collapse
Affiliation(s)
- Xiangming Ma
- Department of Hepatobiliary Surgery, Kailuan General Hospital, Tangshan, Hebei, China
- Laboratory of Hepatobiliary, Kailuan General Hospital, Tangshan, Hebei, China
| | - Fei Tian
- Department of Radiation Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Jian Li
- Department of Diagnostic Radiology, Kailuan General Hospital, Tangshan, Hebei, China
| | - Zhenyu Wu
- Department of Emergency, Kailuan General Hospital, Tangshan, Hebei, China
| | - Liying Cao
- Department of Hepatobiliary Surgery, Kailuan General Hospital, Tangshan, Hebei, China
| |
Collapse
|
2
|
Makuku R, Sinaei Far Z, Khalili N, Moyo A, Razi S, Keshavarz-Fathi M, Mahmoudi M, Rezaei N. The Role of Ketogenic Diet in the Treatment of Neuroblastoma. Integr Cancer Ther 2023; 22:15347354221150787. [PMID: 36752115 PMCID: PMC9909060 DOI: 10.1177/15347354221150787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
The ketogenic diet (KD) was initially used in 1920 for drug-resistant epileptic patients. From this point onward, ketogenic diets became a pivotal part of nutritional therapy research. To date, KD has shown therapeutic potential in many pathologies such as Alzheimer's disease, Parkinson's disease, autism, brain cancers, and multiple sclerosis. Although KD is now an adjuvant therapy for certain diseases, its effectiveness as an antitumor nutritional therapy is still an ongoing debate, especially in Neuroblastoma. Neuroblastoma is the most common extra-cranial solid tumor in children and is metastatic at initial presentation in more than half of the cases. Although Neuroblastoma can be managed by surgery, chemotherapy, immunotherapy, and radiotherapy, its 5-year survival rate in children remains below 40%. Earlier studies have proposed the ketogenic diet as a possible adjuvant therapy for patients undergoing treatment for Neuroblastoma. In this study, we seek to review the possible roles of KD in the treatment of Neuroblastoma.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Zeinab Sinaei Far
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Neda Khalili
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alistar Moyo
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Sepideh Razi
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Nima Rezaei
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
3
|
Yao A, Li Z, Lyu J, Yu L, Wei S, Xue L, Wang H, Chen GQ. On the nutritional and therapeutic effects of ketone body D-β-hydroxybutyrate. Appl Microbiol Biotechnol 2021; 105:6229-6243. [PMID: 34415393 PMCID: PMC8377336 DOI: 10.1007/s00253-021-11482-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Abstract d-β-hydroxybutyrate (d-3HB), a monomer of microbial polyhydroxybutyrate (PHB), is also a natural ketone body produced during carbohydrate deprivation to provide energy to the body cells, heart, and brain. In recent years, increasing evidence demonstrates that d-3HB can induce pleiotropic effects on the human body which are highly beneficial for improving physical and metabolic health. Conventional ketogenic diet (KD) or exogenous ketone salts (KS) and esters (KE) have been used to increase serum d-3HB level. However, strict adaptation to the KD was often associated with poor patient compliance, while the ingestion of KS caused gastrointestinal distresses due to excessive consumption of minerals. As for ingestion of KE, subsequent degradation is required before releasing d-3HB for absorption, making these methods somewhat inferior. This review provides novel insights into a biologically synthesized d-3HB (d-3-hydroxybutyric acid) which can induce a faster increase in plasma d-3HB compared to the use of KD, KS, or KE. It also emphasizes on the most recent applications of d-3HB in different fields, including its use in improving exercise performance and in treating metabolic or age-related diseases. Ketones may become a fourth micro-nutrient that is necessary to the human body along with carbohydrates, proteins, and fats. Indeed, d-3HB being a small molecule with multiple signaling pathways within the body exhibits paramount importance in mitigating metabolic and age-related diseases. Nevertheless, specific dose–response relationships and safety margins of using d-3HB remain to be elucidated with more research. Key points • d-3HB induces pleiotropic effects on physical and metabolic health. • Exogenous ketone supplements are more effective than ketogenic diet. • d-3HB as a ketone supplement has long-term healthy impact.
Collapse
Affiliation(s)
- Aliya Yao
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Zihua Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinyan Lyu
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Liusong Yu
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Situ Wei
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Lingyun Xue
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Hui Wang
- Department of Colorectal Surgery, Guangdong Province Biomedical Material Conversion and Evaluation Engineering Technology Center, Institute of Biomedical Innovation, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong Province, China
| | - Guo-Qiang Chen
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China. .,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China. .,School of Life Sciences and Dept Chemical Engineering, Center for Synthetic and Systems Biology (CSSB), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Armstrong H, Bording-Jorgensen M, Wine E. The Multifaceted Roles of Diet, Microbes, and Metabolites in Cancer. Cancers (Basel) 2021; 13:cancers13040767. [PMID: 33673140 PMCID: PMC7917909 DOI: 10.3390/cancers13040767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Many studies performed to date have implicated select microbes and dietary factors in a variety of cancers, yet the complexity of both these diseases and the relationship between these factors has limited the ability to translate findings into therapies and preventative guidelines. Here we begin by discussing recently published studies relating to dietary factors, such as vitamins and chemical compounds used as ingredients, and their contribution to cancer development. We further review recent studies, which display evidence of the microbial-diet interaction in the context of cancer. The field continues to advance our understanding of the development of select cancers and how dietary factors are related to the development, prevention, and treatment of these cancers. Finally, we highlight the science available in the discussion of common misconceptions with regards to cancer and diet. We conclude this review with thoughts on where we believe future research should focus in order to provide the greatest impact towards human health and preventative medicine.
Collapse
Affiliation(s)
- Heather Armstrong
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: (H.A.); (E.W.)
| | - Michael Bording-Jorgensen
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Eytan Wine
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: (H.A.); (E.W.)
| |
Collapse
|