1
|
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
The ventilatory response to hypoxia is a life-saving chemoreflex originating at the carotid bodies that is impaired by nondepolarizing neuromuscular blocking agents. This study evaluated the effect of three strategies for reversal of a partial neuromuscular block on ventilatory control in 34 healthy male volunteers on the chemoreflex. The hypothesis was that the hypoxic ventilatory response is fully restored following the return to a train-of-four ratio of 1.
Methods
In this single-center, experimental, randomized, controlled trial, ventilatory responses to 5-min hypoxia (oxygen saturation, 80 ± 2%) and ventilation at hyperoxic isohypercapnia (end-tidal carbon dioxide concentration, 55 mmHg) were obtained at baseline, during rocuronium-induced partial neuromuscular block (train-of-four ratio of 0.7 measured at the adductor pollicis muscle by electromyography), and following reversal until the train-of-four ratio reached unity with placebo (n = 12), 1 mg neostigmine/0.5 mg atropine (n = 11), or 2 mg/kg sugammadex (n = 11).
Results
This study confirmed that low-dose rocuronium reduced the ventilatory response to hypoxia from 0.55 ± 0.22 (baseline) to 0.31 ± 0.21 l · min−1 · %−1 (train-of-four ratio, 0.7; P < 0.001). Following full reversal as measured at the thumb, there was persistent residual blunting of the hypoxic ventilatory response (0.45 ± 0.16 l · min−1 · %−1; train-of-four ratio, 1.0; P < 0.001). Treatment effect was not significant (analysis of covariance, P = 0.299) with chemoreflex impairment in 5 (45%) subjects following sugammadex reversal, in 7 subjects (64%) following neostigmine reversal, and in 10 subjects (83%) after spontaneous reversal to a train-of-four ratio of 1.
Conclusions
Despite full reversal of partial neuromuscular block at the thumb, impairment of the peripheral chemoreflex may persist at train-of-four ratios greater than 0.9 following reversal with neostigmine and sugammadex or spontaneous recovery of the neuromuscular block.
Collapse
|
2
|
O'Donohoe PB, Turner PJ, Huskens N, Buckler KJ, Pandit JJ. Influence of propofol on isolated neonatal rat carotid body glomus cell response to hypoxia and hypercapnia. Respir Physiol Neurobiol 2018; 260:17-27. [PMID: 30389452 PMCID: PMC6336315 DOI: 10.1016/j.resp.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/14/2018] [Accepted: 10/29/2018] [Indexed: 11/06/2022]
Abstract
The intravenous anaesthetic propofol acts directly on carotid body glomus cells to inhibit their response to hypoxia. Propofol acts via novel mechanisms, as we excluded action via its known target receptors (nicotinic, GABA-ergic, or K+ channel). Inhibition of the hypoxic response is clinically relevant in anaesthesia.
In humans the intravenous anaesthetic propofol depresses ventilatory responses to hypoxia and CO2. Animal studies suggest that this may in part be due to inhibition of synaptic transmission between chemoreceptor glomus cells of the carotid body and the afferent carotid sinus nerve. It is however unknown if propofol can also act directly on the glomus cell. Here we report that propofol can indeed inhibit intracellular Ca2+ responses to hypoxia and hypercapnia in isolated rat glomus cells. Neither this propofol effect, nor the glomus cell response to hypoxia in the absence of propofol, were influenced by GABA receptor activation (using GABA, muscimol and baclofen) or inhibition (using bicuculline and 5-aminovaleric acid). Suggesting that these effects of propofol are not mediated through GABA receptors. Propofol inhibited calcium responses to nicotine in glomus cells but the nicotinic antagonists vecuronium and methyllycaconitine did not inhibit calcium responses to hypoxia. TASK channel activity was not altered by propofol. The glomus cell Ca2+ response to depolarisation with 30 mM K+ was however modestly inhibited by propofol. In summary we conclude that propofol does have a direct effect upon hypoxia signalling in isolated type-1 cells and that this may be partially due to its ability to inhibit voltage gated Ca2+v channels. We also note that propofol has the capacity to supress glomus cell excitation via nicotinic receptors and may therefore also interfere with paracrine/autocrine cholinergic signalling in the intact organ. The effects of propofol on chemoreceptor function are however clearly complex and require further investigation.
Collapse
Affiliation(s)
- Peadar B O'Donohoe
- Department of Physiology, Anatomy & Genetics, Parks Road, University of Oxford, Oxford, OX1 3PT, UK; Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Philip J Turner
- Department of Physiology, Anatomy & Genetics, Parks Road, University of Oxford, Oxford, OX1 3PT, UK
| | - Nicky Huskens
- Department of Physiology, Anatomy & Genetics, Parks Road, University of Oxford, Oxford, OX1 3PT, UK
| | - Keith J Buckler
- Department of Physiology, Anatomy & Genetics, Parks Road, University of Oxford, Oxford, OX1 3PT, UK
| | - Jaideep J Pandit
- Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK.
| |
Collapse
|
3
|
Quantitative Relationships between Pulmonary Function and Residual Neuromuscular Blockade. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9491750. [PMID: 29662906 PMCID: PMC5832181 DOI: 10.1155/2018/9491750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 11/22/2022]
Abstract
Background Neuromuscular blockade is a risk factor for postoperative respiratory weakness during the immediate postoperative period. The quantitative relationships between postoperative pulmonary-function impairment and residual neuromuscular blockade are unknown. Methods 113 patients who underwent elective laparoscopic cholecystectomy were enrolled in this study. They all had a pulmonary-function test (PFT) during the preoperative evaluation. Predictive values based on demographic data were also recorded. The train-of-four ratio (TOFR) was recorded at the same time as the PFT and at every 5 minutes in the qualified 98 patients in the postanesthesia care unit (PACU). We analyzed the degree of PFT recovery when the TOFR had recovered to different degrees. Results There was a significant difference (P < 0.05) between the preoperative baseline value and the postoperative forced vital capacity at each TOFR point, except at a TOFR value of 1.1. There was also a significant difference (P < 0.05) between the preoperative baseline value and the postoperative peak expiratory flow at each TOFR point. Conclusions Postoperative residual neuromuscular blockade was common (75.51%) after tracheal extubation, and pulmonary function could not recover to an acceptable level (85% of baseline value), even if TOFR had recovered to 0.90. Trial Registration Chinese Clinical Trial Register is ChiCTR-OOC-15005838.
Collapse
|
4
|
Effect of Lipopolysaccharide Exposure on Structure and Function of the Carotid Body in Newborn Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:115-21. [DOI: 10.1007/978-3-319-18440-1_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Kåhlin J, Mkrtchian S, Ebberyd A, Hammarstedt-Nordenvall L, Nordlander B, Yoshitake T, Kehr J, Prabhakar N, Poellinger L, Fagerlund MJ, Eriksson LI. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol 2014; 99:1089-98. [PMID: 24887113 DOI: 10.1113/expphysiol.2014.078873] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies on experimental animals established that the carotid bodies are sensory organs for detecting arterial blood O2 levels and that the ensuing chemosensory reflex is a major regulator of cardiorespiratory functions during hypoxia. However, little information is available on the human carotid body responses to hypoxia. The present study was performed on human carotid bodies obtained from surgical patients undergoing elective head and neck cancer surgery. Our results show that exposing carotid body slices to hypoxia for a period as brief as 5 min markedly facilitates the release of ACh and ATP. Furthermore, prolonged hypoxia for 1 h induces an increased release of interleukin (IL)-1β, IL-4, IL-6, IL-8 and IL-10. Immunohistochemical analysis revealed that type 1 cells of the human carotid body express an array of cytokine receptors as well as hypoxia-inducible factor-1α and hypoxia-inducible factor-2α. Taken together, these results demonstrate that ACh and ATP are released from the human carotid body in response to hypoxia, suggesting that these neurotransmitters, as in several experimental animal models, play a role in hypoxic signalling also in the human carotid body. The finding that the human carotid body releases cytokines in response to hypoxia adds to the growing body of information suggesting that the carotid body may play a role in detecting inflammation, providing a link between the immune system and the nervous system.
Collapse
Affiliation(s)
- Jessica Kåhlin
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Souren Mkrtchian
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anette Ebberyd
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Britt Nordlander
- Department of Otorhinolaryngology (ENT), Karolinska University Hospital, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nanduri Prabhakar
- Institute for Integrative Physiology & Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Lorenz Poellinger
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Jonsson Fagerlund
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I Eriksson
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Carron M, Veronese S, Foletto M, Ori C. Sugammadex Allows Fast-Track Bariatric Surgery. Obes Surg 2013; 23:1558-63. [DOI: 10.1007/s11695-013-0926-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Low-dose dexmedetomidine facilitates the carotid body response to low oxygen tension in vitro via α2-adrenergic receptor activation in rabbits. Eur J Anaesthesiol 2012; 29:570-6. [DOI: 10.1097/eja.0b013e328356fba5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Xiaobo F, Jianjuan K, Yanlin W. Comparison of the variability of the onset and recovery from neuromuscular blockade with cisatracurium versus rocuronium in elderly patients under total intravenous anesthesia. Braz J Med Biol Res 2012; 45:676-80. [PMID: 22584638 PMCID: PMC3854273 DOI: 10.1590/s0100-879x2012007500076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 04/24/2012] [Indexed: 12/02/2022] Open
Abstract
This study was designed to compare the variability of the onset and offset of the effect of two neuromuscular blocking drugs with different elimination pathways in adult and elderly patients during total intravenous anesthesia (TIVA). After Ethics Committee approval and patients' informed consent, the drugs were compared in 40 adult and 40 elderly patients scheduled for elective surgery under TIVA with tracheal intubation who were randomized to receive a single bolus dose of 0.15 mg/kg cisatracurium or 0.9 mg/kg rocuronium. The time of onset of maximum depression, duration of action, and recovery index time were measured and recorded for each patient and variability is reported as means ± standard deviation. Time of onset was significantly shorter for rocuronium than cisatracurium for the adult and elderly groups (P = 0.000), but the variability of cisatracurium was significantly greater compared with rocuronium for the same age groups (93.25 vs 37.01 s in the adult group and 64.56 vs 33.75 s in the elderly group; P = 0.000). The duration of the effect in the elderly group receiving rocuronium was significantly longer than in the elderly group receiving cisatracurium, and the variability of the duration was significantly greater in the rocuronium group than in the cisatracurium group. Mean time of recovery was significantly longer for the elderly group receiving rocuronium than for the elderly group receiving cisatracurium (P = 0.022), and variability was also greater (P = 0.002). Both drugs favored good intubating conditions. In conclusion, cisatracurium showed less variability in these parameters than rocuronium, especially in the elderly, a fact that may be of particular clinical interest.
Collapse
Affiliation(s)
- Feng Xiaobo
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | | | | |
Collapse
|
9
|
Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg 2010; 111:120-8. [PMID: 20442260 DOI: 10.1213/ane.0b013e3181da832d] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we summarize the clinical implications of residual neuromuscular block. Data suggest that residual neuromuscular block is a common complication in the postanesthesia care unit, with approximately 40% of patients exhibiting a train-of-four ratio <0.9. Volunteer studies have demonstrated that small degrees of residual paralysis (train-of-four ratios 0.7-0.9) are associated with impaired pharyngeal function and increased risk of aspiration, weakness of upper airway muscles and airway obstruction, attenuation of the hypoxic ventilatory response (approximately 30%), and unpleasant symptoms of muscle weakness. Clinical studies have also identified adverse postoperative events associated with intraoperative neuromuscular management. Large databased investigations have identified intraoperative use of muscle relaxants and residual neuromuscular block as important risk factors in anesthetic-related morbidity and mortality. Furthermore, observational and randomized clinical trials have demonstrated that incomplete neuromuscular recovery during the early postoperative period may result in acute respiratory events (hypoxemia and airway obstruction), unpleasant symptoms of muscle weakness, longer postanesthesia care unit stays, delays in tracheal extubation, and an increased risk of postoperative pulmonary complications. These recent data suggest that residual neuromuscular block is an important patient safety issue and that neuromuscular management affects postoperative outcomes.
Collapse
Affiliation(s)
- Glenn S Murphy
- Department of Anesthesiology, NorthShore University HealthSystem, 2650 Ridge Ave., Evanston, IL 60201, USA.
| | | |
Collapse
|
10
|
Di Marco P, Della Rocca G, Iannuccelli F, Pompei L, Reale C, Pietropaoli P. Knowledge of residual curarization: an Italian survey. Acta Anaesthesiol Scand 2010; 54:307-12. [PMID: 19839947 DOI: 10.1111/j.1399-6576.2009.02131.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The use of neuromuscular blocking agents (NMBAs) is widespread in anesthetic practice; little is known about the current use of these drugs in Italy. This survey was conducted to obtain information about the most commonly used clinical tests and the train-of-four (TOF) ratios that are considered as being reliable for assessing recovery from neuromuscular blockade at the end of anesthesia and the estimated occurrence rates of post-operative paralysis in Italian hospitals. METHODS The questionnaire was given to Italian anesthesiologists attending the 62nd National Congress of the Italian Society of Anesthesia, Analgesia and Intensive Therapy. Collected data were stratified by age and the total number of surgical procedures performed in the hospitals concerned. RESULTS Seven hundred and fifty-four correctly compiled questionnaires were collected (response rate 88.7%). Seventy three percent of the respondents only used clinical tests for monitoring the level of neuromuscular blockade. The main clinical tests cited for the evaluation of residual paralysis were keeping the head lifted up for 5 s, protruding the tongue and opening the eyes. TOF was used by 35% of the respondents on a routine basis. Only 24% of the interviewed anesthesiologists reported that before extubation, a TOF ratio of at least 0.9 should be reached. CONCLUSIONS Most Italian anesthetists assess the recovery from neuromuscular blockade only by clinical signs. There is poor awareness about the inability of such techniques to indicate even a significant amount of residual neuromuscular block. A more extensive use of quantitative instrumental monitoring is required for the more rational use of NMBAs.
Collapse
Affiliation(s)
- P Di Marco
- Department of Anesthesia and Intensive Care Medicine, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Niane L, Joseph V, Bairam A. Role of cholinergic-nicotinic receptors on hypoxic chemoreflex during postnatal development in rats. Respir Physiol Neurobiol 2009; 169:323-32. [DOI: 10.1016/j.resp.2009.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/28/2022]
|
12
|
Ortiz-Gómez JR, Fabregat-López J. [On extubation, residual curarization, and their circumstances]. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2009; 56:335-338. [PMID: 19725339 DOI: 10.1016/s0034-9356(09)70404-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
13
|
Jonsson M, Lindahl SGE, Eriksson LI. Neuromuscular blocking agents and carotid body oxygen sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 536:135-40. [PMID: 14635659 DOI: 10.1007/978-1-4419-9280-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Malin Jonsson
- Department of Anesthesiology and Intensive Care Medicine, Karolinska Hospital and Institute, Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Sakuraba S, Kuwana SI, Ochiai R, Okada Y, Kashiwagi M, Hatori E, Takeda J. Effects of neuromuscular blocking agents on central respiratory control in the isolated brainstem–spinal cord of neonatal rat. Neurosci Res 2003; 47:289-98. [PMID: 14568110 DOI: 10.1016/s0168-0102(03)00213-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although neuromuscular blocking agents (NMBAs) function as muscular nicotinic acetylcholine receptor (nAChR) antagonists, several studies have shown that they block neuronal nAChRs as well, which led us to hypothesize that these agents can affect neuronal nAChRs expressed in respiratory centers. To test this hypothesis, we studied the effects of two NMBAs on respiratory activity and respiratory neurons in brainstem-spinal cord preparations from neonatal rats. The application of either D-tubocurarine or vecuronium resulted in dose-dependent reductions in C4 respiratory rate. These reductions were concomitant with reductions in the depolarizing cycle rate of inspiratory (Insp) neurons; the depolarizing cycle rate of preinspiratory (Pre-I) neurons, however, was not affected. We also detected C4 burst activity during the depolarizing phase in Pre-I neurons, even during NMBA-induced respiratory depression. Both NMBAs inhibited drive potential amplitude and intraburst firing frequency in Insp and Pre-I neurons. These agents also induced a hyperpolarization and an increase in membrane resistance in Pre-I neurons, however they had no effect on these membrane properties in Insp neurons. Our findings indicate that these agents suppress central respiratory activity mainly through their inhibitory effects on Pre-I neurons and the Pre-I to Insp neuron synaptic drive, and that nAChRs are involved in central respiratory control.
Collapse
Affiliation(s)
- Shigeki Sakuraba
- Department of Anesthesiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|